
Memetic Comp. (2012) 4:209–229
DOI 10.1007/s12293-012-0089-8

REGULAR RESEARCH PAPER

Cognitive learning in differential evolution and its application
to model order reduction problem for single-input
single-output systems

Jagdish Chand Bansal · Harish Sharma

Received: 8 July 2011 / Accepted: 18 July 2012 / Published online: 4 August 2012
© Springer-Verlag 2012

Abstract Differential evolution (DE) is a well known and
simple population based probabilistic approach for global
optimization over continuous spaces. It has reportedly out-
performed a few evolutionary algorithms and other search
heuristics like the particle swarm optimization when tested
over both benchmark and real world problems. DE, like other
probabilistic optimization algorithms, has inherent drawback
of premature convergence and stagnation. Therefore, in order
to find a trade-off between exploration and exploitation capa-
bility of DE algorithm, a new parameter namely, cognitive
learning factor (CLF) is introduced in the mutation process.
Cognitive learning is a powerful mechanism that adjust the
current position of individuals by the means of some spec-
ified knowledge (previous experience of individuals). The
proposed strategy is named as cognitive learning in differ-
ential evolution (C L DE). To prove the efficiency of various
approaches of C L F in DE, C L DE is tested over 25 bench-
mark problems. Further, to establish the wide applicability
of C L F, C L DE is applied to two advanced DE variants.
C L DE is also applied to solve a well known electrical engi-
neering problem called model order reduction problem for
single input single output systems.

Keywords Optimization · Differential evolution ·
Cognitive learning factor ·Model order reduction ·
Integral square error

J. C. Bansal (B) · H. Sharma
ABV-Indian Institute of Information Technology and Management,
Gwalior, India
e-mail: jcbansal@gmail.com

H. Sharma
e-mail: harish0107@rediffmail.com

1 Introduction

Differential evolution (DE) scheme is a relatively simple,
fast and population based stochastic search technique, pro-
posed by Storn and Price [45]. DE falls under the category
of evolutionary algorithms (EAs). But in some sense it dif-
fers significantly from EAs, e.g. trial vector generation pro-
cess (explained in Sect. 2) uses the information of distance
and direction from current population to generate a new trial
vector. Furthermore, in EAs, crossover is applied first to gen-
erate a trial vector, which is then used within the mutation
operation to produce one offspring while, in DE, mutation is
applied first and then crossover.

Researchers are continuously working to improve the per-
formance of DE. Some of the recently developed versions of
DE with appropriate applications can be found in [4]. Exper-
iments over several numerical benchmarks [55] show that
DE performs better than the genetic algorithm (GA) [20] or
the particle swarm optimization (PSO) [23]. DE has success-
fully been applied to various areas of science and technol-
ogy, such as chemical engineering [28], signal processing [9],
mechanical engineering design [47], machine intelligence,
and pattern recognition [40]. Recently, machine intelligence
and cybernetics are the most well-liked field in which DE
algorithm has become a popular strategy.

There are two fundamental processes which drive the
evolution of a DE population: the variation process, which
enables exploring different areas of the search space, and
the selection process, which ensures the exploitation of the
previous experience. However, it has been shown that DE
may occasionally stop proceeding toward the global opti-
mum even though the population has not converged to a local
optimum [26]. Therefore, to maintain the proper balance
between exploration and exploitation behavior of DE, a new
control parameter called cognitive learning factor (C L F) is

123

210 Memetic Comp. (2012) 4:209–229

introduced in DE and DE with C L F is named as Cognitive
Learning in differential evolution (C L DE). In terminology
of social science, Cognitive Learning is about enabling peo-
ple to learn by using their reason, intuition and perception.
This technique is often used to change people’s behavior. The
same phenomenon is also applied in C L DE . In C L DE , a
weight factor (C L F) is associated with the individual’s expe-
rience in the mutation operation. By varying this weight,
the exploration and exploitation capabilities of DE may be
modified.

Furthermore, to show the efficiency of the proposed strat-
egy, model order reduction (MOR) problem for single input
single output systems (SISO), is also solved by the C L DE
algorithm. MOR problem requires the minimization of an
error function in order to get the reduced order model of
higher order model. The error function is a function of inte-
gral square error (ISE) and the impulse response energy
(IRE) of the system. The ISE is taken between the transient
responses of original higher order model and the reduced
low order model pertaining to a unit step input. The obtained
results are compared with existing conventional methods and
the results available in the literature. Results reported are
encouraging and show that this technique is comparable in
quality with existing methods.

The rest of the paper is organized as follows: Sect. 2
describes a brief overview of basic differential evolution
algorithm. In Sect. 3, some basic improvements on Differen-
tial evolution algorithm are briefly reviewed. Cognitive learn-
ing differential evolution algorithm (C L DE) is proposed in
Sect. 4. In Sect. 5, cognitive learning factor concept is applied
to DE and to some recent variants of DE. Then a comparative
study has been carried out. Application of C L DE to model
order reduction (MOR) problem for single input single out-
put (SISO) systems is shown in Sect. 6. Finally, in Sect. 7,
paper is concluded.

2 Brief overview of differential evolution algorithm

DE has several strategies based on three criteria [44]:

– Methods of selecting the target vector,
– Number of difference vectors used and
– The types of crossover.

In this paper DE/rand/1/bin scheme is used where DE
stands for differential evolution, ‘rand’ specifies that the tar-
get vector is selected randomly, ‘1’ is for number of differen-
tial vectors and ‘bin’ notation is for binomial crossover. The
popularity of differential evolution is due to its applicabil-
ity to a wider class of problems and ease of implementation.
Differential evolution consists of the properties of both evo-
lutionary algorithms and swarm intelligence. The detailed
description of DE is as follows:

Like other population based search algorithms, in DE a
population of potential solutions (individuals) searches the
solution. In a D-dimensional search space, an individual is
represented by a D-dimensional vector (xi1, xi2, . . . , xi D),

i = 1, 2, . . . , N P where NP is the population size (number
of individuals).

In DE, there are three operators: mutation, crossover and
selection. Initially, a population is generated randomly with
uniform distribution then the mutation, crossover and selec-
tion operators are applied to generate a new population. Trial
vector generation is a crucial step in DE process. The two
operators mutation and crossover are used to generate the
trial vectors. The selection operator is used to select the best
trial vector for the next generation. DE operators are briefly
explained in following subsections.

2.1 Mutation

A trial vector is generated by the DE mutation operator for
each individual of the current population. For generating the
trial vector, a target vector is mutated with a weighted dif-
ference. An offspring is produced in the crossover operation
using the newly generated trial vector. If G is the index for
generation counter, the mutation operator for generating a
trial vector ui (G) from the parent vector xi (G) is defined as
follows:

– Select a target vector, xi1(G), from the population, such
that i �= i1.

– Again, randomly select two individuals, xi2 and xi3, from
the population such that i, i1, i2 and i3, all are different.

– Then the target vector is mutated for calculating the trial
vector as follows:

ui (G) = xi1(G)+ F(xi2(G)− xi3(G)) (1)

where F ∈ (0, 1) is the mutation scale factor which is
used in controlling the amplification of the differential
variation [12].

2.2 Crossover

Offspring x ′i (G) is generated using the crossover of parent
vector, xi (G) and the trial vector, ui (G) as follows:

x ′i j (G) =
{

ui j (G), if j ∈ J

xi j (G), otherwise.

where J is the set of cross over points or the points that will
go under perturbation, xi j (G) is the j th element of the vector
xi (G).

Different methods may be used to determine the set, J
of which binomial crossover and exponential crossover are

123

Memetic Comp. (2012) 4:209–229 211

the most frequently used [12,52]. In this paper, the DE and
its variants are implemented using the binomial crossover. In
this crossover, the crossover points are randomly selected
from the set of possible crossover points, {1, 2, . . . , D},
where D is the problem dimension. Algorithm 1 shows the
steps of binomial crossover to generate crossover points [12].
In this algorithm, C R is the probability that the consid-
ered crossover point will be included. The larger the value
of C R, the more crossover points will be selected. Here,

Algorithm 1 Binomial crossover:
J = φ

j∗ ∼ U (1, D);
J ← J ∪ j∗;
for each j ∈ 1 . . . D do

if U (0, 1) < C R and j �= j∗ then
J ← J ∪ j ;

end if
end for

J is a set of crossover points, C R is crossover probability,
U (1, D) is a uniformly distributed random integer in between
1 and D, U (0, 1) is a uniformly distributed random number
between 0 and 1.

2.3 Selection

The Selection operator first selects the individual for the
mutation operation to generate the trial vector and then it
selects the best, between the parent and the offspring based
on their fitness values for the next generation. If the fitness of
the parent is better than the offspring then parent is selected
otherwise offspring is selected:

xi (G + 1) =
{

x ′i (G), if f (x ′i (G)) > f (xi (G)).

xi (G), otherwise.

This ensures that the population’s average fitness does not
deteriorate.

Algorithm 2 shows the pseudo-code for the basic differ-
ential evolution strategy [12]. Here, F (scale factor) and
C R (crossover probability) are the control parameters of
DE/rand/1/bin strategy and play significant role to influ-
ence the performance of the DE . P is the population vector.

3 Brief review on basic improvements in differential
evolution

In order to get rid of the drawbacks of the basic DE, research-
ers have improved DE in many ways. The potentials where
DE can be improved may be broadly classified into three
categories:

Algorithm 2 Differential evolution algorithm:
Initialize the control parameters, F and C R;
Create and initialize the population, P(0), of N P individuals;
while stopping condition(s) not true do

for each individual, xi (G) ∈ P(G) do
Evaluate the fitness, f (xi (G));
Create the trial vector, ui (G) by applying the mutation operator;
Create an offspring, x ′i (G), by applying the crossover operator;
if f (x ′i (G)) is better than f (xi (G)) then

Add x ′i (G) to P(G + 1);
else

Add xi (G) to P(G + 1);
end if

end for
end while
Return the individual with the best fitness as the solution;

– Fine tuning of DE control parameters N P, F and C R.
– Hybridization of DE with other population based proba-

bilistic or deterministic algorithms.
– Introducing new control parameters.

