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ABSTRACT Recently, swarm intelligence-based algorithms gained attention of the researchers due to their
wide applicability and ease of implementation. However, much research has been made on the development
of swarm intelligence algorithms but theoretical analysis of these algorithms is still a less explored area of the
research. Theoretical analyses of trajectory and convergence of potential solutions toward the equilibrium
point in the search space can help the researchers to understand the iteration-wise behavior of the algorithms
which can further help in making them efficient. Artificial bee colony (ABC) optimization algorithm is
swarm intelligence-based algorithm. This paper presents the convergence analysis of ABC algorithm using
theory of dynamical system. Convergent boundaries for the parameters of ABC update equation have also
been proposed. Also, the trajectory of potential solutions in the search space is analyzed by obtaining a partial
differential equation corresponding to the position update equation of ABC algorithm. The analysis reveals
that the ABC algorithm performs better when parameters of the update equation are in the convergent region
and potential solutions movement follows 1-D advection equation.

INDEX TERMS Artificial bee colony (ABC) algorithm, advection equation, convergence analysis, finite
difference scheme, swarm intelligence.

I. INTRODUCTION
In the recent past, researchers have shown interest in algo-
rithms inspired from natural phenomena. To name a few
we have Particle Swarm Optimisation (PSO) algorithm [23]
taking inspiration from birds flocking, Artificial Bee
Colony (ABC) optimization algorithm [21] inspired by
foraging behavior of honey bees, Gravitational Search
Algorithm (GSA) [28] taking inspiration from law of grav-
ity and interaction between the masses, Harmony Search
Algorithm (HSA) [12] inspired by improvisation done by
jazz musician, Differential Evolution (DE) algorithm [30]
inspired by theory of evolution and SpiderMonkeyOptimiza-
tion (SMO) [4] algorithm taking inspiration from foraging
behavior of spider monkeys.

Recently various variants of ABC algorithm have been
proposed which includes modified global best artificial bee
colony for constrained optimization problem [3], artificial
bee colony algorithm with multiple search strategies [11],
an adaptive artificial bee colony algorithm for global
optimization [35], hybrid artificial bee colony with differen-
tial evolution [18], [34], simulated annealing based artificial

bee colony algorithm for global numerical optimization [6]
and escalated convergent artificial bee colony [17]. Study
has shown that these algorithms are considered as an
efficient solver of complex optimization problems. Arti-
ficial Bee Colony (ABC) optimization algorithm and its
variants has been applied to various optimization prob-
lems such as solving partition and scheduling prob-
lem in codesign [14], [24], artificial neural networks [25],
forecasting stock markets [15], automatic software fault
localization [16], parameter identification for Van Der Pol
- Duffing oscillator [10], network topology design [29] and
structural engineering [8].

Since the inception of ABC algorithm, its different char-
acteristics have been analyzed and investigated, numerically.
However, a little work has been done in the theoreti-
cal analysis of this class of algorithms. Study of stability
and convergence behavior of Particle Swarm Optimization
(PSO) algorithm is carried out using Z-transformation
[19], [26], [33]. Stability analysis of Differential Evolu-
tion (DE) algorithm [7], [13], Bacterial Foraging Optimiza-
tion (BFO) algorithm [5], Ant Colony Optimization (ACO)
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algorithm [1] and Gravitational Search algorithm (GSA) [9]
is done using von Neumann stability criteria and Lyapunov’s
stability theorem. Recently, Bansal et al. [2] have performed
stability analysis of Artificial Bee Colony (ABC) optimiza-
tion algorithm using von Neumann stability criteria for two-
level finite difference scheme. One of the important aspects
is to find the conditions under which the algorithm con-
verges and to study the propagation of potential solutions
in the search space using position update equation of the
algorithm. Hence, this analysis plays a significant role in the
theoretical study of the algorithm. Upto authors’ knowledge
no attempt has yet been made for such kind of analysis of
ABC algorithm.

