
S

H
a

b

a

A
R
R
1
A
A

K
E
D
C
M

1

p
a
r
e
t
t
a
m
i

m
a
s
t
m
a

j

1
h

Journal of Computational Science 5 (2014) 312–323

Contents lists available at ScienceDirect

Journal of Computational Science

j ourna l h om epage: www.elsev ier .com/ locate / jocs

elf Balanced Differential Evolution

arish Sharmaa,∗, Jagdish Chand Bansalb, K.V. Aryaa,1

ABV-Indian Institute of Information Technology and Management, Gwalior, India
South Asian University, New Delhi, India

 r t i c l e i n f o

rticle history:
eceived 18 October 2012
eceived in revised form
0 December 2012
ccepted 11 December 2012
vailable online 28 December 2012

eywords:
volutionary optimization

a b s t r a c t

Differential Evolution (DE) is a well known and simple population based probabilistic approach for global
optimization. It has reportedly outperformed a few Evolutionary Algorithms (EAs) and other search
heuristics like the Particle Swarm Optimization (PSO) when tested over both benchmark and real world
problems. But, DE, like other probabilistic optimization algorithms, sometimes behave prematurely in
convergence. Therefore, in order to avoid stagnation while keeping a good convergence speed for DE,
two modifications are proposed: one is the introduction of a new control parameter, Cognitive Learning
Factor (CLF) and the other is dynamic setting of scale factor. Both modifications are proposed in mutation
process of DE. Cognitive learning is a powerful mechanism that adjust the current position of individuals
ifferential Evolution
ognitive Learning Factor
eta-heuristics

by a means of some specified knowledge. The proposed strategy, named as Self Balanced Differential
Evolution (SBDE), balances the exploration and exploitation capability of the DE. To prove efficiency and
efficacy of SBDE, it is tested over 30 benchmark optimization problems and compared the results with
the basic DE and advanced variants of DE namely, SFLSDE, OBDE and jDE. Further, a real-world opti-
mization problem, namely, Spread Spectrum Radar Polly phase Code Design, is solved to show the wide
applicability of the SBDE.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Differential Evolution (DE) scheme is relatively a simple, fast and
opulation based stochastic search technique, proposed by Storn
nd Price [33]. DE falls under the category of Evolutionary Algo-
ithms (EAs). But in some sense it differs significantly from EAs,
.g., trial vector generation process (explained in Section 2) uses
he information of distance and direction from current population
o generate a new trial vector. Furthermore, in EAs, crossover is
pplied first to generate a trial vector, which is then used within the
utation operation to produce one offspring while, in DE, mutation

s applied first and then crossover.
Researchers are continuously working to improve the perfor-

ance of DE. Some of the recently developed versions of DE with
ppropriate applications can be found in [6]. Experiments over
everal numerical benchmarks [36] show that DE performs better

han the Genetic algorithm (GA) [15] or the Particle Swarm Opti-

ization (PSO) [17]. DE has successfully been applied to various
reas of science and technology, such as chemical engineering [21],

∗ Corresponding author. Tel.: +91 9479810157.
E-mail addresses: harish.sharma0107@gmail.com (H. Sharma),

cbansal@sau.ac.in (J.C. Bansal), kvarya@gmail.com (K.V. Arya).
1 Tel.: +91 0751 2449819.

877-7503/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.jocs.2012.12.002
signal processing [9], mechanical engineering design [32], machine
intelligence, and pattern recognition [27]. Recently, machine intel-
ligence and cybernetics are most well-liked field in which DE
algorithm has become a popular strategy.

There are two fundamental processes which drive the evolution
of a DE population: the variation process, which enables explor-
ing different areas of the search space, and the selection process,
which ensures the exploitation of the previous experience. How-
ever, it has been shown that DE may occasionally stop proceeding
towards the global optimum even though the population has not
converged to a local optimum [19]. Therefore, to maintain the
proper balance between exploration and exploitation behavior of
DE, a new control parameter called Cognitive Learning Factor (CLF)
is introduced in DE. Cognitive Learning is about enabling peo-
ple to learn by using their reason, intuition and perception. This
technique is often used to change people’s behavior. The same phe-
nomenon is also applied to the proposed DE in this paper. In the
proposed DE, a weight factor (CLF) is associated with the individ-
ual’s experience in the mutation operation. Furthermore, the range
of scale factor F is also dynamically varied in the range devised
after extensive experiments. The dynamic scale factor better con-

trols the perturbation rate in mutation process. By varying CLF and
F, exploration and exploitation capabilities of DE may be balanced.
DE with these modifications is named as Self Balanced Differential
Evolution (SBDE). Further, the proposed strategy is compared by

dx.doi.org/10.1016/j.jocs.2012.12.002
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:harish.sharma0107@gmail.com
mailto:jcbansal@sau.ac.in
mailto:kvarya@gmail.com
dx.doi.org/10.1016/j.jocs.2012.12.002

putat

e
v
(
a
t

b
t
a
(
p
a
p
t

2

v
[
f
s
‘
t
a
p
T

t
D
d
p

t
d
a
t
a
t
g
s

2

i
a
i
t
o
x

–
–

–

H. Sharma et al. / Journal of Com

xperimenting on 30 test problems to the basic DE and its recent
ariants named, Scale Factor Local Search Differential Evolution
SFLSDE) [24], Opposition-Based Differential Evolution (OBDE) [31]
nd Dynamic Optimization using Self-Adaptive Differential Evolu-
ion (jDE) [5].

Rest of the paper is organized as follows: Section 2 describes
rief overview of basic Differential Evolution algorithm. In Sec-
ion 3 some basic Improvements in Differential Evolution algorithm
re briefly reviewed. Self Balanced Differential Evolution algorithm
SBDE) is proposed and established in Section 4. In Section 5, a com-
rehensive set of experimental results are provided. In Section 6,

 real-world optimization problem, Spread Spectrum Radar Polly
hase Code Design problem is solved using SBDE. Finally, in Sec-
ion 7, paper is concluded.

. Brief overview of Differential Evolution algorithm

DE has several strategies based on method of selecting the target
ector, number of difference vectors used and the type of crossover
28]. In this paper DE/rand/1/bin scheme is used where DE stands
or differential evolution, ‘rand’ specifies that the target vector is
elected randomly, ‘1’ is for number of differential vectors and
bin’ notation is forbinomial crossover. The popularity of Differen-
ial Evolution is due to its applicability to a wide class of problems
nd ease of implementation. Differential Evolution consists of the
roperties of both evolutionary algorithms and swarm intelligence.
he detailed description of DE is as follows:

Like other population based search algorithms, in DE a popula-
ion of potential solutions (individuals) searches the solution. In a
-dimensional search space, an individual is represented by a D-
imensional vector (xi1 , xi2 , . . . , xiD), i = 1, 2, . . ., NP where NP is the
opulation size (number of individuals).

In DE, there are three operators: mutation, crossover and selec-
ion. Initially, a population is generated randomly with uniform
istribution then the mutation, crossover and selection operators
re applied to generate a new population. Trial vector genera-
ion is a crucial step in DE process. The two operators mutation
nd crossover are used to generate the trial vectors. The selec-
ion operator is used to select the best trial vector for the next
eneration. DE operators are explained briefly in following sub-
ections.

.1. Mutation

A trial vector is generated by the DE mutation operator for each
ndividual of the current population. For generating the trial vector,

 target vector is mutated with a weighted differential. An offspring
s produced in the crossover operation using the newly generated
rial vector. If G is the index for generation counter, the mutation
perator for generating a trial vector ui(G) from the parent vector
i(G) is defined as follows:

 Select a target vector xi1 (G) from the population such that i /= i1.
 Again, randomly select two individuals, xi2 and xi3 , from the pop-
ulation such that i /= i1 /= i2 /= i3.

 Then the target vector is mutated for calculating the trial vector
as follows:

ui(G) = xi1 (G) + F ×
Variation Component︷ ︸︸ ︷
(xi2 (G) − xi3 (G))︸ ︷︷ ︸ (1)
Step size

where F ∈ [0, 1] is the mutation scale factor which is used in con-
trolling the amplification of the differential variation [13].
ional Science 5 (2014) 312–323 313

2.2. Crossover

Offspring x′
i
(G) is generated using the crossover of parent vector,

xi(G) and the trial vector, ui(G) as follows:

x′ij(G) =
{

uij(G), if j ∈ J

xij(G), otherwise.

where J is the set of cross over points or the points that will go under
perturbation, xij(G) is the jth element of the vector xi(G).