This paper concentrates on the third area of the DE research,
i.e. the paper introduces a new control parameter, namely,
cognitive learning factor in DE process. Rest of this section
briefly reviews introduction of new control parameters in DE
process.

Storn and Price [45] have observed that the value of F
should be in the range of [0.5, 1] and 0.5 is a good initial
choice. The value of N P should be in the range of [5D, 10D],
where, D is the dimension of the problem.

Fuzzy adaptive differential evolution (F ADE) is intro-
duced by Liu and Lampinen [27]. It is based on the fuzzy logic
controllers, whose inputs incorporate the relative function
values and individuals of successive generations to adapt the
parameters for the mutation and crossover operation. They
showed by the experimental results over a set of benchmark
functions that the FADE algorithm performance is better than
the conventional DE algorithm.

Gamperle et al. [14] determined different parameter values
for DE specially for the Sphere, Rastrigin’ and Rosenbrock’
functions. They showed that the global optimum searching
capability and the convergence speed are very sensitive for
the values of the control parameters N P, F , and C R. They
specified that the population size N P ∈ [3D, 8D], with the
scaling factor F = 0.6 and the crossover rate C R in [0.3,
0.9] are the good choice for the parameter setting.

Zaharie proposed a parameter adaptation strategy for DE
(ADE) [59] which is based on controlling the population
diversity. In ADE, multi-population approach is also imple-
mented. Furthermore, Zaharie and Petcu [60] introduced an
adaptive Pareto DE algorithm, based on the same line of
thinking, for multi-objective optimization.

Abbass [1] proposed a self-adaptive strategy for cross-
over rate C R to solve multi-objective optimization problems.

123

212 Memetic Comp. (2012) 4:209–229

In Abbass strategy, C R value is encoded into each individual,
simultaneously evolved with other search variables. There
was a different scale factor F , uniformly distributed in [0, 1],
for each variable.

Furthermore, Qin et al. introduced a self-adaptive DE
(SaDE) [46] algorithm, in which all the control parame-
ters that are used in the trial vector generation strategies and
selection process are steadily self-adapted by learning from
their previous experiences.

Omran et al. [39] introduced a self-adaptive scaling factor
F . They generated the value of C R for each individual from
a normal distribution N (0.5, 0.15). This approach (called
SDE) was tested on four benchmark functions and verified
to be performed better than other versions of DE.

Besides, setting the control parameters (F and C R),
some researchers also tuned the population size (N P) for
improving the performance. Teo introduced a variant of DE
which is based on the idea of self adapting populations
(DESAP) [54].

Noman and Iba [38] introduced a crossover-based local
search method for DE called the fittest individual refinement
(FIR). An exploration capability of DE is hastened by the FIR
scheme as it enhances DE’s search capability in the neigh-
borhood for the best solution in successive generations.

Furthermore, Yan et al. [58] proposed a new variant of DE
called simulated annealing differential evolution (S ADE).
In SADE algorithm, each individual contains a set of F val-
ues instead of single value within the range [0.1, 1], control
parameters F and C R are encoded into the individual and
their values are changed, based on the two new probability
factors τ1 and τ2. F is reinitialized with the probability τ1 by
a random value otherwise it remains unchanged. The cross-
over probability C R also reinitialized with probability τ2 and
within the range [0, 1]. C R is assigned to each individual but
in an identical fashion. C R changes its value with probability
τ2 with a random value otherwise it remains unchanged for
the next generation.

Neri and Tirronen [37] proposed a self-adaptive strat-
egy called scale factor local search differential evolution
(SF L SDE) strategy. SF L SDE is a self-adaptive scheme
with the two local search algorithms. These local search
algorithms are used for detecting the value of scale factor
F corresponding to an offspring with a better performance.
Therefore, the local search algorithms support in the global
search (exploration process) and in generating offspring with
high performance.

Swagatam Das et al. [8] proposed a new variant of differ-
ential evolution algorithm called differential evolution using
a neighborhood-based mutation operator (DEGL). The pro-
posed scheme balances the exploration and exploitation abil-
ities of DE. DEGL introduces four new control parameters:
α, β,w, and the neighborhood radius k. In DEGL , w is the
most important parameter as it controls the balance between

the exploration and exploitation capabilities. It is shown in
the following expression.

u = w × Global + (1− w)× Local

where u is a trial vector and w ∈ [0, 1]. Small values of w

favor the local neighborhood component, thereby resulting in
better exploration. On the other hand, large values favor the
global variant component, encouraging exploitation. There-
fore, values of w near about 0.5 result the most balanced
DEGL version.

4 Cognitive learning in differential evolution

4.1 A few drawbacks of DE

The inherent drawback with most of the population based
stochastic algorithms is premature convergence. DE is not
an exception. Any population based algorithm is regarded
as an efficient algorithm if it is fast in convergence and able
to explore the maximum area of the search space. In other
words, if a population based algorithm is capable of balanc-
ing between exploration and exploitation of the search space,
then the algorithm is regarded as an efficient algorithm. From
this point of view, the basic DE is not an efficient algorithm
[32]. Also some studies proved that stagnation is another
inherent drawback with DE, i.e. DE sometimes stops pro-
ceeding toward the global optima even though the population
has not converged to local optima or any other point [26].
Mezura-Montes et al. [32] compared the different variants of
DE for global optimization and found that DE shows a poor
performance and remains inefficient in exploring the search
space, especially for multimodal functions. Price et al. [45]
also drawn the same conclusions. The problem of premature
convergence and stagnation is a matter of serious consider-
ation for designing a comparatively efficient1 DE algorithm.

4.2 Motivation for cognitive learning factor

This section proposes a new parameter namely cognitive
learning in differential evolution algorithm (C L DE).

4.2.1 Cognitive learning factor in DE

Exploration of the whole search space and exploitation of the
near optimal solution region may be balanced by maintaining
the diversity in early and later iterations of any randomized
search algorithm. Mutation equation (1) in DE may be seen
in the following way:

1 As it is not possible to design a fully efficient population based
stochastic algorithm.

123

Memetic Comp. (2012) 4:209–229 213

ui (G) = A × xi1(G)+ B × (xi2(G)− xi3(G))

i.e. the trial vector ui (G) is the weighted sum of target vector
xi (G) and the difference (xi2(G) − xi3(G)) of two random
vectors. Here, A is the weight to target vector and B is the
weight to the difference of random vectors. In basic DE, A is
set to be 1, while B is the scaling factor F . Studies have been
carried out with varying scaling factor F for better explora-
tion and exploitation mechanism [3]. To the best of authors’
knowledge no study has been carried out to set the weight
A in DE mutation equation. In this paper, the experiments
are performed over benchmark problems to find an optimal
strategy to set the weight A named as cognitive learning fac-
tor (C L F) and denoted by ‘C’ (for this study). C L F is the
weight to individual’s current position or in other words this
is the weight to self confidence and therefore, it is named so.

In this way, the modified mutation operation of DE
becomes:

ui (G) = C × xi1(G)+ F(xi2(G)− xi3(G)). (2)

Symbols have their usual meaning. Now different strategies
to set C L F ‘C’ may produce different results. It is expected
that a random C L F (∈ [0, 1]) will give lower weight to
personal experience than the weight in basic DE and there-
fore the algorithm will produce a higher diversity and slow
convergence. For linearly decreasing (1–0.1) C L F , diversity
will increase with iterations. In the case of linearly increasing
(0.1–1) C L F , diversity will be relatively high in early itera-
tions and will keep on reducing in successive iterations while
convergence rate is expected to be low in early iterations
and high in later iterations. Theoretically, linearly increasing
C L F should improve the results. Therefore, experiments are
performed over scalable test problems of optimization with
all three strategies of setting C L F : constant; linearly decreas-
ing; linearly increasing.

The cognitive learning factor algorithm (C L DE) is sim-
ilar to the basic DE algorithm except the mutation opera-
tion. The Pseudo-code in Algorithm 3 presents the steps of
the C L DE algorithm. C L DE is a simple algorithm which,
despite its simplicity, can be a very efficient possibility for
optimization of various real world optimization problems.

4.3 Control Parameters in C L DE

As stated by Storn et al. [45,53], DE is very sensitive to the
choice of F and C R. Some settings of control parameters are
suggested by Storn et al. [45,53]:

– F ∈ [0.5, 1].
– C R ∈ [0.8, 1].
– N P = [5D, 10D], where D is the number of decision

variables in the problem.

Algorithm 3 Cognitive learning in differential evolution
(C L DE)

Initialize the control parameters, F, C R and C(0);
Create and initialize the population, P(0), of N P individuals;
while stopping condition(s) not true do

for each individual, xi (G) ∈ P(G) do
Evaluate the fitness, f (xi (G));
Create the trial vector, ui (G) by applying the scale factor (muta-
tion operator) F and cognitive learning factor C(G) as follows;

ui (G) = C(G)× xi1(G)+ F(xi2(G)− xi3(G));
Create an offspring, x ′i (G), by applying the crossover operator;
if f (x ′i (G)) is better than f (xi (G)) then

Add x ′i (G) to P(G + 1);
else

Add xi (G) to P(G + 1);
end if

end for
end while
Return the individual with the best fitness as the solution;

C L DE introduces one new parameter: C called the cognitive
learning factor, therefore, there are four controlling parame-
ters (F, C R, N P and C) in C L DE . Cognitive learning fac-
tor C is the most important parameter in C L DE as it controls
the balance between the exploration and exploitation capa-
bilities of the algorithm. Three different strategies have been
considered for the selection and adaptation of C :

1. Random cognitive learning factor (RC L F): in this strat-
egy the C is a uniformly distributed random number in
[0, 1] for each iteration. Random choice of C may intro-
duce higher diversity and lower convergence.

2. Linearly decreasing cognitive learning factor (L DC L F):
C is linearly decreased from 1 to 0.1. Initially C is set to
1 and gradually decreased generation by generation up
to 0.1 as follows:

C(G + 1) = C(G)− (1− 0.1)

N

where C(0) = 1, N is the total number of generation
and G is the current generation.