In this paper, we investigate the behavior of ABC algorithm
within the convergent boundaries of the parameters. The con-
sistency of finite difference scheme corresponding to position
update equation of ABC algorithm with generated partial
differential equation is investigated. Trajectory of potential
solutions is proposed by investigating the obtained partial
differential equation. Then inferences are made by observing
the obtained partial differential equation and results obtained
from numerical experiments.

Rest of the paper is organized as follows: on the back-
drop of original ABC algorithm in Section II, the paper
is followed by analysis of trajectory of potential solutions
in Section III. Convergence analysis of ABC algorithm is
performed in Section IV. Numerical experiments are carried
out in Section V, outcomes are discussed in Section VI and
findings are concluded in Section VII.

II. ARTIFICIAL BEE COLONY (ABC) OPTIMIZATION
ALGORITHM
Artificial Bee Colony (ABC) optimization algorithm [21] is
a population-based optimization algorithm and makes use of
iterative method in order to reach global optima. It consists
mainly of four phases. After initialization, exploitation of
search space is done employed and onlooker bee phase while
exploration is done in scout bee phase. In Artificial Bee
Colony (ABC) optimization algorithm employed bees and
onlooker bees are present in equal number.

The ABC algorithm has four phases; initialization,
employed bee, onlooker bee and scout bee [2].

A. INTIALIZATION
Artificial Bee Colony (ABC) optimization algorithm initiates
with randomly generated potential solutions. For employed
bees initial solutions are generated by using the equation:

xi,j = xminj + µ(x
max
j − xminj ), i = 1, 2, ..N , j = 1, 2, ..D

(1)

where, xi,j represents jth dimension of the ith employed bee.
xmaxj is the upper bound and xminj represents the lower bound
of the jth parameter respectively. µ represents uniform ran-
dom number in the interval [0, 1]. N represents the swarm
size and D is the dimension of considered problem. Also,

in this phase of the algorithm abandonment counter (AC) is
reset for each employed bee.

B. EMPLOYEED BEE PHASE
A new candidate solution is generated corresponding to
each employed bee in this phase. First, the solution of the
employed bee is copied to new candidate solution (vi = xi).
Then, a randomly selected parameter ‘j’ of the solution is
updated by using the equation:

vi,j = xi,j + φ(xi,j − xr,j) (2)

where i, r ∈
{
1, 2, 3...,N

}
, j ∈

{
1, 2, 3...,D

}
and i 6= r .

xr is randomly selected solution in the neighborhood of xi
candidate. φ is the random number in [−1, 1]. Then fitness
of the candidate solution is calculated as follows:

fiti =
{ 1

1+gi
, if fi ≥ 0

1+ abs(gi), otherwise

}
where fiti is the fitness value and gi is the value of objective
function for ith candidate solution. If better fitness value
is achieved then the candidate solution replaces the current
solution and the abandonment counter (AC) is reset to zero,
otherwise incremented by one.

C. ONLOOKER BEE PHASE
In order to get better solution each employed bee is selected
by onlooker bee. The probability for the selection of ith

employed bee is calculated by:

pi =
fiti∑N
j=1 fitj

(3)

where pi is the probability of selection of ith employed bee.
The updation of selected solution is done by using equa-
tion (2). Again if better fitness is achieved then employed
bee is replaced with onlooker bee and AC is reset to zero.
Otherwise AC is increased by unity.

D. SCOUT BEE PHASE
In this phase AC of all potential solutions are checked for
predefined limit.Those employed bees whose AC has reached
the predefined limit becomes scout bee. Thereafter for scout
bees the solution is generated by using equation (1) and AC
is set to zero. The scout bee then becomes employed bee and
hence prevents stagnation of the algorithm.