Different methods may be used to determine the set J of which
binomial crossover and exponential crossover are the most fre-
quently used [13]. In this paper, the DE and its variants are
implemented using the binomial crossover. In this crossover, the
crossover points are randomly selected from the set of possible
crossover points, {1, 2,. . ., D}, where D is the problem dimension.
Algorithm 1 shows the steps of binomial crossover to generate
crossover points [13]. In this algorithm, CR is the probability that the
considered crossover point will be included. The larger the value of
CR, the more crossover points will be selected.

Algorithm 1 (Binomial Crossover).
J = �
j* ∼ U(1, D);
J ← J ∪ j*;
for each j ∈ 1 . . . D do

if U(0, 1) < CR and j /= j* then
J ← J ∪ j;

end if
end if

Here, J is a set of crossover points, CR is crossover probability,
U(1, D) is a uniformly distributed random integer between 1 and D.

2.3. Selection

There are two functions of the selection operator: First it selects
the individual for the mutation operation to generate the trial vec-
tor and second, it selects the best, between the parent and the
offspring based on their fitness value for the next generation. If fit-
ness of parent is greater than the offspring then parent is selected
otherwise offspring is selected:

xi(G + 1) =
{

x′
i
(G), if f (x′

i
(G)) > f (xi(G)).

xi(G), otherwise.

This ensures that the population’s average fitness does not deteri-
orate.

The Pseudo-code for Differential Evolutionary strategy, is
described as follows [13]:

Algorithm 2 (Differential Evolutionary Algorithm).
Initialize the control parameters F and CR;
Create and initialize the population P(0) of NP individuals;
while stopping condition(s) not true do

for each individual, xi(G) ∈ P(G) do
Evaluate the fitness, f(xi(G));
Create the trial vector ui(G) by applying the mutation operator;
Create an offspring x′

i
(G) by applying the crossover operator;

if f (x′
i
(G)) is better than f(xi(G)) then

Add x′
i
(G) to P(G + 1);

else
Add xi(G) to P(G + 1);

end if
end for

end while
Return the individual with the best fitness as the solution;
Here, F (scale factor) and CR (crossover probability) are the con-
trol parameters and influence the performance of the DE. P is the
population vector.

3 putat

3
E

h
i

1

2

T
i
e
n
d
[
r

i
[

L
w
v
m
m
a
r

D
T
c
p
N
C

[
m
Z
b
[

t
C
w
u

a
t
s

a
a
F
n
a
F

T
d
f
o

14 H. Sharma et al. / Journal of Com

. Brief review on basic Improvements in Differential
volution

In order to get rid of the drawbacks of basic DE, researchers
ave improved DE in many ways. The potentials where DE can be

mproved may be broadly classified into two categories:

. Hybridization of DE with other population based probabilistic or
deterministic algorithms

. Introducing a new mechanisms for controlling the evolution,
which may require new parameters and/or fine tuning of DE
control parameters NP, F, CR.

his paper concentrates on the second category of DE research,
.e., the paper introduces a new mechanisms for controlling the
volution, which requires a new control parameter, namely, Cog-
itive Learning Factor in DE process. In past many efforts have been
one for improving the performance of DE based on this category
10]. Some important strategies based on this category are briefly
eviewed as follows:

Storn and Price [33] have observed that the value of F should be
n the range of [0.5, 1]. The value of NP should be in the range of
5D, 10D], where D is the dimension of the problem.

Fuzzy Adaptive Differential Evolution (FADE) is introduced by
iu and Lampinen [20]. It is based on the fuzzy logic controllers,
hose inputs incorporate the relative function values and indi-

iduals of successive generations to adapt the parameters for the
utation and crossover operation. They proved by the experi-
ental results over a set of benchmark functions that the FADE

lgorithm performance is better than the conventional DE algo-
ithm.

Gamperle et al. [14] determined different parameter values for
E specially for the Sphere, Rastrigin’ and Rosenbrock’ functions.
hey proved that the global optimum searching capability and the
onvergence speed are very sensitive for the values of the control
arameters NP, F, and CR. They specified that the population size
P ∈ [3D, 8D], with the scaling factor F = 0.6 and the crossover rate
R in [0.3, 0.9] are the good choice for the parameter setting.

Zaharie proposed a parameter adaptation strategy for DE (ADE)
40] which is based on controlling the population diversity. In ADE,

ulti-population approach is also implemented. Furthermore,
aharie and Petcu introduced an adaptive Pareto DE algorithm,
ased on the same line of thinking, for multi-objective optimization
41].

Abbass [1] proposed a self-adapted strategy for crossover rate CR
o solve multi-objective optimization problems. In Abbass strategy,
R value is encoded into each individual, simultaneously evolved
ith other search variables. There was a different scale factor F,
niform distributed in [0, 1], for each variable.

Furthermore, Qin et al. [30] introduced a Self-adaptive DE (SaDE)
lgorithm, in which all the control parameters that are used in the
rial vector generation strategies and selection process are steadily
elf-adapted by learning from their previous experiences.

Brest et al. [4] investigate a Self-Adaptive Differential Evolution
lgorithm (jDE) where F and CR control parameters are self-adapted
nd a multi-population method with aging mechanism is used.
urther, Zhang and Sanderson [42] proposed a new variant of DE
amed JADE: adaptive differential evolution with optional external
rchive, in which they introduced a new self adaptive strategy for

 and CR control parameters.
Omran et al. [26] introduced a self-adaptive scaling factor F.
hey generated the value of CR for each individual from a normal
istribution N(0.5, 0.15). This approach (called SDE) was tested on
our benchmark functions and verified to be performed better than
ther versions of DE.
ional Science 5 (2014) 312–323

Besides, setting the control parameters (F and CR), some
researchers also tuned the population size (NP) for improving the
performance. Teo introduced a variant of DE which is based on the
idea of Self Adapting Populations (DESAP) [35].

Noman and Iba [25] introduced a crossover-based local search
method for DE called the Fittest Individual Refinement (FIR). An
exploration capability of DE is hastened by the FIR scheme as it
enhances DE’s search capability in the neighborhood for the best
solution in successive generations.

Furthermore, Yan et al. [39] proposed a new variant of DE called
Simulated Annealing Differential Evolution (SADE). In SADE algo-
rithm, each individual contains a set of F values instead of single
value within the range [0.1, 1], control parameters F and CR are
encoded into individual and their values are changed, based on the
two new probability factors �1 and �2. F is reinitialized with the
probability �1 by a random value otherwise it remains unchanged.
The crossover probability CR also reinitialized with probability �2
and within the range [0, 1]. CR is assigned to each individual but
in an identical fashion. CR changes its value with probability �2
with a random value otherwise it remains unchanged for the next
generation.

Neri and Tirronen [24] proposed a self-adaptive strategy called
Scale Factor Local Search Differential Evolution (SFLSDE) strat-
egy. SFLSDE is a self-adaptive scheme with the two local search
algorithms: Scale factor hill-climb and Scale factor golden section
search. These local search algorithms are used for detecting the
value of scale factor F corresponding to an offspring with a bet-
ter performance. Therefore, the local search algorithms support in
the global search (exploration process) and in generating offspring
with high performance.

Das et al. [8] proposed a new variant of Differential Evolution
algorithm called Differential Evolution Using a Neighborhood-
Based Mutation Operator (DEGL). The proposed scheme balances
the exploration and exploitation abilities of DE. DEGL introduces
four new control parameters: ˛, ˇ, w, and the neighborhood radius
k. In DEGL, w is the most important parameter as it controls the
balance between the exploration and exploitation capabilities. It is
shown in the following expression.

V = w × Global + (1 − w) × Local

here, w ∈ [0, 1]. Small values of w favor the local neighborhood
component, thereby resulting in better exploration. On the other
hand, large values favor the global variant component, encourag-
ing exploitation. Therefore, values of w near about 0.5 result the
most balanced DEGL version.

Weber et al. [37] introduced scale factor inheritance mech-
anism in distributed differential evolution algorithm. In the
proposed algorithm, the population is distributed over several
sub-populations allocated according to a ring topology. Each
sub-population having its own scale factor value. In addition,
a perturbation mechanism also introduced which enhances the
exploration feature of the algorithm.