3. Linearly increasing cognitive learning factor (L I C L F):
C is linearly increased from 0.1 to 1. Initially C is set to
0.1 and the gradually increased generation by generation
up to 1 as follows:

C(G + 1) = C(G)+ (1− 0.1)

N

where C(0) = 0.1, N is the total number of generation
and G is the current generation.

Based on different types of C L F , three variants of C L DE
are designed namely, random cognitive learning in differential

123

214 Memetic Comp. (2012) 4:209–229

evolution (RC L DE), linearly decreasing cognitive learning
in differential evolution (L DC L DE) and linearly increasing
cognitive learning in differential evolution (L I C L DE). In
the next section C L DE with different strategies of setting
C L F is tested with 25 benchmark problems. Experiments
have also been carried out to test the efficiency of C L F over
two advanced variants of DE , namely simulated annealing
differential evolution (S ADE) [58] and scale factor local
search differential evolution (SF L SDE) [37]. Then the pro-
posed algorithm is applied to a problem of control theory in
Sect. 6.

5 Experimental results and discussion

5.1 Test problems under consideration

In order to see the effect of cognitive learning factor on
DE, 25 test problems of optimization are selected (listed
in Tables 1 and 2). 16 test problems are given in Table 1
which are scalable in nature and has the solution at origin.
Number of decision variables for these problems is set to
be 30. Table 2 contains nine problems which are relatively
complex optimization problems. The solution of these prob-
lems is neither at origin, axes or diagonal, i.e. the problems
are unbiased. Number of decision variables for this set of
problems is mentioned in the Table 2. All problems are of
continuous variables and have different degree of complexity
and multimodality.

5.2 Experimental setting for C L DE

To test DE or DE variants over test problems the following
experimental setting is adopted:

– The crossover probability C R = 0.33 [14].
– The scale factor which controls the implication of the

differential variation F = 0.5 [44].
– Population size N P = 100.
– The algorithm terminates when either maximum number

of iterations are reached or the error is ≤ ε. Here the
maximum number of iterations are set 1,000. The value
of ε for problems of Table 1 is 0.01 while for Table 2
problems it is mentioned in the corresponding table for
each problem separately.

– The number of simulations = 100.

5.3 Comparison among DE with variants of C L DE

Three strategies (RC L DE, L DC L DE, L I C L DE) of set-
ting C L F in DE (explained in Sect. 4.3) are implemented.
Numerical results with experimental setting of Sect. 5.2
are tabulated in Table 3. In Table 3, success rate (S R)
(a simulation is said to be successful if the objective func-
tion value is ≤ ε, refer Sect. 5.2, in maximum 1,000 gen-
erations), mean error (M E), average function evaluations
for successful runs (AF E) and standard deviation (SD)

is reported. In Table 3, if any algorithm shows no success

Table 1 Test problems Test problem Objective function Search space

Sphere f1(x) =∑n
i=1 x2

i [−5.12, 5.12]

De Jong f4 f2(x) =∑n
i=1 i.(xi)

4 [−5.12, 5.12]

Griewank f3(x) = 1+ 1
4,000

∑n
i=1 x2

i −
∏n

i=1 cos(xi√
i
) [−600, 600]

Rosenbrock f4(x) =∑n−1
i=1 (100(xi+1 − x2

i)2 + (xi − 1)2) [−30, 30]

Rastrigin f5(x) = 10n +∑n
i=1[x2

i − 10 cos(2πxi)] [−5.12, 5.12]

Ackley f6(x) = −20 exp(−0.02
√

1
n

∑n
i=1 xi

2) [−30, 30]

− exp(1
n

∑n
i=1 cos(2π.xi))+ 20+ e

DropWave f7(x) = − 1+cos(12
√∑n

i=1 xi
2)

1
2

∑n
i=1 xi

2+2
[−5.12, 5.12]

Alpine f8(x) =∑n
i=1 |xi sin xi + 0.1xi | [−10, 10]

Michalewicz f9(x) = −∑n
i=1 sin xi (sin(

i.xi
2

π
)) [0 π]

Cosine mixture f10(x) =∑n
i=1 xi

2 − 0.1(
∑n

i=1 cos 5.π.xi)+ 0.1n [−1, 1]

Exponential f11(x) = −(exp(−0.5
∑n

i=1 xi
2))+ 1 [−1, 1]

Zakharov f12(x) =∑n
i=1 xi

2 + (
∑n

i=1
i xi
2)

2 + (
∑n

i=1
i x1
2)

4
[−5.12, 5.12]

Cigar f13(x) = x0
2 + 100,000

∑n
i=1 xi

2 [−10, 10]

brown3 f14(x) =∑n−1
i=1 (xi

2xi+1
2+1 + xi+1

2xi
2+1

) [−1, 4]

Schewel f15(x) =∑n
i=1 |xi | +∏n

i=1 |xi | [−10, 10]

Sum of powers f16(x) =∑n
i=1 |xi |i+1 [−1, 1]

123

Memetic Comp. (2012) 4:209–229 215

Ta
bl

e
2

Te
st

pr
ob

le
m

s

Te
st

pr
ob

le
m

O
bj

ec
tiv

e
fu

nc
tio

n
Se

ar
ch

ra
ng

e
O

pt
im

um
va

lu
e

D
A

cc
ep

ta
bl

e
er

ro
r

(ε
)

Sh
if

te
d

R
os

en
br

oc
k

f 1
7
(x

)
=

∑ D
−1

i=
1

(1
00

(z
2 i
−

z i
+1

)2
+

(z
i
−

1)
2
)
+

f b
ia

s,
[−

10
0,

10
0]

f(
o)
=

f b
ia

s
=

39
0

10
1.

0E
−0

1

z
=

x
−

o
+

1,
x
=
[x 1

,
x 2

,
..

.,
x D
],

o
=
[o 1

,
o 2

,
..

.,
o

D
]

Sh
if

te
d

sp
he

re
f 1

8
(x

)
=

∑ D i=
1

z2 i
+

f b
ia

s,
z
=

x
−

o,
[−

10
0,

10
0]

f(
o)
=

f b
ia

s
=
−4

50
10

1.
0E
−0

5

x
=
[x 1

,
x 2

,
..

.,
x D
],

o
=
[o 1

,
o 2

,
..

.,
o

D
]

Sh
if

te
d

R
as

tr
ig

in
f 1

9
(x

)
=

∑ D i=
1
(z

2 i
−

10
co

s(
2π

z i
)
+

10
)
+

f b
ia

s
z
=

(x
−

o)
,

[−
5,

5]
f(

o)
=

f b
ia

s
=
−3

30
10

1.
0E
−0

2

x
=

(x
1
,

x 2
,
..

.,
x D

),
o
=

(o
1
,
o 2

,
..

.,
o

D
)

[−
5,

5]
f(

o)
=

f b
ia

s
=
−3

30
10

1.
0E
−0

2

Sh
if

te
d

G
ri

ew
an

k
f 2

0
(x

)
=

∑ D i=
1

z2 i
4,

00
0
−

∏ D i=
1

co
s(

z i √ i
)
+

1
+

f b
ia

s,
z
=

(x
−

o)
,

[−
60

0,
60

0]
f(

o)
=

f b
ia

s
=
−1

80
10

1.
0E
−0

5

x
=
[x 1

,
x 2

,
..

.,
x D
],

o
=
[o 1

,
o 2

,
..

.,
o

D
]

Sh
if

te
d

A
ck

le
y

f 2
1
(x

)
=
−2

0
ex

p(
−0

.2
√ 1 D

∑ D i=
1

z2 i
)
−

ex
p(

1 D
∑ D i=

1
[−

32
,3

2]
f(

o)
=

f b
ia

s
=
−1

40
10

1.
0E
−0

5

×
co

s(
2π

z i
))
+

20
+

e
+

f b
ia

s,
z
=

(x
−

o)
,

x
=

(x
1
,

x 2
,
..

.,
x D

),
o
=

(o
1
,
o 2

,
..

.,
o

D
)

K
ow

al
ik

fu
nc

tio
n

f 2
2
(x

)
=

∑ 11 i=
1
[a i
−

x 1
(b

2 i
+b

ix
2
)

b2 i
+b

ix
3
+x

4
]2

[−
5,

5]
f(

0.
19

28
33

,
0.

19
08

36
,

0.
12

31
17

,
4

1.
0E
−0

5

0.
13

57
66

)
=

0.
00

03
07

48
6

Si
x-

hu
m

p
ca

m
el

ba
ck

f 2
3
(x

)
=

(4
−

2.
1x

2 1
+

x4 1
/
3)

x2 1
+

x 1
x 2
+

(−
4
+

4x
2 2
)x

2 2
[−

5,
5]

f(
−0

.0
89

8,
0.

71
26

)
=
−1

.0
31

6
2

1.
0E
−0

5

Si
nu

so
id

al
pr

ob
le

m
f 2

4
(x

)
=
−[

A
∏ n i=

1
si

n(
x i
−

z)
+

∏ n i=
1

si
n(

B
(x

i
−

z)
)],

[0
,1

80
]

f(
90
+

z)
=
−(

A
+

1)
10

1.
00

E
−0

2

A
=

2.
5,

B
=

5,
z
=

30

M
ov

ed
ax

is
pa

ra
lle

lh
yp

er
-e

lli
ps

oi
d

f 2
5
(x

)
=

∑ D i=
1

5i
×

x2 i
[−

5.
12

,5
.1

2]
f(

x)
=

0;
x(

i)
=

5
∗i

,
i
=

1
:D

30
1.

0E
−1

5

or in other words if S R of an algorithm is 0, then for
that algorithm entry in the column of AF E is taken to
be 10,0000 which is calculated by multiplying N P with
Maximum number of generations. This is done to make the
comparison fair in terms of function evaluations. The discus-
sion about S ADE, S AC L DE, SF L SDE, SF L SC L DE
may be found in Sect. 5.4. Table 3 shows that most of
the time inclusion of C L F in DE improves the reliabil-
ity, efficiency and accuracy. Except for Rosenbrock prob-
lem C L DE versions improve the results over DE . Some
more intensive statistical analysis based on t test, perfor-
mance index and boxplots has been carried out for results of
basic DE and variants of C L DE(RC L DE, L DC L DE and
L I C L DE).