III. TRAJECTORY OF POTENTIAL SOLUTIONS IN
ARTIFICIAL BEE COLONY (ABC) ALGORITHM
A. MOTIVATION
Nature inspired optimization algorithms are used to solve
real-world optimization problems. It is not always necessary
that the potential solutions converge to equilibrium point as
the iteration increases, they may diverge from the desired
equilibrium point.Therefore it is important to study the con-
ditions under which the potential solutions and hence the
ABC algorithm converge to the desired equilibrium point.
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φ and ψ are two parameters used in the position update
equation of ABC algorithm. The study of convergence will
provide necessary recommendations for parameter setting of
the parameters φ and ψ . Also, it is necessary to understand
how the solutions move near optimal solution in the search
space. This motivates the authors to study the iteration-wise
movement of solutions, which are updated using position
update equation (2) of the ABC algorithm. Convergent region
is defined as the region bounded by parameters φ and ψ ,
where the algorithm converges to equilibrium point.

B. PARTIAL DIFFERENTIAL EQUATION ASSOCIATED WITH
POSITION UPDATE EQUATION OF ABC ALGORITHM
In this section, we generate initial value problem associated
with position update equation of ABC algorithmwith the help
of finite difference scheme corresponding to position update
equation given in equation (2).

vi,j = xi,j + φ(xi,j − xr,j)

where i, r ∈
{
1, 2, 3...,N

}
; j ∈

{
1, 2, 3...,D

}
and i 6= r . If t

represents the present iteration and the solution got updated,
then xi,j represents the solution at iteration t and vi,j represents
the solution at iteration (t + 1). So the above equation can be
written as [2]:

xi,j(t + 1) = xi,j(t)+ φ(xi,j(t)− xr,j(t)) (4)

In ABC algorithm, the position update equation (4) is imple-
mented component wise, i.e. the dimension of a solution is
updated independently. The only link between the dimensions
of the problem space is introduced via objective function.
Thus, without loss of generality, for analysis purpose the
algorithm description can be reduced to the one dimension
case as considered in [7], [9], and [33]. Thus equation (4) can
be written as:

xi(t + 1)− xi(t) = φ(xi(t)− xr (t)) (5)

where, r is randomly selected solution index different from
i. If x = x(i, t) represents true solution to a problem in an
i-t computational domain. Then, xl,n = x(il, tn) represents
the approximate solution on the nodes of a uniform com-
putational grid such that 1i = 1t , l ∈

{
1, 2, 3..., b1

}
and

n ∈
{
1, 2, 3..., b2

}
, where 1i and 1t are grid spacing in the

direction of i and t respectively (shown in Figure 1).
In terms of grid points the difference equation can further

be written as:

x(il, tn+1)−x(il, tn) = φ(x(il, tn)−x(ir , tn)); x(il, 1) = g(il)

(6)

where, l, r ∈
{
1, 2, 3..., b1

}
and n ∈

{
1, 2, 3..., b2

}
.

Since l, r ∈
{
1, 2, 3..., b1

}
, we can write r = l + a where,

a ∈ Z/
{
0
}
such that r ∈

{
1, 2, 3..., b1

}
.

The above equation (6) can now be written as:

x(il, tn+1)−x(il, tn)=φ(x(il, tn)−x(il+a, tn)); x(il, 1)=g(il)

(7)

FIGURE 1. Grid point representation of approximate solutions.

As discussed earlier since we have considered uniform grid
for our analysis, so the grid spacings are of equal length
i.e. 1t = 1i. Hence, equation (7) can be written as:

x(il, tn+1)− x(il, tn)
1t

=
φ(x(il, tn)− x(il+a, tn))

1i
;

x(il, 1) = g(il) (8)

Since a ∈ Z/
{
0
}
, so the above equation (8) can be written as:

x(il, tn+1)− x(il, tn)
1t

=
aφ(x(il, tn)− x(il+a, tn))

a1i
;

x1l = x(il, 1) = g(il) (9)

or

xn+1l − xnl
1t

=
aφ(xnl − x

n
l+a)

a1i
;

x1l = x(il, 1) = g(il) (10)

where, xnl = x(il, tn). The partial differential equation corre-
sponding to above difference equation and hence correspond-
ing to position update equation of ABC algorithm with initial
condition is given by:

∂x
∂t
= −aφ

∂x
∂i
; x(i, 1) = g(i) (11)

or
∂x
∂t
+ v

∂x
∂i
= 0; x(i, 1) = g(i) (12)

where, ∂x
∂t =

x(il ,tn+1)−x(il ,tn)
1t , ∂x

∂i =
(x(il+a,tn)−x(il ,tn))

a1i , v =
aφ and x is the exact solution of the partial differential
equation (12).