4. Self Balanced Differential Evolution

4.1. A few drawbacks of DE

The inherent drawback with most of the population based
stochastic algorithms is premature convergence. DE is not an excep-
tion. Any population based algorithm is regarded as an efficient
algorithm if it is fast in convergence and able to explore the max-

imum area of the search space. In other words, if a population
based algorithm is capable of balancing between exploration and
exploitation of the search space, then the algorithm is regarded
as an efficient algorithm. From this point of view, basic DE is not

putat

a
n
s
u
M
g
a
m
c
i
e

4
F

n
d
s
f

u

i
a
i
o
f
v
m
o
C
C
t

u

S
v
i
w
o
t
w
a
i
T
e
D

L
i
e
b

C

 Ci(G) < 1

 Ci(G) ≥ 1
(3)

r

SBDE algorithm is shown in Algorithm 3.
H. Sharma et al. / Journal of Com

n efficient algorithm [22]. Also some studies proved that stag-
ation is another inherent drawback with DE i.e. DE sometimes
top proceeding towards the global optima even though the pop-
lation has not converged to local optima or any other point [19].
ezura-Montes et al. [22] compared the different variants of DE for

lobal optimization and found that DE shows a poor performance
nd remains inefficient in exploring the search space, especially for
ultimodal functions. Price et al. [29] also drawn the same con-

lusions. The problems of premature convergence and stagnation
s a matter of serious consideration for designing a comparatively
fficient2 DE algorithm.

.2. Motivation for Cognitive Learning Factor and Dynamic Scale
actor

Exploration of the whole search space and exploitation of the
ear optimal solution region may be balanced by maintaining the
iversity in early and later iterations of any random number based
earch algorithm. Mutation equation (1) in DE may be seen in the
ollowing way:

i(G) = A × xi(G) + B ×
Variation Component︷ ︸︸ ︷
(xi2 (G) − xi3 (G))

.e., the trial vector ui(G) is the weighted sum of target vector xi(G)
nd the difference (xi2 (G) − xi3 (G)) of two random vectors. Here, A
s the weight to target vector and B is the weight to the difference
f random vectors. In basic DE, A is set to be 1, while B is the scaling
actor F varied in range (0, ∞). Studies have been carried out with
arying scaling factor F [4] for better exploration and exploitation
echanism. In this paper, experiments are performed for finding an

ptimal strategy to set the weight A and B. The weight A is named as
ognitive Learning Factor (CLF) and denoted by ‘C’ (for this study).
LF is the weight to individual’s current position or in other words
his is the weight to self confidence and therefore, it is named so.

The modified mutation operation of DE becomes:

i(G) = C × xi1 (G) + F × (xi2 (G) − xi3 (G)) (2)

ymbols have their usual meaning. It is clear from Eq. (2) that small
alue of C and large value of F, increase the exploration capabil-
ty as the weight for individual’s current position is low whereas

eight for variation component is high. Furthermore, large value
f C and small value of F, increase exploitation capability as in
his case, weight to individual’s current position is high whereas
eight to variation component is low. Therefore, a proper man-

ged C and F can balance the diversity in the population. So, it
s expected that these modifications should improve the results.
he proposed strategy dynamically balances the exploration and
xploitation capability of DE and therefore the proposed variant of
E is named as Self Balanced Differential Evolution (SBDE).

SBDE introduces one new parameter, C called the Cognitive
earning Factor (CLF). Cognitive Learning Factor C is the most
mportant parameter in SBDE as it controls the balance between the
xploration and exploitation capabilities of the algorithm. C varies
etween 0.1 and 1 using Eq. (3):

i(G + 1) =

⎧⎪⎪⎪⎪⎨ Ci(G) + probi(G) if fitnessi(G) > fitnessi(G − 1) and

1 if fitnessi(G) > fitnessi(G − 1) and
⎪⎪⎪⎪⎩ Ci(G) if fitnessi(G) < fitnessi(G − 1) and tria

0.1 if fitnessi(G) < fitnessi(G − 1) and tria

2 As it is not possible to design a fully efficient population based stochastic algo-
ithm.
ional Science 5 (2014) 312–323 315

In Eq. (3), Ci is the CLF for ith individual, G is the iteration counter,
fitnessi is the fitness of the ith individual, triali is the counter to count
number of times the individual is not updated, limit is the maximum
allowable counts in which an individual is not updated and probi(G)
is calculated in Eq. (4). In Eq. (4) maxfit(G) is the maximum fitness
of the solutions in Gth iteration.

probi(G) = 0.9 × fitnessi(G)
maxfit(G)

+ 0.1, (4)

It should be noted that at any time, coefficient C is the func-
tion of fitness of an individual X, simultaneously, applied to update
individual X and therefore it is named as Cognitive Learning Factor.

SBDE also proposed a dynamic scale factor (F) whose value is
calculated using Eq. (5).

Fi(G + 1) = (rand(0, 1) − 0.5) × (1.5 − probi(G)), (5)

In SBDE, in any iteration, the individuals of the population
works two folded: exploration and exploitation. Usually, large step
size produces exploration while small step size exploitation. From
Eqs. (4) and (5), it can be seen that probi and so CLF is propor-
tional to the fitnessi while Fi decreases if fitnessi increases. Thus,
at any time, if the weight to the individual’s self confidence (first
term of Eq. 2) increases, weight to the step size (second term)
decreases and therefore at some level, maintains the overall ratio of
weights.

Due to Eqs. (3) and (5), in SBDE, better individual will be allowed
only small step sizes which force individual to exploit the search
space, provided it is kept on updating itself. In other words, the
task of exploitation is assigned to a better individual. In case,
a better individual could not update itself for a certain number
of trials (named as limit) then it starts to explore (Ci(G + 1) = 0.1,
if fitnessi(G) < fitnessi(G − 1) and triali > limit). Now the job of explo-
ration is mainly, handled by worse fit individuals in SBDE. Because
for worse individuals, the value of Fi will be large, hence the step size
will be given higher weight as compare to the individual’s current
position. In short, the exploration and exploitation are maintained
by worse and better fit individuals, respectively. There is no hard
line which divides the exploring and exploiting individuals, it is the
fitness which transit a exploring individual to exploiting individual
and vice-versa.

The Self Balanced DE algorithm (SBDE) is similar to the basic DE
algorithm except the mutation operation. The Pseudo-code for the
li ≤ limit

li > limit

3 putational Science 5 (2014) 312–323

A

a
w
f
.
t
i

e
.

5

5

3
(
h
l
t

5

i

–
–
–

–
–
–

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.3

1.31

1.32

1.33

1.34

1.35

1.36
x 10

6

S
u

m
 o

f
A

F
E

 f
o

r
30

 T
es

t
P

ro
b

le
m

s

16 H. Sharma et al. / Journal of Com

lgorithm 3 (Self Balanced Differential Evolution (SBDE)).
Initialize the control parameters, F, CR and C;
Initialize Generation counter G = 1;
Create and initialize the population, P(0), of NP individuals;
Calculate fitness and then probabilities of the individuals using Eq. (4).
while stopping condition(s) not true do

for each individual, xi(G) ∈ P(G) do
Evaluate the fitness, f(xi(G));
Calculate the probability probi(G) using Eq. (4).
Create the trial vector ui(G) by applying the scale factor (mutation

operator) F and Cognitive Learning Factor C as follows;
ui(G) = Ci(G) × xi1

(G) + Fi(G) × (xi2
(G) − xi3

(G));
Create an offspring x′

i
(G) by applying the binomial crossover;

if f (x′
i
(G)) is better than f(xi(G)) then

triali = 0
Ci(G + 1) = Ci(G) + probi(G);
if Ci(G + 1) > 1 then

Ci(G + 1) = 1;
end if
Add x′

i
(G) to P(G + 1);

else
triali = triali + 1
if triali ≥ limit then

Randomly initialize the individual xi(G);
Ci(G + 1) = 0.1;

else
Ci(G + 1) = Ci(G);

end if
Add xi(G) to P(G + 1);

end if
Fi(G + 1) = (rand(0, 1) − 0.5) × (1.5 − probi(G));

end for
end while
Return the individual with the best fitness as the solution;

It is worth mentioning that, SBDE has an additional advantage of
voiding stagnation due to re-initialization of individual’s position
hen it shows no improvement for a certain number of trials, refer

ollowing in the Algorithm 3:

riali = triali + 1
f triali ≥ limit then

Randomly initialize the individual xi(G);
nd if

. Experimental results and discussion

.1. Test problems under consideration

In order to see the effect of C and dynamic scaling factor F on DE,
0 different global optimization problems (f1 to f30) are selected
listed in Table 1). These problems are minimization problems and
ave different degrees of complexity and multimodality. Test prob-

ems f1–f20 and f27–f30 are taken from [3], test problems f21–f26 are
aken from [34] with the associated offset values.

.2. Experimental setting

To test SBDE over test problems, following experimental setting
s adopted:

 The scale factor F = 0.5 [28],
 Population size NP = 50,
 The stopping criteria is either maximum number of function
evaluations (which is set to be 2.0 × 105) is reached or the cor-
responding acceptable error (mentioned in Table 1) has been
achieved.

 limit = D × NP/2 inspired from [16,2],
 The number of simulations =100,

 In order to investigate the effect of the parameter CR on the
performance of SBDE, its sensitivity with different values of CR
in the range [0.1, 1], is examined in Fig. 1. This figure shows
the graph between different values of CR and corresponding
CR

Fig. 1. Effect of parameter CR on average function evaluations.

sum of average number of function evaluations for 30 problems
in meeting the termination criteria for SBDE. It is clear from
Fig. 1 that SBDE is very sensitive for CR and value 0.4 gives
comparatively better results. Therefore CR = 0.4 is selected for
the experiments in this paper.