5.3.1 Statistical analysis

In order to extract the best strategy of setting CLF in DE, a
comparative analysis is done for DE, L I C L DE, RC L DE
and L DC L DE . Statistical comparison is carried out using t
test, boxplots and performance index [11].

The t test is quite popular among researchers in the field
of evolutionary computing. In this paper Student’s t test is
applied according to the description given in [7] for a con-
fidence level of 0.95. Table 4 shows the results of the t test
for the null hypothesis that there is no difference in the mean
number of function evaluations of 100 runs using DE and
variants of CLDE. Note that here ‘+’ indicates the signifi-
cant difference (or the null hypothesis is rejected) at a 0.05
level of significance, ‘−’ implies that there is no significant
difference while ‘=’ indicates that the comparison is not pos-
sible. Table 4 is divided into two parts. In the first part DE is
compared with the C L DE variants. It is observed from this
part of the table that significant differences are observed in
45 comparisons out of 75 comparisons. Therefore, it can be
concluded that the results of variants of C L DE are signifi-
cantly different from the basic DE algorithm. Furthermore,
in the second part of the table, L I C L DE is compared with
other two variants of C L DE . Here, 39 comparisons are sig-
nificantly different out of 50 comparisons. Therefore, it can
be stated that the results of L I C L DE are significantly dif-
ferent from the RC L DE and L DC L DE .

For the purpose of comparison in terms of performance,
boxplot analysis is carried out for all the considered algo-
rithms. The empirical distribution of data is efficiently repre-
sented graphically by the boxplot analysis tool [57]. Analysis
of univariate expressions, where the variability of measure-
ments may be affected by many parameters, is effectively
done by the boxplot tool. The degree of dispersion and skew-
ness in the data are easily analyzed by measuring the spacings
between the different parts of the box. The Boxplots for DE
and C L DE variants are shown in Fig. 1. It is clear from this