By analyzing equation (12) we can infer that the partial
differential equation corresponding to position update equa-
tion of ABC algorithm resembles 1- Dimension advection
equation [20].
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In the next subsection, we will verify that the difference
scheme corresponding to position update equation of ABC
algorithm given in equation (10) is consistent with the partial
differential equation obtained in equation (12).

C. CONSISTENCY
Definition [32]: Let the partial differential equation under
consideration be denoted by Ly = F and the corresponding
finite difference approximation by Lnl x

n
l = Gnl , where G

n
l

denotes whatever approximation has been made of the source
term. If we write the difference scheme as:

xn+1l = Qxnl +1tG
n
l (13)

where, xnl = (..., xn
−1, x

n
0 , x

n
1 ...)

T ,Gnl = (...,Gn
−1,G

n
0,G

n
1...)

T

and Q is an operator acting on the appropriate space. The
difference scheme (13) is pointwise consistent with the partial
differential equation (Ly = F) if the solution of the partial
differential equation, y, satisfies

yn+1l = Qynl +1tG
n
l +1tτ

n
l (14)

and τ nl → 0 as 1i,1t → 0. We refer to τ nl as truncation
error.
To show that the difference scheme (10) is consistent,

we must write the scheme in the form of equation (13) as:

xn+1l = xnl + φ
a1t
a1i

(xnl − x
n
l+a) (15)

Equation (15) gives each component of an equation in the
form of (13). Hence, to apply definition of consistency, we let
x to be a solution of partial differential equation (12) and
write:

1tτ nl = xn+1l − [xnl + φ
a1t
a1i

(xnl − x
n
l+a)] (16)

By expanding the components with the help of Taylor series
we get:

1tτ nl =
[
xnl + (xt )nl1t + (xtt )nl

1t2

2
+....

]
−

{
xnl +φ

a1t
a1i

[
xnl

−

(
xnl + (xi)nl a1i+ (xii)nl

(a1i)2

2
− ..

)]}
(17)

With proper rearrangement and cancellation of components
in the above equation (17) we get:

1tτ nl = (xt )nl1t + aφ(xi)
n
l1t

+ (xtt )nl
1t2

2
+ φ(xii)nl

a21t1i
2
+ ... (18)

By dividing both sides of equation (18) by 1t , we get the
required equation as:

τ nl = (xt + aφxi)nl + (xtt )nl
1t
2
+ φ(xii)nl

a21i
2
+ ...... (19)

or

τ nl = (xt + vxi)nl + (xtt )nl
1t
2
+ φ(xii)nl

a21i
2
+ ...... (20)

Using equation (12) the above equation is modified to get the
value of τ nl as:

τ nl = (xtt )nl
1t
2
+ φ(xii)nl

a21i
2
+ ...... (21)

or

τ nl = o(1t)+ o(1i) (22)

According to the definition of consistency discussed previ-
ously, τ nl → 0 as 1i,1t → 0. Also, under the assumption
that higher order derivatives of x are bounded at (l1i, n1t)
the considered difference scheme has accuracy of order (1, 1).

Hence, the finite difference scheme given by equation (10)
corresponding to position update equation of ABC algorithm
is consistent with the obtained partial differential equation
given by equation (12). In the next section, numerical exper-
iments are done for deterministic analysis of the findings.

D. LAX EQUIVALENCE THEOREM
Definition: A consistent, two level finite difference scheme
for a well posed linear initial value problem is convergent iff
it is stable [32].