– Parameters for the basic DE are CR = 0.8, F = 0.5 [28,33].
– Parameter settings for the algorithms SFLSDE, OBDE and jDE are

similar to their original research papers.

5.3. Results and discussion

Numerical results with experimental setting of Section 5.2 are
given in Table 2. In Table 2, standard deviation (SD), mean error
(ME), average function evaluations (AFE), and success rate (SR)
are reported. Table 2 shows that most of the time SBDE outper-
forms in terms of reliability, efficiency and accuracy as compare
to the DE/rand/bin/1, SFLSDE, OBDE and jDE. Some more intensive
statistical analysis based on t test, Acceleration Rate (AR) [31], Aver-
age Distance Around Swarm Center [18], Boxplot and Performance
Index [12] have been carried out for results of SBDE, DE, SFLSDE,
OBDE and jDE.

5.3.1. Statistical analysis
The t-test is quite popular among researchers in the field of

evolutionary computing. In this paper Student’s t-test is applied
according to the description given in [7] for a confidence level of
0.95. Table 3 shows the results of the t-test for the null hypothesis
that there is no difference in the mean number of function evalua-
tions of 100 runs using SBDE, DE, SFLSDE, OBDE and jDE. Note that
here ‘+’ indicates the significant difference (or the null hypothesis
is rejected) at a 0.05 level of significance, ‘−’ implies that there is
no significant difference while ‘=’ indicates that comparison is not
possible. In Table 3, SBDE is compared with the DE, SFLSDE, OBDE
and jDE. The last row of Table 3, establishes the superiority of SBDE
over DE, SFLSDE, OBDE and jDE.

Further, a comparison is made on the basis of convergence
speed of the considered algorithms by measuring the average func-
tion evaluations (AFEs). A smaller AFEs means higher convergence
speed. In order to minimize the effect of the stochastic nature of the
algorithms, the reported function evaluations for each test prob-
lem is the average over 100 runs. In order to compare convergence
speeds, we use Acceleration Rate (AR) which is defined as follows,
based on the AFEs for the two algorithms ALGO and SBDE:
AR = AFEALGO

AFESBDE
, (6)

where ALGO ∈ {DE, SFLSDE, OBDE, jDE} and AR > 1 means SBDE con-
verges faster. Table 4 shows a clear comparison between SBDE − DE,

H
.

 Sharm
a

 et
 al.

 /
 Journal

 of
 Com

putational
 Science

 5
 (2014)

 312–323

317

Table 1
Test problems.

Test problem Objective function Search range Optimum value D Acceptable error

Sphere f1(x) =
n∑

i=1

x2
i

[−5.12,5.12] f(0) = 0 30 1.0E−05

Griewank f2(x) = 1 + 1
4000

D∑
i=1

x2
i
−

D∏
i=1

cos

(
xi√

i

)
[−600,600] f(0) = 0 30 1.0E−05

Rosenbrock f3(x) =
D∑

i=1

(100(xi+1 − xi
2)2 + (xi − 1)2) [−30,30] f(1) = 0 30 1.0E−02

Rastrigin f4(x) = 10D +
D∑

i=1

[x2
i
− 10 cos(2�xi)] [−5.12,5.12] f(0) = 0 30 1.0E−05

Ackley f5(x) = −20 + e + exp

⎛
⎝− 0.2

D

√√√√ D∑
i=1

xi
3

⎞
⎠− exp

(
1
D

D∑
i=1

cos (2�xi)xi

)
[−1,1] f(0) = 0 30 1.0E−05

Alpine f6(x) =
n∑

i=1

|xi sin xi + 0.1xi| [−10,10] f(0) = 0 30 1.0E−05

Cosine Mixture f7(x) =
D∑

i=1

xi
2 − 0.1

(
D∑

i=1

cos 5�xi

)
+ 0.1D [−1,1] f(0) = − D × 0.1 30 1.0E−05

Exponential f8(x) = −

(
exp

(
−0.5

D∑
i=1

xi
2

))
+ 1 [−1,1] f(0) = −1 30 1.0E−05

Cigar f9(x) = x0
2 + 100, 000

D∑
i=1

xi
2 [−10,10] f(0) = 4 30 1.0E−05

brown3 f10(x) =
D−1∑
i=1

(
xi

2(xi+1)2+1 + xi+1
2xi

2+1
)

[−1,4] f(0) = 0 30 1.0E−05

Schewel f11(x) =
D∑

i=1

|xi| +
D∏

i=1

|xi| [−10,10] f(0) = 0 30 1.0E−05

Axis parallel hyper-ellipsoid f12(x) =
D∑

i=1

ix2
i [−5.12,5.12] f(0) = 0 30 1.0E−05

Sum of different powers f13(x) =
D∑

i=1

|xi|i+1 [−1,1] f(0) = 0 30 1.0E−05

Step function f14(x) =
D∑

i=1

(�xi + 0.5)2 [−100,100] f(− 0.5 ≤ x ≤ 0.5) = 0 30 1.0E−05

Inverted cosine wave f15(x) = −
D−1∑
i=1

(
exp

(
−(x2

i
+ x2

i+1
+ 0.5xixi+1)

8

)
× I

)
, where I =

cos

(
4
√

x2
i
+ x2

i+1
+ 0.5xixi+1

) [−5,5] f(0) = − D + 1 10 1.0E−05

318

H
.

 Sharm
a

 et
 al.

 /
 Journal

 of
 Com

putational
 Science

 5
 (2014)

 312–323

Table 1 (Continued)

Test problem Objective function Search range Optimum value D Acceptable error

Rotated hyper-ellipsoid f16(x) =
D∑

i=1

i∑
j=1

x2
j

[−65.536,65.536] f(0) = 0 30 1.0E−05

Levy montalvo 1 f17(x) = �

D
(10sin2(�y1) +

D−1∑
i=1

(yi − 1)2 × (1 + 10sin2(�yi+1)) + (yD −

1)2), where yi = 1 + 1
4

(xi + 1)

[−10,10] f(− 1) = 0 30 1.0E−05

Levy montalvo 2 f18(x) = 0.1(sin2(3�x1) +
D−1∑
i=1

(xi − 1)2 × (1 + sin2(3�xi+1)) + (xD − 1)2(1 +

sin2(2�xD))

[−5,5] f(1) = 0 30 1.0E−05

Ellipsoidal f19(x) =
D∑

i=1

(xi − i)2 [−D,D] f(1, 2, 3, . . ., D) = 0 30 1.0E−05

2D Tripod f20(x) =
p(x2)(1 + p(x1)) + |(x1 + 50p(x2)(1 − 2p(x1)))| + |(x2 + 50(1 − 2p(x2)))|

[−100,100] f(0, − 50) = 0 2 1.0E−04

Shifted Rosenbrock f21(x) =
D−1∑
i=1

(100(z2
i
− zi+1)2 + (zi − 1)2) + fbias, z = x − o + 1, x =

[x1, x2, . . . , xD], o = [o1, o2, . . . , oD]

[−100,100] f(o) = fbias = 390 10 1.0E−01

Shifted Sphere f22(x) =
D∑

i=1

z2
i
+ fbias, z = x − o, x = [x1, x2, . . . , xD], o = [o1, o2, . . . , oD] [−100,100] f(o) = fbias = −450 10 1.0E−05

Shifted Rastrigin f23(x) =
D∑

i=1

(z2
i
− 10 cos(2�zi) + 10) + fbias, z = (x − o), x =

(x1, x2, . . . , xD), o = (o1, o2, . . . , oD)

[−5,5] f(o) = fbias = −330 10 1.0E−02

Shifted Schwefel f24(x) =
D∑

i=1

(
i∑

j=1

zj

)2

+ fbias, z = x − o, x = [x1, x2, . . . , xD], o =

[o1, o2, . . . , oD]

[−100,100] f(o) = fbias = −450 10 1.0E−05

Shifted Griewank f25(x) =
D∑

i=1

z2
i

4000
−

D∏
i=1

cos

(
zi√

i

)
+ 1 + fbias, z = (x − o), x =

[x1, x2, . . . , xD], o = [o1, o2, . . . , oD]