123

216 Memetic Comp. (2012) 4:209–229

Table 3 Comparison of the
results of test problems

Test problem Algorithm SR ME AFE SD

f1 DE 51 0.59× 10−2 28,111.77 0.11× 10−2

RCLDE 100 0.45× 10−2 7,516 0.14× 10−2

LICLDE 100 0.36× 10−2 4,858 0.15× 10−2

LDCLDE 100 0.55× 10−2 20,681 0.14× 10−2

SADE 100 0.90× 10−2 13,044 0.78× 10−3

SACLDE 100 0.70× 10−2 5,027 0.23× 10−2

SFLSDE 100 0.91× 10−2 30,078.68 0.86× 10−3

SFLSCLDE 100 0.70× 10−2 2,353.89 0.21× 10−2

f2 DE 97 0.37× 10−2 28,936.08 0.18× 10−2

RCLDE 100 0.21× 10−2 6,305 0.13× 10−2

LICLDE 100 0.16× 10−2 3,962 0.13× 10−2

LDCLDE 100 0.31× 10−2 19,950 0.14× 10−2

SADE 100 0.83× 10−2 11,164 0.13× 10−2

SACLDE 100 0.56× 10−2 4,139 0.28× 10−2

SFLSDE 100 0.84× 10−2 29,102.08 0.13× 10−2

SFLSCLDE 100 0.46× 10−2 1,517.31 0.29× 10−2

f3 DE 49 0.60× 10−2 51,126.53 0.11× 10−2

RCLDE 100 0.41× 10−2 12,786 0.12× 10−2

LICLDE 100 0.39× 10−2 8,250 0.16× 10−2

LDCLDE 100 0.51× 10−2 30,506 0.14× 10−2

SADE 99 0.90× 10−2 23,532.32 0.87× 10−3

SACLDE 100 0.74× 10−2 8,307 0.19× 10−2

SFLSDE 100 0.92× 10−2 55,004.73 0.64× 10−3

SFLSCLDE 100 0.74× 10−2 5,390 0.20× 10−2

f4 DE 0 25.96 100,000 1.29

RCLDE 0 28.10 100,000 0.21

LICLDE 0 28.42 100,000 0.16

LDCLDE 0 27.77 100,000 0.27

SADE 0 18.38 100,000 5.78

SACLDE 0 16.81 100,000 0.90

SFLSDE 0 28.02 100,000 15.03

SFLSCLDE 0 28.26 100,000 0.17

f5 DE 0 91.01 100,000 8.01

RCLDE 100 0.42× 10−2 38,393 0.12× 10−2

LICLDE 100 0.38× 10−2 11,926 0.14× 10−2

LDCLDE 1 34.16 99,300 16.09

SADE 0 32.69 100,000 3.95

SACLDE 100 0.73× 10−2 9,601 0.19× 10−2

SFLSDE 0 52.30 100,000 5.60

SFLSCLDE 100 0.70× 10−2 5,456 0.20× 10−2

f6 DE 0 0.15× 10−1 100,000 0.18× 10−2

RCLDE 100 0.65× 10−2 13,006 0.11× 10−2

LICLDE 100 0.59× 10−2 8,426 0.14× 10−2

LDCLDE 100 0.69× 10−2 31,239 0.93× 10−3

SADE 100 0.94× 10−2 23,913 0.48× 10−3

SACLDE 100 0.84× 10−2 8,542 0.12× 10−2

SFLSDE 100 0.95× 10−2 54,489.09 0.40× 10−3

SFLSCLDE 100 0.83× 10−2 5,629.15 0.14× 10−2

123

Memetic Comp. (2012) 4:209–229 217

Table 3 continued Test problem Algorithm SR ME AFE SD

f7 DE 99 0.10× 10−5 263.64 0.3× 10−5

RCLDE 100 0.10× 10−5 283 0.40× 10−5

LICLDE 100 0.20× 10−5 296 0.50× 10−5

LDCLDE 100 0.1× 10−5 263 0.2× 10−5

SADE 100 0.14× 10−5 200 0.22× 10−5

SACLDE 100 0.16× 10−5 200 0.29× 10−5

SFLSDE 100 0.16× 10−5 199.88 0.27× 10−5

SFLSCLDE 100 0.15× 10−5 199.94 0.32× 10−5

f8 DE 0 0.21× 10−1 100,000 0.14× 10−2

RCLDE 100 0.67× 10−2 12,708 0.15× 10−2

LICLDE 100 0.65× 10−2 7,312 0.12× 10−2

LDCLDE 100 0.68× 10−2 41,345 0.10× 10−2

SADE 100 0.96× 10−2 54,745 0.40× 10−3

SACLDE 100 0.85× 10−2 7,249 0.12× 10−2

SFLSDE 76 0.99× 10−2 90,989.01 0.56× 10−3

SFLSCLDE 100 0.86× 10−2 4,247.89 0.13× 10−2

f9 DE 99 0.32× 10−3 31,955.55 0.87× 10−3

RCLDE 97 0.35× 10−3 27,853.61 0.68× 10−3

LICLDE 100 0.27× 10−3 25,852 0.47× 10−3

LDCLDE 97 0.32× 10−3 22,319.59 0.68× 10−3

SADE 100 0.51× 10−2 420 0.28× 10−2

SACLDE 100 0.51× 10−2 442 0.28× 10−2

SFLSDE 100 0.45× 10−2 450.85 0.29× 10−2

SFLSCLDE 100 0.40× 10−2 439.83 0.27× 10−2

f10 DE 47 0.62× 10−2 28,344.68 0.14× 10−2

RCLDE 100 0.43× 10−2 7,322 0.14× 10−2

LICLDE 100 0.37× 10−2 4,646 0.15× 10−2

LDCLDE 100 0.52× 10−2 21,000 0.15× 10−2

SADE 100 0.89× 10−2 13,410 0.85× 10−3

SACLDE 100 0.73× 10−2 4,807 0.21× 10−2

SFLSDE 100 0.91× 10−2 29,480.51 0.75× 10−3

SFLSCLDE 100 0.66× 10−2 2,013.93 0.21× 10−2

f11 DE 48 0.60× 10−2 17,077.08 0.11× 10−2

RCLDE 100 0.44× 10−2 4,689 0.14× 10−2

LICLDE 100 0.38× 10−2 3,043 0.15× 10−2

LDCLDE 100 0.53× 10−2 14,049 0.14× 10−2

SADE 100 0.89× 10−2 7,471 0.95× 10−3

SACLDE 100 0.70× 10−2 2,718 0.19× 10−2

SFLSDE 100 0.90× 10−2 17,897.15 0.99× 10−3

SFLSCLDE 100 0.67× 10−2 787.77 0.24× 10−2

f12 DE 0 58.73 100,000 8.35

RCLDE 0 0.16 100,000 0.58× 10−1

LICLDE 0 0.26 100,000 0.85× 10−1

LDCLDE 0 0.78 100,000 0.22

SADE 100 0.96× 10−2 47,991 0.39× 10−3

SACLDE 100 0.83× 10−2 13,778 0.16× 10−2

SFLSDE 0 21.26 100,000 5.58

SFLSCLDE 100 0.73× 10−2 17,202.78 0.19× 10−2

123

218 Memetic Comp. (2012) 4:209–229

Table 3 continued Test problem Algorithm SR ME AFE SD

f13 DE 47 0.62× 10−2 63,378.72 0.12× 10−2

RCLDE 100 0.46× 10−2 16,419 0.16× 10−2

LICLDE 100 0.36× 10−2 10,812 0.14× 10−2

LDCLDE 100 0.51× 10−2 36,365 0.14× 10−2

SADE 100 0.89× 10−2 30,924 0.94× 10−3

SACLDE 100 0.75× 10−2 10,869 0.19× 10−2

SFLSDE 100 0.91× 10−2 69,632.25 0.76× 10−3

SFLSCLDE 100 0.69× 10−2 7,684.98 0.20× 10−2

f14 DE 48 0.62× 10−2 26,625 0.14× 10−2

RCLDE 100 0.45× 10−2 7,021 0.15× 10−2

LICLDE 100 0.39× 10−2 4,482 0.16× 10−2

LDCLDE 100 0.54× 10−2 19,914 0.16× 10−2

SADE 100 0.90× 10−2 15,839 0.79× 10−3

SACLDE 100 0.68× 10−2 5,146 0.21× 10−2

SFLSDE 100 0.90× 10−2 32,814.09 0.81× 10−3

SFLSCLDE 100 0.64× 10−2 2,341.84 0.21× 10−2

f15 DE 0 0.14× 10−1 100,000 0.19× 10−2

RCLDE 100 0.66× 10−2 13,832 0.11× 10−2

LICLDE 100 0.62× 10−2 8,962 0.11× 10−2

LDCLDE 100 0.68× 10−2 31,824 0.82× 10−3

SADE 100 0.94× 10−2 26,924 0.51× 10−3

SACLDE 100 0.85× 10−2 8,889 0.12× 10−2

SFLSDE 100 0.95× 10−2 52,935.07 0.46× 10−3

SFLSCLDE 100 0.84× 10−2 6,028.6 0.12× 10−2

f16 DE 61 0.61× 10−2 18,934.43 0.13× 10−2

RCLDE 100 0.43× 10−2 5,158 0.14× 10−2

LICLDE 100 0.42× 10−2 3,316 0.17× 10−2

LDCLDE 100 0.54× 10−2 15,244 0.13× 10−2

SADE 100 0.90× 10−2 8,537 0.75× 10−3

SACLDE 100 0.74× 10−2 3,201 0.18× 10−2

SFLSDE 100 0.91× 10−2 20,138.46 0.74× 10−3

SFLSCLDE 100 0.66× 10−2 1,039.48 0.23× 10−2

f17 DE 100 9.50× 10−2 62,360 4.96× 10−3

RCLDE 0 1.52 100,000 119.22

LICLDE 100 9.2× 10−2 70,570 6.54× 10−3

LDCLDE 0 9.11 100,000 8.26

SADE 94 0.25 42,603 0.76

SACLDE 98 0.25 33,490 0.76

SFLSDE 95 0.28 58,089 0.85

SFLSCLDE 95 0.28 58,089 0.84

f18 DE 100 7.85× 10−6 22,132 1.64× 10−6

RCLDE 0 7.01 100,000 0.26

LICLDE 100 8.13× 10−6 23,933 1.51× 10−6

LDCLDE 0 6.59 100,000 6.58

SADE 100 8.02× 10−6 7,904 1.64× 10−6

SACLDE 100 8.16× 10−6 6,400 1.42× 10−6

SFLSDE 100 8.21× 10−6 12,282 1.52× 10−6

SFLSCLDE 100 8.21× 10−6 12,282 1.52× 10−6

123

Memetic Comp. (2012) 4:209–229 219

Table 3 continued Test problem Algorithm SR ME AFE SD

f19 DE 0 73.89 100,000 11.46

RCLDE 0 240.75 100,000 8.04

LICLDE 0 69.78 100,050 9.54

LDCLDE 0 223.15 100,000 11.63

SADE 0 112.18 100,000 15.06

SACLDE 0 103.61 100,000 12.18

SFLSDE 0 117.86 100,000 15.42

SFLSCLDE 0 117.86 100,000 15.42

f20 DE 0 0.21 100,000 7.49× 10−2

RCLDE 0 57.16 100,000 0.11

LICLDE 3 0.19 96,356 0.15

LDCLDE 0 48.36 100,000 0.12

SADE 97 3.52× 10−4 40,480 2.20× 10−3

SACLDE 95 2.22× 10−4 47,632 1.26× 10−3

SFLSDE 98 2.05× 10−4 42,331 1.42× 10−3

SFLSCLDE 98 2.05× 10−4 42,331 1.42× 10−3

f21 DE 100 8.94× 10−6 33,667 9.65× 10−7

RCLDE 0 12.89 100,000 0.16

LICLDE 100 8.91× 10−6 31,021 9.18× 10−7

LDCLDE 0 16.50 100,000 0.32

SADE 100 8.84× 10−6 11,735 1.08× 10−6

SACLDE 100 8.90× 10−6 10,882 9.62× 10−7

SFLSDE 100 9.01× 10−6 18,133 7.92× 10−7

SFLSCLDE 100 9.01× 10−6 18,133 7.92× 10−7

f22 DE 86 2.05× 10−4 22,795 2.87× 10−4

RCLDE 100 6.58× 10−5 23,014 1.41× 10−5

LICLDE 100 6.86× 10−5 18,575 2.28× 10−5

LDCLDE 8 0.05 92,781 2.90× 10−4

SADE 27 5.22× 10−4 79,045 2.78× 10−4

SACLDE 59 3.30× 10−4 52,552 2.90× 10−4

SFLSDE 18 5.63× 10−4 86,491 2.25× 10−4

SFLSCLDE 18 5.63× 10−4 86,491 2.24× 10−4

f23 DE 49 1.73× 10−5 52485 1.56× 10−5

RCLDE 95 3.65× 10−2 39,227 3.35× 10−6

LICLDE 55 1.54× 10−5 48,568 1.49× 10−5

LDCLDE 34 0.41 67,450 4.96× 10−6

SADE 44 1.79× 10−5 56,950 1.42× 10−5

SACLDE 61 1.42× 10−5 40,456 1.52× 10−5

SFLSDE 48 1.70× 10−5 53,162 1.51× 10−5

SFLSCLDE 48 1.71× 10−5 53,162 1.52× 10−5

f24 DE 0 0.57 100,000 0.11

RCLDE 4 0.92 96,992 0.29

LICLDE 13 0.53 94,705 0.28

LDCLDE 0 3.48 100,000 0.06

SADE 0 0.97 100,000 0.13

SACLDE 0 0.98 100,000 0.15

SFLSDE 0 0.43 100,000 0.13

SFLSCLDE 0 0.44 100,000 0.13

123

220 Memetic Comp. (2012) 4:209–229

Table 3 continued Test problem Algorithm SR ME AFE SD

f25 DE 0 1.22× 10−8 100,000 6.97× 10−9

RCLDE 100 7.21× 10−16 8,388 1.50× 10−16

LICLDE 100 7.77× 10−16 6,496 1.74× 10−16

LDCLDE 100 8.16× 10−16 33283 1.32× 10−16

SADE 100 9.08× 10−16 34,998 6.96× 10−17

SACLDE 100 7.31× 10−16 10,158 1.72× 10−16

SFLSDE 100 9.09× 10−16 64,269 9.06× 10−17

SFLSCLDE 100 9.09× 10−16 64,269 9.06× 10−17

Table 4 Results of the
Student’s t test

Test problem Student’s t test with DE Student’s t test with LICLDE

LICLDE LDCLDE RCLDE LDCLDE RCLDE

f1 + + + + +

f2 + + + + +

f3 + + + + +

f4 = = = = =

f5 + − + + +

f6 + + + + +

f7 − − − − −
f8 + + + + +

f9 − − − − −
f10 + + + + +

f11 + + + + +

f12 = = = = =

f13 + + + + +

f14 + + + + +

f15 + + + + +

f16 + + + + +

f17 − − − + +

f18 − − − + +

f19 = = = = =

f20 + = = + +

f21 + − − + +

f22 + − − + +

f23 + − + + −
f24 + = + + +

f25 + + + + +

figure that strategy (2) L I C L DE is best among all men-
tioned strategies as interquartile range and Median are low
for strategy (2) L I C L DE .

In order to compare the consolidated performance of DE
with C L DE variants, the value of a performance index P I
[11] is computed. This index gives a weighted importance to
the success rate, the mean error as well as the average num-
ber of function evaluations. The value of this performance
index for a computational algorithm under comparison is
given by

P I = 1

Np

Np∑
i=1

(k1α
i
1 + k2α

i
2 + k3α

i
3)

where αi
1 = Sri

T ri ; αi
2 =

{
M f i

A f i , if Sri > 0.

0, if Sri = 0.
; and αi

3 = Moi

Aoi

i = 1, 2, . . . , Np

– Sri is the number of successful runs of i th problem.
– T ri is the total number of runs of i th problem.

123

Memetic Comp. (2012) 4:209–229 221

1 2 3 4

0

1

2

3

4

5

6

7

8

9

10
x 10

4
A

ve
ra

g
e

F
u

n
ct

io
n

 E
va

lu
at

io
n

s

Strategy

Fig. 1 Boxplot graph for average function evaluation: 1 DE, 2
L I C L DE , 3 RC L DE and 4 L DC L DE

– M f i = is the minimum of average number of function
evaluations of successful runs used by all algorithms in
obtaining the solution of i th problem.

– A f i = is the average number of function evaluations
of successful runs used by an algorithm in obtaining the
solution of i th problem.

– Moi = is the minimum of mean error obtained by all the
algorithms for the i th problem.

– Aoi = is the mean error obtained by an algorithm for the
i th problem.

– Np = is the total number of problems analyzed.

k1, k2 and k3 (k1 + k2 + k3 = 1 and 0 ≤ k1, k2, k3 ≤ 1)
are the weights assigned to success rate, average number
of function evaluations of successful runs and mean error,
respectively. From the above definition it is clear that P I
is a function of k1, k2 and k3. Since k1 + k2 + k3 = 1 one
of ki , i = 1, 2, 3 could be eliminated to reduce the number
of dependent variables from the expression of P I . We adopt
the same methodology as given in [11], i.e. equal weights are
assigned to two terms at a time in the P I expression. This
way P I becomes a function of one variable. The resultant
cases are as follows:

1. k1 = W, k2 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

2. k2 = W, k1 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

3. k3 = W, k1 = k2 = 1−W
2 , 0 ≤ W ≤ 1.

The graphs corresponding to each of the cases (1), (2) and
(3) are shown in Figs. 2, 3, and 4, respectively. In these figures
the horizontal axis represents the weight W and the vertical
axis represents the performance index P I .