Bansal et al. [2] have already proved stability of position
update equation of ABC algorithm. Also, consistency of the
position update equation is proved in section 3.3. Since the
corresponding initial value problem depends continuously
upon its initial conditions, it is well posed too. Therefore
by Lax equivalence theorem considered difference scheme
corresponding to position update equation of ABC algorithm
is convergent to the obtained partial differential equation
given by equation (12).
Physical meaning of convergence:
1t → 0 indicates that distance between grid points in

the direction of t tends to zero i.e., number of iterations
reaches to maximum limit. While 1i → 0 implies that,
distance between grid points in the direction of i tends to
zero i.e., distance between particles tend to zero, whichmeans
particles are getting clustered at a particular location in the
search space.

These two inferences imply that when particles get clus-
tered in the search space as number of iterations reaches to
maximum limit, then the solutions obtained from difference
equation (5) coincides with the solutions obtained from par-
tial differential equation (12).

IV. CONVERGENCE ANALYSIS OF ABC ALGORITHM
In this section, the conditions under which the potential solu-
tions considered in ABC algorithm converges to an equilib-
rium point is obtained. In order to do so, we first introduce a
parameter ψ (as coefficient) in the position update equation
of ABC algorithm.

vi,j = ψxi,j + φ(xi,j − xr,j), (23)

where i, r ∈
{
1, 2, 3...,N

}
, j ∈

{
1, 2, 3...,D

}
and i 6= r . All

the parameters are same as defined in section III. In case of
original ABC algorithm the coefficient ψ is taken as unity.
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As explained in section III, without loss of generality for
analysis purpose the algorithm description can be reduced to
one dimension case as considered in [7], [9], and [33]. Thus
equation (23) can be written as (as done in section III)

xi(t + 1) = ψxi(t)+ φ(xi(t)− xr (t)) (24)

or

xi(t + 1) = (ψ + φ)xi(t)− φxr (t) (25)

For theoretical analysis of ABC algorithm, the deterministic
version of position update equation is considered. Determin-
istic version is obtained by replacing random entity with the
expected value. In equation (25), xr is the position of ran-
domly selected candidate solution in the neighborhood of xi.
So, in order to obtain deterministic version of position update
equation of ABC algorithm, we have to replace the position of
randomly selected candidate solution by any expected value
say ‘p’, i.e. xr = p. Now equation (25) can be written as

xi(t + 1) = (ψ + φ)xi(t)− φp (26)

The dynamic behavior of potential solutions in the search
space can be analyzed by using the study of linear
discrete-time dynamical system [33]. Equation (26) can be
written in matrix form as

Yt+1 = AYt + Bp (27)

where, Yt = [xi(t)]1∗1, A = [ψ + φ]1∗1 and B = [−φ]1∗1
In accordance with the theory of dynamical systems, Yt

represents the particle state, comprising of its current position
xi(t). The properties of dynamic matrix ‘A’ determines the
time behavior of the particle. External input ‘p’ helps in
moving the particle towards specified position while input
matrix ‘B’ provides the effect of external input on the particle
state.

A. EQUILIBRIUM POINT
Definition: An equilibrium point is a state maintained by the
dynamical system in the absence of external excitation (i.e.,
p = constant) [33].

If any equilibrium point exists then it satisfies the condition

Y eqt+1 = Y eqt ; ∀ t (28)

By using the above condition in equation (26), the equilib-
rium point is calculated as:

xeqi =
−φp

1− ψ − φ
(29)

Without loss of generality, equation (23) can also be simpli-
fied and written as

xi(t + 1) = ψxi(t)+ φ(xr (t)− xi(t)) (30)

or

xi(t + 1) = (ψ − φ)xi(t)+ φxr (t) (31)

or

xi(t + 1) = (ψ − φ)xi(t)+ φp (32)

So, the corresponding equilibrium point is given by:

xeqi =
φp

1− ψ + φ
(33)

For ψ = 1 i.e. in case of original ABC algorithm, the equi-
librium point is calculated as xeqi = p for both the cases.
It can be clearly observed that in the presence of coeffi-

cient ψ , the equilibrium point depends upon both parameters
ψ and φ, whereas when coefficient ψ = 1 the equilibrium
point is independent of both the parameters. Hence we can
say that with the introduction of coefficient ψ (ψ 6= 1),
the role of parameter φ became more significant in finding
the equilibrium point as evident from equations (29) and (33).