[−600,600] f(o) = fbias = −180 10 1.0E−05

Shifted Ackley f26(x) = −20 exp

⎛
⎝−0.2

√√√√ 1
D

D∑
i=1

z2
i

⎞
⎠− exp

(
1
D

D∑
i=1

cos(2�zi)

)
+

20 + e + fbias, z = (x − o), x = (x1, x2, . . . , xD), o = (o1, o2, . . . , oD)

[−32,32] f(o) = fbias = −140 10 1.0E−05

Six-hump camel back f27(x) =
(

4 − 2.1x2
1 +

x4
1

3

)
x2

1 + x1x2 + (−4 + 4x2
2)x2

2 [−5,5] f(− 0.0898, 0.7126)= −1.0316 2 1.0E−05

Easom’s function f28(x) = − cos x1 cos x2e((−(x1−�)2−(x2−�)2)) [−10,10] f(�, �) = −1 2 1.0E−13
Dekkers and Aarts f29(x) = 105x2

1 + x2
2 − (x2

1 + x2
2)2 + 10−5(x2

1 + x2
2)4 [−20,20] f(0, 15) = f(0, − 15) = −24, 777 2 5.0E−01

Moved axis parallel hyper-ellipsoid f30(x) =
D∑

i=1

5i × x2
i

[−5.12,5.12] f(x) = 0 ; x(i) = 5 × i, i = 1 : D 30 1.0E−15

H. Sharma et al. / Journal of Computational Science 5 (2014) 312–323 319

Table 2
Comparison of the results of SBDE, DE, SFLSDE, OBDE and jDE problems.

Test
problem

Algorithm SD ME AFE SR

f1

SBDE 8.12E−07 9.03E−06 15,745.5 100
DE 8.34E−07 9.06E−06 22,869.5 100
SFLSDE 8.65E−07 9.00E−06 24,626.15 100
OBDE 9.01E−06 8.70E−06 19,743 100
jDE 9.13E−06 8.07E−06 23,772.5 100

f2

SBDE 7.44E−07 9.10E−06 23,261.5 100
DE 7.39E−07 8.90E−06 34,032 100
SFLSDE 0.001034175 1.57E−04 39,382.59 98
OBDE 2.20E−03 4.78E−03 63,289.5 80
jDE 3.29E−04 1.58E−03 40,953.5 96

f3

SBDE 2.63E+01 4.16E+01 200,050.04 0
DE 1.87E+01 3.05E+01 200,050 0
SFLSDE 28.22646992 23.45233068 199,640.34 1
OBDE 3.53E+01 2.97E+01 200,006 0
jDE 3.65E+01 2.49E+01 200,050 0

f4

SBDE 1.39E−01 1.99E−02 97,521.67 98
DE 4.72E+00 4.43E+01 200,050 0
SFLSDE 0.098996267 0.009958634 154,474.92 98
OBDE 1.16E+01 4.68E+00 168,575 28
jDE 9.00E−06 7.71E−06 169,175 100

f5

SBDE 4.46E−07 9.50E−06 29,567 100
DE 4.59E−07 9.53E−06 42,954.5 100
SFLSDE 4.20E−07 9.51E−06 46,037.98 100
OBDE 9.51E−06 4.13E−06 38,855.5 100
jDE 9.50E−06 4.97E−06 44,502.5 100

f6

SBDE 5.26E−07 9.41E−06 70,845 100
DE 1.87E−03 3.36E−03 199,143.5 3
SFLSDE 3.08E−05 1.89E−05 169,798.17 74
OBDE 1.80E−05 8.55E−04 71,880 99
jDE 3.84E−05 4.61E−04 182,548.5 49

f7

SBDE 6.85E−07 9.16E−06 14,882 100
DE 8.06E−07 9.02E−06 22,833.5 100
SFLSDE 6.42E−07 9.09E−06 24,039 100
OBDE 3.00E+00 8.69E−06 21,317 100
jDE 3.00E+00 7.89E−06 23,189 100

f8

SBDE 8.38E−07 9.05E−06 12,007.5 100
DE 8.61E−07 8.96E−06 17,381.5 100
SFLSDE 7.03E−07 9.18E−06 18,628.31 100
OBDE 1.00E+00 7.57E−06 14,757.5 100
jDE 1.00E+00 9.62E−06 18,144.5 100

f9

SBDE 8.11E−07 8.98E−06 28,020 100
DE 7.25E−07 9.12E−06 39,903 100
SFLSDE 8.68E−07 9.04E−06 43,018.14 100
OBDE 8.92E−06 8.81E−06 35,306 100
jDE 9.11E−06 8.01E−06 41,512.5 100

f10

SBDE 8.02E−07 8.98E−06 14,539 100
DE 8.06E−07 9.01E−06 22,506.5 100
SFLSDE 8.75E−07 8.99E−06 25,713.07 100
OBDE 3.50E−05 2.59E−04 21,923 99
jDE 9.07E−06 6.42E−06 23,349.5 100

f11

SBDE 4.89E−07 9.44E−06 25,199.5 100
DE 4.01E−07 9.44E−06 39,516 100
SFLSDE 5.60E−07 9.42E−06 42,894.88 100
OBDE 9.36E−06 4.93E−06 44,695.5 100
jDE 9.45E−06 5.31E−06 41,454 100

f12

SBDE 7.49E−07 9.04E−06 18,264.5 100
DE 8.48E−07 8.90E−06 26,248.5 100
SFLSDE 1.00E−06 8.91E−06 28,160.88 100
OBDE 8.90E−06 8.62E−06 22,715 100
jDE 9.14E−06 7.39E−06 27,346.5 100

f13

SBDE 1.93E−06 7.25E−06 4541.5 100
DE 1.93E−06 7.34E−06 8613 100
SFLSDE 2.08E−06 7.24E−06 8987.38 100
OBDE 6.85E−06 2.25E−06 5244 100
jDE 7.63E−06 1.65E−06 8451 100

Table 2 (Continued)

Test
problem

Algorithm SD ME AFE SR

f14

SBDE 1.00E−06 1.00E−06 10,038.5 100
DE 1.00E−06 1.00E−06 15,277.5 100
SFLSDE 1.00E−06 1.00E−06 16,291.31 100
OBDE 1.10E−01 3.43E−01 32,885 90
jDE 1.00E−06 1.00E−06 15,684 100

f15

SBDE 1.40E−06 8.20E−06 31,051.95 100
DE 1.52E−06 7.97E−06 78,966.5 100
SFLSDE 0.833647153 0.687539673 124,007.97 48
OBDE 8.38E+00 6.82E−01 128,968 40
jDE 8.98E+00 8.94E−02 67,464 97

f16

SBDE 7.18E−07 9.09E−06 23,261.5 100
DE 7.57E−07 9.15E−06 33,244.5 100
SFLSDE 8.59E−07 9.04E−06 35,789.49 100
OBDE 8.98E−06 8.30E−06 28,976.5 100
jDE 9.10E−06 8.24E−06 34,582 100

f17

SBDE 8.02E−07 9.03E−06 13,372.5 100
DE 8.00E−07 9.02E−06 21,650.5 100
SFLSDE 7.23E−07 9.12E−06 22,077.77 100
OBDE 9.26E−06 6.79E−06 18,018.5 100
jDE 9.02E−06 8.47E−06 21,161.5 100

f18

SBDE 5.81E−07 9.26E−06 14,177.5 100
DE 7.82E−07 9.02E−06 20,690 100
SFLSDE 7.97E−07 9.03E−06 22,316.15 100
OBDE 1.19E−04 1.09E−03 20,251.5 99
jDE 9.02E−06 9.47E−06 21,361.5 100

f19

SBDE 8.11E−07 9.00E−06 19,446 100
DE 7.75E−07 9.12E−06 26,477.5 100
SFLSDE 8.23E−07 9.05E−06 30,151.57 100
OBDE 9.12E−06 7.75E−06 26,386 100
jDE 8.96E−06 9.36E−06 28,052 100

f20

SBDE 2.29E−07 6.57E−07 10,626.54 100
DE 4.21E−01 2.30E−01 54,221.5 77
SFLSDE 3.57E−01 1.50E−01 34,966.26 85
OBDE 2.00E−02 1.40E−01 8251 98
jDE 1.40E−01 3.47E−01 34,095.5 86

f21

SBDE 3.02E+00 1.52E+00 131,145.1 56
DE 5.70E−01 2.93E−01 135,066 79
SFLSDE 3.87E−01 1.32E−01 58,047.64 99
OBDE 3.95E+02 1.30E+00 138,293.5 89
jDE 3.90E+02 9.24E−01 76,226 94