In case (1), the average number of function evaluations of
successful runs and mean error are given equal weights. P I s
of all four algorithms (L I C L DE, RC L DE, L DC L DE,

DE) are superimposed in the Fig. 2 for comparison and to

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight(W)

P
er

fo
rm

an
ce

 In
d

ex

DE
RCLDE
LICLDE
LDCLDE

Fig. 2 Performance index for case (1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight(W)

P
er

fo
rm

an
ce

 In
d

ex

DE
RCLDE
LICLDE
LDCLDE

Fig. 3 Performance index for case (2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (W)

P
er

fo
rm

an
ce

 In
d

ex

DE
RCLDE
LICLDE
LDCLDE

Fig. 4 Performance index for case (3)

get a ranking of the performance of the four algorithms. It
is observed that for differential evolution algorithm with lin-
early increasing cognitive learning factor (L I C L DE), the
value of PI is more than all the remaining two, i.e. DE with
linearly decreasing cognitive learning factor (L DC L DE),
and DE with random cognitive learning factor (RC L DE).
The C L DE performs in the order L I C L DE > RC L DE >

L DC L DE > DE .

123

222 Memetic Comp. (2012) 4:209–229

1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

9

10

x 10
4

A
ve

ra
g

e
F

u
n

ct
io

n
 E

va
lu

at
io

n
s

Strategy

Fig. 5 Boxplot graph for average function evaluation. 1 DE , 2
L I C L DE , 3 S ADE , 4 S AC L DE , 5 SF L SDE and 6 SF L SC L DE

In case (2), equal weights are assigned to the success rate and
average function evaluations of successful runs. From Fig. 3,
it is clear that all C L DE perform same as in case (1).
In case (3), equal weights are assigned to the success rate and
mean error. Again the same conclusion is drawn from Fig. 4.

As an overall conclusion from P I it is concluded that the
L I C L DE is better than the other four algorithm.

5.4 S ADE and SF L SDE with cognitive learning factor

It is obvious from the Sect. 5.3 that the C L DE performs
better with the linearly increasing cognitive learning factor.
The experimental findings support our theoretical sugges-
tions that linearly increasing cognitive learning factor in DE
should produce relatively better results.

Further, it will be interesting to investigate that whether
linearly increasing cognitive learning factor improves the
performance of some modified differential evolution algo-
rithms. In this paper, linearly increasing C L F is tested with
two modified DE algorithms: simulated annealing differen-
tial evolution S ADE [58] and scale factor local search dif-
ferential evolution SF L SDE [37]. The S ADE algorithm
with L I C L F is denoted as S AC L DE and SF L SDE with
L I C L F is denoted as SF L SC L DE .

The experimental results are shown in Table 3. It can
be observed that L I C L F improves the performance of
S ADE and SF L SDE . More intensive comparative anal-
ysis using statistical tools; boxplots and performance index
among DE, L I C L DE, S ADE, S AC L DE, SF L SDE and
SF L SC L DE have been carried out. Boxplots based on the
data of average function evaluations for all these algorithms
are shown in Fig. 5.

Following are the observations of boxplot analysis:

– By comparing DE with L I C L DE , it is clear that inter-
quartile range and median of L I C L DE is significantly
less than that of DE .

– By comparing interquartile range and median of S ADE
with S AC L DE , it can be stated that performance of
S AC L DE is significantly better than S ADE .

– By comparing interquartile range and median of SFLSDE
and SFLSCLDE, it is clear that SFLSCLDE is better than
SFLSDE.

It is clear from the Boxplot analysis that after applying the
cognitive learning factor C in the mutation operation of DE,

S ADE and SF L SDE , the performance of these algorithms
is significantly improved.

For the comparison of the performance between DE
and L I C L DE, S ADE and S AC L DE , SF L SDE and
SF L SC L DE the value of a performance index P I is com-
puted. The PI is calculated by varying (i) success rate, (ii)
function evaluation and (iii) mean error, for all the mentioned
algorithms.The graphs corresponding to each of the cases (i),
(ii) and (iii) are shown in Fig. 6a, b, and c, respectively.

By analyzing the Fig. 6, it is observed that for each case,
P I of differential evaluation algorithm using cognitive learn-
ing factor is significantly higher than the corresponding dif-
ferential evaluation algorithm. The pair wise performance
order of PI for all the three cases is as follows:

– L I C L DE > DE .
– S AC L DE > S ADE .
– SF L SC L DE > SF L SDE .

Therefore, we can say that the effect of cognitive learning
factor is significant on the performance of differential evo-
lution algorithm and some of its variants.

6 Application of L I C L DE in model order reduction
(MOR) problem

Model order reduction (MOR) problem is studied in the
branch of systems and control theory. In a real world sit-
uation, usually we get a system of very high order which
is inappropriate for representing some properties that are
important for effective use of the system. Model order
reduction (MOR) problem deals with reduction of complex-
ity of a dynamical system, while preserving their input–
output behavior. Although many conventional approaches
[5,6,10,16,24,29] of model order reduction guarantee the
stability of the reduced order model but sometimes the model
may turn out to be non-minimum phase. Therefore to obtain
better reduced order models, the use of some kind of optimi-
zation is necessary by itself and in combination with other
techniques. Error minimization is one of the popular tech-
niques for model order reduction of continuous time systems.
In this technique, lower order model is obtained by minimiz-
ing an error function constructed from the time responses (or
alternatively frequency responses) of the system and reduced

123

Memetic Comp. (2012) 4:209–229 223

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (W)

P
er

fo
rm

an
ce

 In
d

ex

DE
LICLDE
SADE
SACLDE
SFLSDE
SFLSCLDE

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (W)

P
er

fo
rm

ac
e

In
d

ex

DE
LICLDE
SADE
SACLDE
SFLSDE
SFLSCLDE

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (W)

P
er

fo
rm

ac
e

In
d

ex

DE
LICLDE
SADE
SACLDE
SFLSDE
SFLSCLDE

(c)

Fig. 6 Performance index: a for case (i), b for case (ii) and c for case
(iii)

order model. Various error criteria are available for minimiza-
tion such as integral square error (I SE), integral time square
errors (ITSE), integral of absolute error (IAE) and integral
time absolute errors (ITAE). Out of these ISE is used most
frequently.

All the methods discussed in the literature [18,19,22,
25,33,36,50,51,56], have considered to minimize integral
squared error (ISE) between the transient responses of origi-
nal higher order model and the reduced order model pertain-
ing to a unit step input. But in this paper, minimization is
carried out based on both integral squared error (I SE) and
impulse response energy (I RE).

6.1 MOR as an optimization problem

Consider an nth order linear time invariant dynamic SISO
system given by

G(s) = N (s)

D(s)
=

∑n−1
i=0 ai si∑n
i=0 bi si

(3)

where ai and bi are known constants.
The problem is to find a r th order reduced model in the trans-
fer function form R(s), where r < n represented by Eq. (4),
such that the reduced model retains the important characteris-
tics of the original system and approximates its step response
as closely as possible for the same type of inputs with mini-
mum integral square error.

R(s) = Nr (s)

Dr (s)
=

∑r−1
i=0 a′i si∑r
i=0 b′i si

(4)

where a′i and b′i are unknown constants.
Mathematically, the integral square error of step responses
of the original and the reduced system can be expressed by
error index às [15],

J =
∞∫

0

[y(t)− yr (t)]2 dt. (5)

where y(t) is the unit step response of the original system
and yr (t) is the unit step response of the reduced system.
This error index ìs the function of unknown coefficients a′i
and b′i . The aim is to determine the coefficients a′i and b′i of
reduced order model so that the error index ìs minimized.

6.2 Modified objective function for MOR

In this paper, minimization is carried out based on both I SE
and I RE . The low order model is obtained by minimizing
an error function, constructed from minimization of the inte-
gral square error (I SE) between the transient responses of
original higher order model and the reduced low order model
pertaining to a unit step input as well as minimization of the
difference between the high order model’s impulse response
energy (I RE) and the reduced low order I RE .

The impulse response energy (I RE) for the original and
the various reduced order models is given by:

I RE =
∞∫

0

g(t)2 dt. (6)

where, g(t) is the impulse response of the system.
Therefore, in this paper, both, I SE and I RE , are used to

construct the objective function for minimizing the I SE and
difference between I RE of high order model and reduced
order model. The following modified objective function is
constructed to carry out the results.

123

224 Memetic Comp. (2012) 4:209–229

Table 5 List of MOR problem
examples S. no. Source Original model

1 Shamash [48] G1(s) = 18s7+514s6+5,982s5+36,380s4+122,664s3+222,088s2+185,760s+40,320
s8+36s7+546s6+4,536s5+22,449s4+67,284s3+118,124s2+109,584s+40,320

2 Lucas [30] G2(s) = 8,169.13s3+50,664.97s2+9,984.32s+500
100s4+10,520s3+52,101s2+10,105s+500

3 Pal [42] G3(s) = s+4
s4+19s3+113s2+245s+150

4 Aguirre [2] G4(s) = 4.269s3+5.10s2+3.9672s+0.9567
4.3992s4+9.0635s3+8.021s2+5.362s+1

5 Eydgahi et al. [13] G5(s) = s4+35s3+291s2+1,093s+1,700
s9+9s8+66s7+294s6+1,029s5+2,541s4+4,684s3+5,856s2+4,629s+17,00

Table 6 Comparison of the
methods for example 1 Method of order reduction Reduced models; R1(s) ISE IRE

Original G1(s) – 21.740

LICLDE 17.203s+5.3633
s2+6.9298s+5.3633

0.8× 10−3 21.74

DE 20s+5.6158
s2+9.2566s+5.6158

0.3729× 10−1 21.908

Pade approximation 15.1s+4.821
s2+5.993s+4.821

1.6177 19.426

Routh approximation 1.99s+0.4318
s2+1.174s+0.4318

1.9313 1.8705

Gutman et al. [17] 4[133,747,200s+203,212,800]
85,049,280s2+552,303,360s+812,851,200