B. CONVERGENCE
In general, initially the particle state is not at equilibrium.
So it is necessary to analyze whether the particle will even-
tually move towards equilibrium or not i.e., the optimization
algorithm will converge or not. From the results of theory of
dynamical system it can be concluded that the eigenvalues of
the dynamic matrix A plays an important role in explaining
the time behavior of the potential solutions [22]. The neces-
sary and sufficient condition for equilibrium point to be stable
is that the magnitude of eigen values of the matrix A should
be less than unity [33]. In this case the potential solutions
will eventually settle at equilibrium and the algorithm will
converge. By using equation (27), the matrix A has only one
eigen value given by λ1 = ψ+φ. As discussed above for the
convergence of ABC algorithm

|λ1| < 1i.e.|ψ + φ| < 1 (34)

Without loss of generality, equation (23) can also be written
as:

xi(t + 1) = ψxi(t)+ φ(xr (t)− xi(t)) (35)

or

xi(t + 1) = (ψ − φ)xi(t)+ φxr (t) (36)

The corresponding eigen value will be given by λ2 = ψ − φ
and hence the condition for convergence of ABC algorithm
will be given by:

|λ2| < 1i.e.|ψ − φ| < 1 (37)

By combining results from equation (34) and (37) the con-
dition for convergence of ABC algorithm with coefficient ψ
is:

|ψ + φ| < 1 and |ψ − φ| < 1 (38)

The convergence boundary for the parameters ψ and φ is
shown in Figure 2. In Figure 2, the shaded region (A1) is
termed as convergent region and (A2) as outside convergent
region. Convergent region signifies that, if the values of
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FIGURE 2. Convergence boundary for parameters ψ and φ.

parameters φ and ψ lie within region (A1) then the potential
solutions will converge to equilibrium point. In next section,
obtained conditions are verified numerically by testing them
on benchmark test problems.

V. NUMERICAL EXPERIMENT
In order to justify our theoretical findings for convergence
analysis of ABC algorithm, numerical testing is carried out
on a set of 10 benchmark problems. The benchmark problems
considered have objective function with properties which
includes unimodal, multimodal, separable and non-separable
functions. In addition to that few have optimal point at origin
and others have optimal point away from origin as explained
in Table 1. While doing numerical experiments to verify
the findings of convergence analysis, two cases are consid-
ered. Firstly, when parameters φ and ψ lie within conver-
gence region and secondly when they lie outside convergence
region.

Following three types of numerical experiments are per-
formed:

1) In subsection (V-A), movement of potential solution in
the search space is analyzed.

2) In subsection (V-B), efficiency of the algorithm is
tested by calculating average number of function eval-
uations.

3) In subsection (V-C), accuracy of the algorithm is
checked by analyzing the mean error of considered test
problems.

A. MOVEMENT OF POTENTIAL SOLUTION IN THE SEARCH
SPACE
In order to justify our finding that movement of solutions
in ABC algorithm follows advection equation, numerical
analysis is done with usual parameter settings. The general
solution of the partial differential equation (11) can be written
as [Appendix A]:

x(i, t) = g(i− aφ(t − 1)) (39)

While, the position update equation of ABC algorithm along
with initial solution xi(1) is given by:

xi(t + 1) = xi(t)+ φ(xi(t)− xr (t)); xi(1) = g(i) (40)

Following parameter settings are considered for the numeri-
cal experiment:

1) Since in the position update equation of ABC algo-
rithm, the updated position depends upon the previous
solution and a randomly selected solution, therefore
for analysis purpose, minimum number of required
solutions are two. So, we will consider a swarm size
of 2 for the numerical analysis.