f22

SBDE 1.42E−06 8.02E−06 8968 100
DE 1.70E−06 7.93E−06 10,415 100
SFLSDE 1.59E−06 7.91E−06 12,199.55 100
OBDE 4.50E−04 1.54E−06 9840.5 100
jDE 4.50E−04 1.35E−06 11,777.5 100

f23

SBDE 1.40E+01 1.21E+02 200,676.6 0
DE 1.48E+01 1.05E+02 200,050 0
SFLSDE 1.46E+01 1.17E+02 199,769.38 0
OBDE 2.50E+02 1.34E+02 200,004 0
jDE 2.33E+02 1.29E+02 200,050 0

f24

SBDE 6.77E+03 2.51E+04 200,590.27 0
DE 6.03E+03 1.86E+04 200,050 0
SFLSDE 6.15E+03 2.33E+04 199,772.01 0
OBDE 9.18E+03 4.14E+03 200,005.5 0
jDE 1.45E+04 4.73E+03 200,050 0

f25

SBDE 1.79E−06 7.96E−06 19,403.16 100
DE 1.60E−06 8.11E−06 27,278 100
SFLSDE 7.35E−04 8.19E−05 44,467.26 99
OBDE 1.80E−03 1.94E−02 168,312.5 19
jDE 1.45E−03 9.80E−04 43,070 99

f26

SBDE 1.01E−06 8.92E−06 13,160 100
DE 7.52E−07 8.95E−06 15,643 100
SFLSDE 9.46E−07 8.93E−06 18,070.59 100
OBDE 1.40E−06 8.02E−06 14,615.5 100
jDE 1.40E−06 8.05E−06 17,456 100

320 H. Sharma et al. / Journal of Computational Science 5 (2014) 312–323

Table 2 (Continued)

Test
problem

Algorithm SD ME AFE SR

f27

SBDE 5.71E−06 5.00E−06 21,148.43 100
DE 1.45E−05 1.54E−05 93,734 54
SFLSDE 1.44E−05 1.62E−05 99,126.96 51
OBDE 1.03E−04 1.48E−05 98,745 51
jDE 1.03E−04 1.41E−05 113,105.5 44

f28

SBDE 2.82E−14 4.16E−14 7969.85 100
DE 2.68E−14 4.86E−14 11,910 100
SFLSDE 2.72E−14 4.71E−14 8442.01 100
OBDE 1.00E+00 2.97E−14 4557.5 100
jDE 1.00E+00 3.01E−14 7744.5 100

f29

SBDE 5.28E−03 4.90E−01 2915.5 100
DE 5.26E−03 4.90E−01 3553.5 100
SFLSDE 0.005272695 0.491507428 3234 100
OBDE 2.48E+04 5.03E−03 2091.5 100
jDE 2.48E+04 5.32E−03 3025 100

f

SBDE 9.14E−17 8.89E−16 42,209.5 100
DE 7.04E−17 9.20E−16 59,972 100
SFLSDE 8.66E−17 9.08E−16 64,399.61 100

S
c
s

b
t

D

T
R

Table 4
Acceleration Rate (AR) of SBDE compare to the basic DE, SFLSDE, OBDE and jDE.

Test
problems

DE SFLSDE OBDE jDE

f1 1.452446731 1.56401194 1.253882062 1.50979645
f2 1.463018292 1.693037422 2.720783268 1.760570041
f3 0.9999998 0.997952012 0.999779855 0.9999998
f4 2.051338949 1.584006098 1.728590169 1.734742647
f5 1.4527852 1.557073088 1.314150911 1.505140867
f6 2.810974663 2.396755876 1.014609358 2.576730891
f7 1.534303185 1.615307082 1.432401559 1.558191103
f8 1.447553612 1.551389548 1.229023527 1.511097231
f9 1.424089936 1.535265525 1.260028551 1.481531049
f10 1.548008804 1.76855836 1.50787537 1.605990783
f11 1.568126352 1.702211552 1.773666144 1.64503264
f12 1.437132142 1.541836897 1.243669413 1.497248761
f13 1.896509964 1.978945282 1.154684576 1.86083893
f14 1.521890721 1.622882901 3.275887832 1.562384818
f15 2.543044801 3.993564655 4.153297941 2.172617179
f16 1.429164069 1.538571889 1.24568493 1.486662511
f17 1.619031595 1.650982987 1.347429426 1.582464012
f18 1.459354611 1.574053959 1.428425322 1.506718392
f19 1.361591073 1.550528129 1.356885735 1.442558881
f20 5.102460443 3.290465194 0.776452166 3.208523188
f21 1.029897419 0.442621493 1.054507565 0.581234068
f22 1.161351472 1.360342328 1.097290366 1.313280553
f23 0.996877563 0.995479194 0.996648339 0.996877563
f24 0.997306599 0.995920739 0.997084754 0.997306599
f25 1.40585348 2.291753508 8.674489104 2.219741527
f26 1.188677812 1.373145137 1.110600304 1.326443769
f27 4.432196622 4.68720184 4.669140924 5.348174782
f28 1.494381952 1.059243273 0.571842632 0.971724687
30

OBDE 9.01E−16 8.09E−16 53,106.5 100
jDE 9.22E−16 6.71E−16 62,221 100

BDE − SFLSDE, SBDE − OBDE and SBDE − jDE in terms of AR. It is
lear from Table 4 that, for most of the test problems, convergence
peed of SBDE is faster among all the considered algorithms.

Further, diversity of the considered algorithms are compared
ased on a diversity measure, Average Distance around Swarm Cen-
er. This measure is given in [18] and defined in Eq. (7)⎛√ ⎞

A =

1
NP

NP∑
i=1

⎝√√√ D∑
k=1

(xik − xk)2⎠ (7)

able 3
esults of the Student’s t test.

Test problems SBDE vs DE SBDE vs
SFLSDE

SBDE vs OBDE SBDE vs jDE

f1 + + + +
f2 + + + +
f3 = = = =
f4 + + + +
f5 + + + +
f6 + + + +
f7 + + + +
f8 + + + +
f9 + + + +
f10 + + + +
f11 + + + +
f12 + + + +
f13 + + + +
f14 + + + +
f15 + + + +
f16 + + + +
f17 + + + +
f18 + + + +
f19 + + + +
f20 + + − +
f21 + − + −
f22 + + + +
f23 = = = =
f24 = = = =
f25 + + + +
f26 + + + +
f27 + + + +
f28 + + − −
f29 + + − +
f30 + + + +

Total number
of +sign

27 26 24 25
f29 1.218830389 1.109243697 0.717372663 1.03755788
f30 1.420817588 1.525713643 1.258164631 1.474099433

where NP is the population size, D is the dimensionality of the
problem, xik is the kth dimension of the ith individual position and
xk is the kth dimension of the swarm center (best individual) at
any time. A low value of this measure shows swarm convergence
around the swarm center while a high value shows large disper-
sion of individuals from the swarm center. A diversity comparison
of the considered algorithms on the basis of this diversity measure
is shown in Fig. 2. The diversity is calculated for the median run of
each algorithm for first six test functions (f1, f5, f7, f8, f9 and f11) on
which all the considered algorithms achieved 100% success. It can
be observed that SBDE performs better than the basic DE, SFLSDE,
OBDE and jDE.

For the purpose of comparison in terms of consolidated
performance, boxplot analyses have been carried out for all the con-
sidered algorithms. The empirical distribution of data is efficiently
represented graphically by the boxplot analysis tool [38]. The box-
plots for SBDE, DE, SFLSDE, OBDE and jDE are shown in Fig. 3. It is
clear from this figure that SBDE is better than the considered algo-
rithms as interquartile range and median are comparatively low.

Further, to compare the considered algorithms, by giving
weighted importance to the success rate, the mean error and the
average number of function evaluations, performance indices (PI)
are calculated [12]. The values of PI for the SBDE, DE, SFLSDE, OBDE
and jDE are calculated by using following equations:

PI = 1
Np

Np∑
i=1

(k1˛i
1 + k2˛i

2 + k3˛i
3)

where

˛i = Sri

; ˛i =

⎧⎨ Mf i

i
, if Sri > 0.

; and
1
Tri 2 ⎩ Af

0, if Sri = 0.