8.8160 4.3426

Hutton and Friedland [21] 1.98955s+0.43184
s2+1.17368s+0.43184

18.3848 1.9868

Krishnamurthy and Sheshadri [24] 155,658.6152s+40,320
65,520s2+75,600s+40,320

17.5345 2.8871

Mittal et al. [34] 7.0908s+1.9906
s2+3s+2

6.9159 9.7906

Mukherjee and Mishra [36] 7.0903s+1.9907
s2+3s+2

6.9165 9.7893

Mukherjee et al. [35] 11.3909s+4.4357
s2+4.2122s+4.4357

2.1629 18.1060

Pal [41] 151,776.576s+40,320
65,520s2+75,600s+40,320

17.6566 2.7581

Prasad and Pal [43] 17.98561s+500
s2+13.24571s+500

18.4299 34.1223

Shamash [48] 6.7786s+2
s2+3s+2

7.3183 8.9823

Table 7 Comparison of the
methods for example 2 Method of order reduction Reduced models; R2(s) ISE IRE

Original G2(s) – 34.069

LICLDE 103.3218182s+867.893179
s2+169.4059231s+867.893179

0.36228741× 10−2 34.069918

DE 220.8190s+35011.744
s2+1229.4502s+35011.744

0.4437568× 10−2 34.069218

Singh [49] 93.7562s+1
s2+100.10s+10

0.8964× 10−2 43.957

Pade approximation 23.18s+2.36
s2+23.75s+2.36

0.46005× 10−2 11.362

Routh approximation 0.1936s+0.009694
s2+0.1959s+0.009694

2.3808 0.12041

Gutman et al. [17] 0.19163s+0.00959
s2+0.19395s+0.00959

2.4056 0.11939

Chen et al. [6] 0.38201s+0.05758
s2+0.58185s+0.05758

1.2934 0.17488

Marshall [31] 83.3333s+499.9998
s2+105s+500

0.193× 10−2 35.450

objective_value = |I SE | + |I RER − I REO |
I RER + I REO

(7)

where I SE is an integral squared error of difference
between the responses given by Eq. (5), I REO is the
impulse response energy of the original high order model
and I RER is the impulse response energy of the reduced
order model. The advantage of this modified objective
function is that it minimizes I SE as well as the differ-
ences of I RE of both the models (high order and reduced
order).

6.3 Experimental results and numerical examples

Total five examples are taken into consideration in this sec-
tion (see Table 5).

The best solution obtained out of 100 runs is reported as
the global optimal solution. The reported solutions are in the
form of step and impulse responses. The results obtained by
DE are compared with that of L I C L DE and other stochas-
tic as well as deterministic methods.

Tables 6, 7, 8, 9 and 10 present the original and the reduced
systems for examples 1, 2, 3, 4, and 5, respectively. In these

123

Memetic Comp. (2012) 4:209–229 225

Table 8 Comparison of the
methods for example 3 Method of order reduction Reduced models; R3(s) ISE IRE

Original G3(s) – 0.26938× 10−3

LICLDE −0.0195s+0.2884
s2+14.9813s+10.82

0.43168× 10−5 0.27× 10−3

DE 0.0296s+0.2175
s2+12.3952s+8.156

0.1451930426× 10−4 0.27× 10−3

Singh [49] −494.596s+405.48
150s2+2487s+15205.5

0.2856× 10−2 0.2476× 10−3

Pade approximation −0.005017s+0.08247
s2+4.09s+3.093

∞ 0.27192× 10−3

Routh approximation 0.009865s+0.03946
s2+2.417s+1.48

∞ 0.23777× 10−3

Table 9 Comparison of the
methods for example 4 Method of order reduction Reduced models; R4(s) ISE IRE

Original G4(s) – 0.54536

LICLDE 0.7853s+2.949
s2+3.1515s+3.0823

0.338× 10−1 0.54538

DE 1.0755s+9.567
s2+9.4527s+10

0.364× 10−1 0.54535

Singh [49] 4.0056s+0.9567
8.021s2+5.362s+1

0.22372 0.27187

Pade approximation 1.869s+0.5585
s2+2.663s+0.5838

∞ 0.75619

Routh approximation 0.6267s+0.1511
s2+0.847s+0.158

∞ 0.31715

Table 10 Comparison of the
methods for example 5 Method of order reduction Reduced models; R5(s) ISE IRE

Original G5(s), see [13] – 0.47021

LICLDE −0.6372s+1.0885
s2+1.5839s+1.0885

0.209× 10−1 0.4718

DE −0.8068s+1.3083
s2+2.0221s+1.3083

0.302× 10−1 0.4845

Pade approximation −0.8153s+1.392
s2+2.081s+1.392

0.330× 10−1 0.49414

Routh approximation 0.2643s+0.411
s2+1.119s+0.411

0.131 0.21486

tables results obtained by L I C L DE are compared with
that of the basic DE , Pade approximation method, Routh
approximation method and other earlier reported results.
Corresponding unit step responses of the original and the
reduced systems using L I C L DE, DE , Pade approximation
and Routh approximation are shown in Figs. 7, 9, 11, 13 and
15, respectively. The impulse responses of the original and
the reduced systems using L I C L DE, DE , Pade approxi-
mation and Routh approximation are shown in Figs. 8, 10,
12, 14 and 16, respectively.

It can be observed that for examples 1, 3 and 5, I SEs
obtained by L I C L DE are significantly less than that of other
methods. Also for these examples, I REs of the reduced mod-
els obtained by L I C L DE are most close to that of the orig-
inals. The I SE for examples 3 and 4 obtained by Pade and
Routh approximation method are coming out to be infinity
because of the steady state error between the original and
the reduced system. For example 2, It may be seen that in
Table 7, L I C L DE provides least value of the I SE except
[31] whereas I RE is most close to that of the originals. For
example 4, the ISE is still least by L I C L DE but not signifi-

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

Step Response

Time (sec)

A
m

p
lit

u
d

e

Original Model

Routh Approximation

Pade Approximation

DE

LICLDE

Fig. 7 Comparison of step responses for example 1

cantly as compared to DE . Again I RE obtained by DE and
L I C L DE are almost same for example 4. It may also be seen
that the steady state responses of the original and the reduced

123

226 Memetic Comp. (2012) 4:209–229

0 0.5 1 1.5 2 2.5 3

0

5

10

15

20
Impulse Response

Time (sec)

A
m

p
lit

u
d

e

Original Model

Routh Approximation

Pade Approximation

DE

LICLDE

Fig. 8 Comparison of impulse responses for example 1

0 10 20 30 40 50 60
10

−0.7

10
−0.5

10
−0.3

10
−0.1

Step Response

Time (sec)

A
m

p
lit

u
d

e

Original Model
Routh Approximation
Pade Approximation
DE
LICLDE

Fig. 9 Comparison of step responses for example 2

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

Impulse Response

Time (sec)

A
m

p
lit

u
d

e

Original Model
Routh Approximation
Pade Approximation
DE
LICLDE

Fig. 10 Comparison of impulse responses for example 2

order models by L I C L DE are exactly matching while the
transient response matching is also very close as compared to
other methods. Thus these examples establish the superiority
of L I C L DE over other methods for this problem.

0 1 2 3 4 5 6 7
0

0.005

0.01

0.015

0.02

0.025

0.03
Step Response

Time (sec)

A
m

p
lit

u
d

e

Original Model
Routh Approximation
Pade Approximation
DE
LICLDE

Fig. 11 Comparison of step responses for example 3

0 1 2 3 4 5
−0.02

−0.01

0

0.01

0.02

0.03
Impulse Response

Time (sec)

A
m

p
lit

u
d

e

Original Model
Routh Approximation
Pade Approximation
DE
LICLDE

Fig. 12 Comparison of impulse responses for example 3

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

Step Response

Time (sec)

A
m

p
lit

u
d

e

Original Model
Routh Approximation
Pade Approximation
DE
LICLDE

Fig. 13 Comparison of step responses for example 4

Overall, L I C L DE performance is superior than the basic
DE and other deterministic as well as probabilistic methods.
Thus, L I C L DE may be treated as a robust method to solve
MOR problem.

123

Memetic Comp. (2012) 4:209–229 227

0 2 4 6 8 10

0

0.5

1

1.5
Impulse Response

Time (sec)

A
m

p
lit

u
d

e

Original Model
Routh Approximation
Pade Approximation
DE
LICLDE

Fig. 14 Comparison of impulse responses for example 4

0 1 2 3 4 5 6 7 8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Step Response

Time (sec)

A
m

p
lit

u
d

e

Original Model
Routh Approximation
Pade Approximation
DE
LICLDE

Fig. 15 Comparison of step responses for example 5

0 1 2 3 4 5 6 7 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Impulse Response

Time (sec)

A
m

p
lit

u
d

e

Original Model
Routh Approximation
Pade Approximation
DE
LICLDE

Fig. 16 Comparison of impulse responses for example 5

7 Conclusion

In this paper, basic differential evolution algorithm is
improved by introducing a new control parameter (cognitive

learning factor) in DE search procedure. With the help of
experiments over test problems it is showed that the reliabil-
ity (due to success rate), efficiency (due to average number
of function evaluations) and accuracy (due to mean objec-
tive function value) of basic as well as two modified (SADE
and SFLSDE) versions of DE algorithm with this new con-
trol parameter is higher than that of its original versions. The
modified DE so obtained is named as Cognitive Learning DE
(CLDE).

Basic DE and CLDE algorithms are then successfully
applied to model order reduction problem for single input
and single output system. The novelty in this application is
the newly designed objective function for this problem. The
objective function takes care of both ISE and IRE simul-
taneously. To validate and to show the versatility of DE
and CLDE, five systems of different orders are reduced
using these algorithms. It is showed that CLDE outper-
forms in terms of ISE and IRE when compared to the results
obtained by other algorithms and other formulation of objec-
tive function.

Based on this study, it is concluded that CLDE particularly
LICLDE is a better candidate in the field of nature inspired
algorithms for function optimization.

The future scope of this work is the implementation of
cognitive learning factor to other biologically inspired algo-
rithms.