2) Since we are performing numerical analysis and swarm
size is fixed to two solutions, so the random solution
index (r) will be taken as r = 2, (r 6= i ).

3) In order to follow the phenomena of exploration and
exploitation, some random values of parameter φ are
considered in the range [−1, 1], given in Table 2.

4) The concept of greedy selection is used while choosing
the position of a random solution in the neighborhood
of the candidate solution.

5) Initialization function g(i) is selected randomly (given
in Table 2) for performing the numerical analysis.

Now we will compare the numerical results obtained by
solving equation (39) and (40), simultaneously the outcome
of the numerical results is listed in Table 2 and shown graph-
ically in Figure 3.

FIGURE 3. Positions of solutions obtained from ABC update equation and
solution of PDE.

B. EFFICIENCY OF THE ALGORITHM
In order to check the efficiency of ABC algorithm, numerical
experiments are performed when parameters are considered
within and outside convergent region. Following parameter
settings are considered while doing the numerical experi-
ment.

1) Swarm size: 50
2) Maximum number of runs: 51
3) Maximum number of iterations: 6000
4) Acceptable error: Table 1
The average number of function evaluations (AFEs) are

calculated and reported in Table 3 for both the cases, i.e.
when parameters lie within the convergent region A1 (as
shown in Figure 2) and outside convergent region A2 (shown
in Figure 2). The algorithm is stopped when either acceptable
error is reached or maximum number of function evaluation
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TABLE 1. List of test problems (AE: Acceptable Error, U: Uni-modal, M: Multi-modal, S: Separable, N: Non-separable ) [27], [31].

TABLE 2. Comparision of numerical results with random initialization (i.e., g(i ) = 0.84147)" (PDE: Partial differential equation).

FIGURE 4. Boxplot comparison of AFEs for region A1 and A2
(A1: Parameters within convergent region, A2: Parameters outside
convergent region).

is attained whichever is earlier. From the experimental results
it is clear that ABC algorithm is efficient when parameters lie
within A1. The difference of results when parameters lie in A1
and A2 can be seen from the boxplot shown in Figure 4.

C. ACCURACY OF THE ALGORITHM
To check the accuracy of ABC algorithm, numerical exper-
iments have been carried out by considering parameters
within and outside convergent region. Parameter setting and
test problems are same as considered in section V-B. Mean
Error (ME) is calculated for considered test problems and
numerical results are presented in Table 4. The improve-
ment of accuracy of ABC algorithm with parameters within
region A1 and A2 can be observed from the boxplot shown
in Figure 5. Numerical results are again verified by perform-
ing non parametric test namely,Wilcoxon signed rank test and
presented in Table 5. If the obtained data sets have significant
difference then we say that null hypothesis is rejected and
‘+’ sign appears otherwise null hypothesis is accepted and
‘=’ sign appears. In Table 5, ‘+’ sign appears 9 times out
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TABLE 3. Average number of Function Evaluations (AFEs) for region A1
and A2 (see Figure 2) (TP: Test Problem, A1: Parameters within
convergence region, A2: Parameters outside convergence region).

TABLE 4. Mean Error (ME) for region A1 and A2 (TP: Test Problem, A1:
Parameters within convergent region, A2: Parameters outside convergent
region).

of 10. Thus the accuracy of ABC algorithm is better when
parameters φ and ψ are considered in convergent region A1.

VI. DISCUSSION
The above theoretical and numerical results of convergence
analysis of ABC algorithm reveals that the algorithm per-
forms efficiently and accurately when parameters φ and
ψ lie within convergent region. Presence of coefficient ψ
(ψ 6= 1) in the position update equation of ABC algorithm
makes the equilibrium point to be dependent upon both the
parameters φ and ψ . Whereas, when parameter ψ = 1 (i.e.,
in case of original ABC algorithm) the equilibrium point
becomes independent of both the parameters as explained
in section IV. From the numerical experiments (Table 3)
it can be easily seen that the AFEs are minimum for test
problems in convergent region which shows that the test

FIGURE 5. Boxplot comparison of ME for region A1 and A2
(A1: Parameters within convergent region, A2: Parameters outside
convergent region).