˛i
3 =

Moi

Aoi
, i = 1, 2, . . . , Np

H. Sharma et al. / Journal of Computational Science 5 (2014) 312–323 321

0 50 100 150 200 250 300

10
−2

10
−1

10
0

10
1

Iterations

A
ve

ra
g

e
D

is
ta

n
ce

 a
ro

u
n

d
 S

w
ar

m
 C

en
te

r SBDE
DE
SFLSDE
OBDE
jDE

(a) (b)

(c) (d)

(e) (f)

0 50 100 150 200 250 300 350 400 450 500 550

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Iterations

A
ve

ra
g

e
D

is
ta

n
ce

 a
ro

u
n

d
 S

w
ar

m
 C

en
te

r

SBDE
DE
SFLSDE
OBDE
jDE

0 50 100 150 200 250 300

10
−2

10
−1

10
0

Iterations

A
ve

ra
g

e
D

is
ta

n
ce

 a
ro

u
n

d
 S

w
ar

m
 C

en
te

r SBDE
DE
SFLSDE
OBDE
jDE

0 50 100 150 200

10
−2

10
−1

10
0

Iterations

A
ve

ra
g

e
D

is
ta

n
ce

 a
ro

u
n

d
 S

w
ar

m
 C

en
te

r

SBDE
DE
SFLSDE
OBDE
jDE

0 50 100 150 200 250 300 350 400 450 500 550
10

−3

10
−2

10
−1

10
0

10
1

A
ve

ra
g

e
D

is
ta

n
ce

 a
ro

u
n

d
 S

w
ar

m
 C

en
te

r

SBDE
DE
SFLSDE
OBDE
jDE

0 50 100 150 200 250 300 350 400 450 500

10
−4

10
−2

10
0

Iterations

A
ve

ra
g

e
D

is
ta

n
ce

 a
ro

u
n

d
 S

w
ar

m
 C

en
te

r

SBDE
DE
SFLSDE
OBDE
jDE

) for f1, (b) for f5, (c) for f7, (d) for f8, (e) for f9, (f) for f11.

–
–
–

–

–
–
–

T
f
a
c
w
F

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
5

A
ve

ra
g

e
F

u
n

ct
io

n
 E

va
lu

at
io

n
s

Iterations

Fig. 2. Average Distance around Swarm Center; (a

 Sri = Successful simulations/runs of ith problem.
 Tri = Total simulations of ith problem.
 Mfi = Minimum of average number of function evaluations used
for obtaining the required solution of ith problem.

 Afi = Average number of function evaluations used for obtaining
the required solution of ith problem.

 Moi = Minimum of mean error obtained for the ith problem.
 Aoi = Mean error obtained by an algorithm for the ith problem.
 Np = Total number of optimization problems evaluated.

he weights assigned to the success rate, the average number of

unction evaluations and the mean error are represented by k1, k2
nd k3 respectively where k1 + k2 + k3 = 1 and 0 ≤ k1, k2, k3 ≤ 1. To
alculate the PIs, equal weights are assigned to two variables while
eight of the remaining variable vary from 0 to 1 as given in [12].

ollowing are the resultant cases:

SBDE DE SFLSDE OBDE jDE

0

Fig. 3. Boxplot graph for Average Function Evaluation: (1) SBDE, (2) DE, (3) SFLSDE,
(4) OBDE, (5) jDE.

322 H. Sharma et al. / Journal of Computational Science 5 (2014) 312–323

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k1)

P
er

fo
rm

an
ce

 In
d

ex

SBDE
DE
SFLSDE
OBDE
jDE

(a)

(b)

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k2)

P
er

fo
rm

an
ce

 In
d

ex

SBDE
DE
SFLSDE
OBDE
jDE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k3)

P
er

fo
rm

an
ce

 In
d

ex

SBDE
DE
SFLSDE
OBDE
jDE

F
f

1
2
3

f
a
r
v

m
r
p
s
s
a
I
a

Table 5
Results of Spread Spectrum Radar Polly phase Code Design problem. The best result
is highlighted in boldface.

Dimension DE/rand/1/bin SBDE t test

MOFV SD MOFV SD
ig. 4. Performance index for test problems; (a) for case (1), (b) for case (2) and (c)
or case (3).

. k1 = W, k2 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

. k2 = W, k1 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

. k3 = W, k1 = k2 = 1−W
2 , 0 ≤ W ≤ 1.

The graphs corresponding to each of the cases (1), (2) and (3)
or SBDE, DE, SFLSDE, OBDE and jDE are shown in Fig. 4(a), (b),
nd (c) respectively. In these figures the weights k1, k2 and k3 are
epresented by horizontal axis while the PI is represented by the
ertical axis.

In case (1), average number of function evaluations and the
ean error are given equal weights. PIs of the considered algo-

ithms are superimposed in Fig. 4(a) for comparison of the
erformance. It is observed that PI of SBDE are higher than the con-
idered algorithms. In case (2), equal weights are assigned to the

uccess rate and the mean error and in case (3), equal weights are
ssigned to the success rate and the average function evaluations.
t is clear from Fig. 4(b) and (c) that, the algorithms perform same
s in case (1).
10 0.53 0.07 0.53 0.07 −
15 1.08 6.66E−16 0.69 5.12E−3 +
20 1.66 0.09 0.93 0.11 +

6. Application of SBDE to Spread Spectrum Radar Polly
phase Code Design

The problems is selected from CEC 2011 [11] based on the
level of difficulty that they present to the SBDE. The problem is
modeled as a min-max nonlinear non-convex optimization prob-
lem in continuous variables and with numerous local optima. It can
be expressed as follows:

global minx∈X f (x) = max {�1(x), . . . , �2m(x)},

X = {(x1, . . . , xn) ∈ Rn|0 ≤ xj ≤ 2�, j = 1, . . . , n},
where m = 2n − 1 and

�2i−1(x) =
n∑

j=i

cos

⎛
⎝ j∑

k=|2i−j−1|+1

xk

⎞
⎠ , i = 1, . . . , n,

�2i(x) = 0.5 +
n∑

j=i+1

cos

⎛
⎝ j∑

k=|2i−j|+1

xk

⎞
⎠ , i = 1, . . . , n − 1,

�m+i(x) = −�i(x), i = 1, . . . , m.

Here the objective is to minimize the module of the biggest among
the samples of the so called auto-correlation function which is
related to the complex envelope of the compressed radar pulse at
the optimal receiver output, while the variables represent sym-
metrized phase differences. According to [23] the above problem
has no polynomial time solution. The considered problem is solved
by DE and SBDE. Table 5 shows the mean and the standard devi-
ation of the best-of-run values for 100 independent runs of the
DE and SBDE over the three difficult instances of the radar poly-
phase code design problem. Each algorithm used 2 × 105 function
evaluations in each run. The 6th column in Table 5 indicates the
statistical significance level obtained from a paired Student’s t test
between DE and SBDE. This can be observed that the proposed strat-
egy SBDE improves the performance of DE from mean objective
function value point of view. Therefore, this study recommend to
implant the proposed strategy not only with the basic DE but with
advanced variants of DE also.

7. Conclusion

In this paper, SBDE is proposed, analyzed and validated with the
help of test problems and an engineering optimization problem.
With the introduction of CLF and Dynamic scaling factor, SBDE has
improved the performance as compare to DE, SFLSDE, OBDE and
jDE. Through intensive statistical analysis, improvement is shown
in terms of reliability, efficiency and accuracy. Overall, authors rec-
ommend SBDE as a better candidate in the field of nature inspired

algorithms for function optimization due to its ability to explore
and exploit in a better way.

The future scope of this work is the implementation of the pro-
posed strategy to other nature inspired algorithms.

putat

A

t
g

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

than 20 years of experience to teach the undergraduate
and postgraduate classes. He has published more than 75
journal and conference papers in the area of Information
H. Sharma et al. / Journal of Com

cknowledgements

Second author acknowledges ABV-Indian Institute of Informa-
ion Technology and Management Gwalior for providing research
rant to carry out this work.

eferences

[1] H.A. Abbass, The self-adaptive pareto differential evolution algorithm, in: IEEE
Proceedings of the 2002 Congress on Evolutionary Computation, 2002, CEC’02,
vol. 1, 2002, pp. 831–836.

[2] B. Akay, D. Karaboga, A modified artificial bee colony algorithm for real-
parameter optimization, Information Sciences 192 (2012) 120–142.

[3] M.M. Ali, C. Khompatraporn, Z.B. Zabinsky, A numerical evaluation of several
stochastic algorithms on selected continuous global optimization test prob-
lems, Journal of Global Optimization 31 (4) (2005) 635–672.

[4] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control
parameters in differential evolution: a comparative study on numerical bench-
mark problems, IEEE Transactions on Evolutionary Computation 10 (6) (2006)
646–657.

[5] J. Brest, A. Zamuda, B. Boskovic, M.S. Maucec, V. Zumer, Dynamic optimization
using self-adaptive differential evolution, in: IEEE Congress on Evolutionary
Computation, 2009, CEC’09, 2009, pp. 415–422.

[6] U.K. Chakraborty, Advances Differential Evolution, vol. 143, Springer-Verlag,
Heidelberg, Germany, 2008.

[7] C. Croarkin, P. Tobias, NIST/SEMATECH e-handbook of Statistical Methods,
2010.