References

1. Abbass HA (2002) The self-adaptive Pareto differential evolution
algorithm. In: Proceedings of the 2002 congress on evolutionary
computation 2002. CEC’02, vol 1. IEEE, NY, pp 831–836

2. Aguirre LA (1992) The least squares padé method for model reduc-
tion. Int J Syst Sci 23(10):1559–1570

3. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-
adapting control parameters in differential evolution: a comparative
study on numerical benchmark problems. IEEE Trans Evol Comput
10(6):646–657

4. Chakraborty UK (2008) Advances in differential evolution.
Springer, Berlin

5. Chen CF, Shieh LS (1968) A novel approach to linear model sim-
plification. Int J Control 8(6):561–570

6. Chen TC, Chang CY, Han KW (1979) Reduction of transfer func-
tions by the stability-equation method. J Franklin Inst 308(4):389–
404

7. Croarkin C, Tobias P (2010) Nist/sematech e-handbook of statisti-
cal methods. Retrieved 1 March 2010

8. Das S, Abraham A, Chakraborty UK, Konar A (2009) Differen-
tial evolution using a neighborhood-based mutation operator. IEEE
Trans Evol Comput 13(3):526–553

9. Das S, Konar A (2006) Two-dimensional iir filter design with mod-
ern search heuristics: a comparative study. Int J Comput Intell Appl
6(3):329–355

10. Davison JE (1966) A method for simplifying linear dynamic sys-
tems. IEEE Trans Autom Control AC-11 1:93–101

11. Thakur M, Deep K (2007) A new crossover operator for real coded
genetic algorithms. Appl Math Comput 188(1):895–911

123

228 Memetic Comp. (2012) 4:209–229

12. Engelbrecht AP (2007) Computational intelligence: an introduc-
tion. Wiley, London

13. Eydgahi A, Shore E, Anne P, Habibi J, Moshiri B (2003) A matlab
toolbox for teaching model order reduction techniques. In: Inter-
national conference on engineering education, Valencia, Spain,
pp 1–7

14. Gamperle R, Muller SD, Koumoutsakos A (2002) A parameter
study for differential evolution. Adv Intell Syst Fuzzy Syst Evol
Comput 10:293–298

15. Gopal M (2002) Control systems: principles and design. Tata
McGraw-Hill, NY

16. Gustafson RD (1966) A paper and pencil control system design.
Trans ASME J Basic Eng 329–336

17. Gutman PO, Mannerfelt CF, Molander P (1982) Contributions to
the model reduction problem. IEEE Trans Autom Control AC-27
2:454–455

18. Hickin J, Sinha NK (1976) Reduction of linear system by canoni-
cal forms. Electron Lett 12(21):551–553

19. Hickin J, Sinha NK (1978) Canonical forms for aggregated mod-
els. Int J Control 27(3):473–485

20. Holland JH (1975) Adaptation in natural and artificial systems. The
University of Michigan Press, Ann Arbor

21. Hutton M, Friedland B (1975) Routh approximations for reducing
order of linear, time-invariant systems. IEEE Trans Autom Control
20(3):329–337

22. Hwang C (1984) Mixed method of Routh and ISE criterion
approaches for reduced-order modeling of continuous-time sys-
tems. J Dyn Syst Meas Control 106:353

23. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Pro-
ceedings of the IEEE international conference on neural networks,
1995, vol 4. IEEE, NY, pp 1942–1948

24. Krishnamurthy V, Seshadri V (1978) Model reduction using the
Routh stability criterion. IEEE Trans Autom Control 23(4):729–
731

25. Lamba SS, Gorez R, Bandyopadhyay B (1988) New reduction
technique by step error minimization for multivariable systems.
Int J Syst Sci 19(6):999–1009

26. Lampinen J, Zelinka I (2000) On stagnation of the differen-
tial evolution algorithm. In: Proceedings of MENDEL. Citeseer,
pp 76–83

27. Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution
algorithm. Soft Comput Fusion Found Methodol Appl 9(6):448–
462

28. Liu PK, Wang FS (2008) Inverse problems of biological sys-
tems using multi-objective optimization. J Chin Inst Chem Eng
39(5):399–406

29. Lucas TN (1983) Factor division: a useful algorithm in model
reduction. In: IEE Proceedings of the control theory and appli-
cations, vol 130. IET, pp 362–364

30. Lucas TN (1986) Continued-fraction expansion about two or more
points: a flexible approach to linear system reduction. J Franklin
Inst 321(1):49–60

31. Marshall S (1983) Comments on viability of methods for gen-
erating stable reduced order models. IEEE Trans Autom Control
28(5):630–631

32. Mezura-Montes E, Velázquez-Reyes J, Coello Coello CA (2006) A
comparative study of differential evolution variants for global opti-
mization. In: Proceedings of the 8th annual conference on genetic
and evolutionary computation. ACM, pp 485–492

33. Mishra RN, Wilson DA (1980) A new algorithm for optimal reduc-
tion of multivariable systems. Int J Control 31(3):443–466

34. Mittal AK, Prasad R, Sharma SP (2004) Reduction of linear
dynamic systems using an error minimization technique. J Inst
Eng India IE(I) J EL 84:201–206

35. Mukherjee S et al (2005) Model order reduction using response-
matching technique. J Franklin Inst 342(5):503–519

36. Mukherjee S, Mishra RN (1987) Order reduction of linear systems
using an error minimization technique. J Franklin Inst 323(1):23–
32

37. Neri F, Tirronen V (2009) Scale factor local search in differential
evolution. Memetic Comput 1(2):153–171

38. Noman N, Iba H (2005) Enhancing differential evolution perfor-
mance with local search for high dimensional function optimiza-
tion. In: Proceedings of the 2005 conference on genetic and evolu-
tionary computation. ACM, pp 967–974

39. Omran M, Salman A, Engelbrecht A (2005) Self-adaptive differ-
ential evolution. Comput Intell Secur, pp 192–199

40. Omran MGH, Engelbrecht AP, Salman A (2005) Differential evo-
lution methods for unsupervised image classification. In: The 2005
IEEE congress on evolutionary computation, 2005, vol 2. IEEE,
NY, pp 966–973

41. Pal J (1979) Stable reduced-order Pade approximants using the
Routh-Hurwitz array. Electron Lett 15(8):225–226

42. Pal J (1986) An algorithmic method for the simplification of linear
dynamic scalar systems. Int J Control 43(1):257–269

43. Prasad R, Pal J (1991) Stable reduction of linear systems by con-
tinued fractions. J Inst Eng India Part EL Electr Eng Div 72:113

44. Price KV (1996) Differential evolution: a fast and simple numeri-
cal optimizer. In: 1996 biennial conference of the North American
fuzzy information processing society, 1996, NAFIPS. IEEE, NY,
pp 524–527

45. Price KV, Storn RM, Lampinen JA (2005) Differential evolution:
a practical approach to global optimization. Springer, Berlin

46. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution
algorithm with strategy adaptation for global numerical optimiza-
tion. IEEE Trans Evol Comput 13(2):398–417

47. Rogalsky T, Kocabiyik S, Derksen RW (2000) Differential evolu-
tion in aerodynamic optimization. Can Aeronaut Space J 46(4):
183–190

48. Shamash Y (1975) Linear system reduction using Pade approxima-
tion to allow retention of dominant modes. Int J Control 21(2):257–
272

49. Singh N (2007) Reduced order modeling and controller design.
PhD thesis. Indian Institute of Technology Roorkee, India

50. Sinha NK, Bereznai GT (1971) Optimum approximation of high-
order systems by low-order models. Int J Control 14(5):951–
959

51. Sinha NK, Pille W (1971) A new method for reduction of dynamic
systems. Int J Control 14(1):s111–s118

52. Storn R (1996) On the usage of differential evolution for function
optimization. In: 1996 biennial conference of the North American
fuzzy information processing society, 1996, NAFIPS. IEEE, NY,
pp 519–523

53. Storn R, Price K (1995) Differential evolution—a simple and effi-
cient adaptive scheme for global optimization over continuous
spaces. Int Comput Sci Inst 1:1–12

54. Teo J (2006) Exploring dynamic self-adaptive populations in dif-
ferential evolution. Soft Comput Fusion Found Method Appl
10(8):673–686

55. Vesterstrom J, Thomsen R (2004) A comparative study of dif-
ferential evolution, particle swarm optimization, and evolution-
ary algorithms on numerical benchmark problems. In: Congress
on evolutionary computation, 2004. CEC2004, vol 2. IEEE, NY,
pp 1980–1987

56. Vilbe P, Calvez LC (1990) On order reduction of linear systems
using an error minimization technique. J Franklin Inst 327(3):513–
514

57. Williamson DF, Parker RA, Kendrick JS (1989) The box plot:
a simple visual method to interpret data. Ann Internal Med
110(11):916

58. Yan JY, Ling Q, Sun Q (2006) A differential evolution
with simulated annealing updating method. In: International

123

Memetic Comp. (2012) 4:209–229 229

conference on machine learning and cybernetics. IEEE, NY,
pp 2103–2106

59. Zaharie D (2003) Control of population diversity and adaptation in
differential evolution algorithms. In: Proc of MENDEL, pp 41–46

60. Zaharie D, Petcu D (2004) Adaptive Pareto differential evolution
and its parallelization. Parallel Process Appl Math 3019:261–
268

123

	Cognitive learning in differential evolution and its application to model order reduction problem for single-input single-output systems
	Abstract
	1 Introduction
	2 Brief overview of differential evolution algorithm
	2.1 Mutation
	2.2 Crossover
	2.3 Selection

	3 Brief review on basic improvements in differential evolution
	4 Cognitive learning in differential evolution
	4.1 A few drawbacks of DE
	4.2 Motivation for cognitive learning factor
	4.2.1 Cognitive learning factor in DE

	4.3 Control Parameters in CLDE

	5 Experimental results and discussion
	5.1 Test problems under consideration
	5.2 Experimental setting for CLDE
	5.3 Comparison among DE with variants of CLDE
	5.3.1 Statistical analysis

	5.4 SADE and SFLSDE with cognitive learning factor

	6 Application of LICLDE in model order reduction (MOR) problem
	6.1 MOR as an optimization problem
	6.2 Modified objective function for MOR
	6.3 Experimental results and numerical examples

	7 Conclusion
	References