TABLE 5. Comparision of mean error (ME) for region A1 and A2 using
Wilcoxon Sign Rank test(TP: Test problem, A1: Parameters within
convergent region, A2: Parameters outside convergent region).

problems are converging towards equilibrium point in less
number of iterations when parameters are in the convergent
region. Results are further verified statistically by boxplot
analysis of AFEs and ME. Again it can be seen that better
results are obtained when parameters are within convergent
region. The mean error for test problems in convergent region
is also minimum as compared to the case when parameters
lie outside convergent region which shows that the accuracy
is better within convergent region. The results are verified
by non parametric test, namely wilcoxon signed rank test.
It can be inferred that result are significantly better when
parameters are within convergent region.

Also, theoretical and numerical analyses of ABC position
update equation reveals that the difference scheme (10) cor-
responding to position update equation (4) of ABC algo-
rithm is consistent with the partial differential equation (12).
The obtained partial differential equation infact resembles
1-Dimensional advection equation. The general solution of
the partial differential equation obtained in equation (12)
is given by x(i, t) = f (i−vt). Where ‘f ’ is an arbitrary
function depending upon the initial condition and v = aφ.
The solution obtained describes an arbitrary shaped pulse
which is swept along by the flow at constant speed ‘v’ without
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TABLE 6. List of test problems considered for numerical experiments [27], [31].

changing shape. Since a ∈ Z/
{
0
}
and φ ∈ [−1, 1], speed

‘v’ can be either positive or negative. Hence, the arbitrary
shaped pulse generated can move in either forward direction
or backward which explains that ABC algorithm can explore
the entire search space. The analysis also explains a signif-
icant result that the propagation of particles depends upon
the initial condition, i.e. the initialization phase of ABC algo-
rithm plays an important role in the movement of solutions in
the search space.

VII. CONCLUSION
Analysis of finding the conditions under which an algo-
rithm converges to an equilibrium point plays a very vital
role in making the algorithm efficient, reliable and accu-
rate. For nature inspired algorithms, the solution update pro-
cess depends upon the guided random search, which makes
algorithm’s nature probabilistic. This probabilistic nature of
these algorithms makes the convergence analysis a difficult
task. Convergence analysis of ABC algorithm is performed
using the results from the theory of dynamical systems. Also
condition of convergence of algorithm to equilibrium point
is derived, which depends upon the parameters φ and ψ .
Numerical experiments are performed to verify the findings
and a convergent region is recommended for the values of φ
and ψ . It can be concluded that the algorithm performs better
when parameters are considered from the convergent region.

Also, study of the movement of solutions in the search
space is important to analyze the search behavior of ABC
algorithm. In order to carry out this study, partial differ-
ential equation associated with position update equation of
ABC algorithm is obtained. The obtained partial differential
equation resembles 1-Dimensional advection equation. It was
also proved that the finite difference scheme corresponding
to position update equation of ABC algorithm is consistent

with the obtained partial differential equation. So, from the
general solution of the partial differential equation, it can
be concluded that the solutions obtained by ABC algorithm
propagate in an arbitrary shaped pulse which is swept along
the flow at constant speed without changing shape.

APPENDIX A
GENERAL SOLUTION OF PDE
The general solution of partial differential equation (12) is
given by:

x(i, t) = f (i− aφt) (41)

with initial condition given as:

x(1, t) = g(i) (42)

By using equation (43) and (44) we get

x(1, t) = f (i− aφ) = g(i) (43)

or

f (I ) = g(I + aφ), where I = i− aφ (44)

By using equation (41) and (44) we get the final solution of
partial differential equation as

x(i, t) = g(i− aφt + aφ) (45)

or

x(i, t) = g(i− aφ(t − 1)) (46)
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