[8] S. Das, A. Abraham, U.K. Chakraborty, A. Konar, Differential evolution using
a neighborhood-based mutation operator, IEEE Transactions on Evolutionary
Computation 13 (3) (2009) 526–553.

[9] S. Das, A. Konar, Two-dimensional IIR filter design with modern search heuris-
tics: a comparative study, International Journal of Computational Intelligence
and Applications 6 (3) (2006) 329–355.

10] S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art.,
IEEE Transactions on Evolutionary Computation 99 (2010) 1–28.

11] S. Das, P.N. Suganthan, Problem definitions and evaluation criteria for CEC
2011 competition on testing evolutionary algorithms on real world optimiza-
tion problems, Tech. Report, Jadavpur University, Kolkata, India, and Nangyang
Technological University, Singapore, 2010.

12] M. Thakur, K. Deep, A new crossover operator for real coded genetic algorithms,
Applied Mathematics and Computation 188 (1) (2007) 895–911.

13] A.P. Engelbrecht (Ed.), Computational Intelligence: An Introduction, John Wiley
and Sons, England, 2002.

14] R. Gamperle, S.D. Muller, A. Koumoutsakos, A parameter study for differen-
tial evolution, Advances in Intelligent Systems, Fuzzy Systems, Evolutionary
Computation 10 (2002) 293–298.

15] J.H. Holland, Adaptation in Natural and Artificial systems, vol. 53, University of
Michigan Press, Ann Arbor, 1975.

16] D. Karaboga, B. Akay, A modified artificial bee colony (abc) algorithm for con-
strained optimization problems, Applied Soft Computing 11 (2011) 3021–3031.

17] J. Kennedy, R. Eberhart, Particle swarm optimization, in: IEEE International
Conference on Neural Networks, 1995. Proceedings, volume 4, 1995, pp.
1942–1948.

18] T. Krink, J.S. VesterstrOm, J. Riget, Particle swarm optimisation with spatial
particle extension, in: IEEE Proceedings of the 2002 Congress on Evolutionary
Computation, 2002, CEC’02, vol. 2, 2002, pp. 1474–1479.

19] J. Lampinen, I. Zelinka, On stagnation of the differential evolution algorithm,
in: Proceedings of MENDEL, 2000, pp. 76–83.

20] J. Liu, J. Lampinen, A fuzzy adaptive differential evolution algorithm, Soft Com-
puting – A Fusion of Foundations, Methodologies and Applications 9 (6) (2005)
448–462.

21] P.K. Liu, F.S. Wang, Inverse problems of biological systems using multi-objective
optimization, Journal of the Chinese Institute of Chemical Engineers 39 (5)
(2008) 399–406.

22] E. Mezura-Montes, J. Velázquez-Reyes, C.A. Coello Coello, A comparative study
of differential evolution variants for global optimization, in: Proceedings of the
8th Annual Conference on Genetic and evolutionary computation, ACM, 2006,
pp. 485–492.

23] N. Mladenovic, J. Petrovic, V. Kovacevic-Vujcic, M. Cangalovic, Solving spread
spectrum radar polyphase code design problem by tabu search and vari-
able neighbourhood search, European Journal of Operational Research 151 (2)
(2003) 389–399.

24] F. Neri, V. Tirronen, Scale factor local search in differential evolution, Memetic
Computing 1 (2) (2009) 153–171.

25] N. Noman, H. Iba, Enhancing differential evolution performance with local
search for high dimensional function optimization, in: Proceedings of the
2005 Conference on Genetic and Evolutionary Computation, ACM, 2005, pp.
967–974.
26] M. Omran, A. Salman, A. Engelbrecht, Self-adaptive differential evolution, Com-
putational Intelligence and Security (2005) 192–199.

27] M.G.H. Omran, A.P. Engelbrecht, A. Salman, Differential evolution methods for
unsupervised image classification, in: IEEE Congress on Evolutionary Compu-
tation, 2005, vol. 2, 2005, pp. 966–973.
ional Science 5 (2014) 312–323 323

28] K.V. Price, Differential evolution: a fast and simple numerical optimizer, in:
Fuzzy Information Processing Society, 1996. NAFIPS. 1996 Biennial Conference
of the North American, IEEE, 1996, pp. 524–527.

29] K.V. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical
Approach to Global Optimization, Springer, Berlin, 2005.

30] A.K. Qin, V.L. Huang, P.N. Suganthan, Differential evolution algorithm with
strategy adaptation for global numerical optimization, IEEE Transactions on
Evolutionary Computation 13 (2) (2009) 398–417.

31] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based differential
evolution, IEEE Transactions on Evolutionary Computation 12 (1) (2008) 64–79.

32] T. Rogalsky, S. Kocabiyik, R.W. Derksen, Differential evolution in aerodynamic
optimization, Canadian Aeronautics and Space Journal 46 (4) (2000) 183–190.

33] R. Storn, K. Price, Differential evolution-a simple and efficient adaptive scheme
for global optimization over continuous spaces, Journal of Global Optimization
11 (1997) 341–359.

34] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.P. Chen, A. Auger, S. Tiwari,
Problem definitions and evaluation criteria for the CEC 2005 special session
on real-parameter optimization, KanGAL Report, 2005, May, pp. 341–357.

35] J. Teo, Exploring dynamic self-adaptive populations in differential evolution,
Soft Computing – A Fusion of Foundations, Methodologies and Applications 10
(8) (2006) 673–686.

36] J. Vesterstrom, R. Thomsen, A comparative study of differential evolution, parti-
cle swarm optimization, and evolutionary algorithms on numerical benchmark
problems, in: IEEE Congress on Evolutionary Computation, 2004, CEC2004, vol.
2, 2004, pp. 1980–1987.

37] M. Weber, V. Tirronen, F. Neri, Scale factor inheritance mechanism in dis-
tributed differential evolution, Soft Computing – A Fusion of Foundations,
Methodologies and Applications 14 (11) (2010) 1187–1207.

38] D.F. Williamson, R.A. Parker, J.S. Kendrick, The box plot: a simple visual method
to interpret data, Annals of internal medicine 110 (11) (1989) 916.

39] J.Y. Yan, Q. Ling, D.M. Sun, A differential evolution with simulated annealing
updating method, in: IEEE International Conference on Machine Learning and
Cybernetics, 2006, pp. 2103–2106.

40] D. Zaharie, Control of population diversity and adaptation in differential evo-
lution algorithms, in: Proceedings of MENDEL, 2003, pp. 41–46.

41] D. Zaharie, D. Petcu, Adaptive pareto differential evolution and its paralleliza-
tion, Parallel Processing and Applied Mathematics (2004) 261–268.

42] J. Zhang, A.C. Sanderson, Jade: adaptive differential evolution with optional
external archive, IEEE Transactions on Evolutionary Computation 13 (5) (2009)
945–958.

Harish Sharma received his B.Tech, M.Tech degree
in Computer Engineering from Government Engineer-
ing College, Kota and Rajasthan Technical University,
Rajasthan in 2003 and 2009 respectively. He is currently
a Research Scholar at ABV-Indian Institute of Information
Technology and Management, Gwalior, India.

Dr. Jagdish Chand Bansal is an Assistant Professor at
South Asian University Delhi, India. He has worked as an
Assistant Professor at ABV-Indian Institute of Information
Technology and Management Gwalior. He has obtained
his Ph.D. in Mathematics from IIT Roorkee. He is the edi-
tor in chief of “International Journal of Swarm Intelligence
(IJSI)” published by Inderscience. His primary area of inter-
est is Nature Inspired Optimization Techniques.

Dr. Karm Veer Arya is working as an Associate Profes-
sor at ABV-Indian Institute of Information Technology &
Management, Gwalior, India. He earned Ph.D. degree in
Computer Science & Engineering from Indian Institute of
Technology (I.I.T. Kanpur), Kanpur, India. He has more
Security, image processing, biometrics, wireless ad hoc
networks and soft computing.

	Self Balanced Differential Evolution
	1 Introduction
	2 Brief overview of Differential Evolution algorithm
	2.1 Mutation
	2.2 Crossover
	2.3 Selection

	3 Brief review on basic Improvements in Differential Evolution
	4 Self Balanced Differential Evolution
	4.1 A few drawbacks of DE
	4.2 Motivation for Cognitive Learning Factor and Dynamic Scale Factor

	5 Experimental results and discussion
	5.1 Test problems under consideration
	5.2 Experimental setting
	5.3 Results and discussion
	5.3.1 Statistical analysis

	6 Application of SBDE to Spread Spectrum Radar Polly phase Code Design
	7 Conclusion
	Acknowledgements
	References

