
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tsys20

Download by: [South Asian University] Date: 20 September 2016, At: 03:43

International Journal of Systems Science

ISSN: 0020-7721 (Print) 1464-5319 (Online) Journal homepage: http://www.tandfonline.com/loi/tsys20

Lévy flight artificial bee colony algorithm

Harish Sharma, Jagdish Chand Bansal, K. V. Arya & Xin-She Yang

To cite this article: Harish Sharma, Jagdish Chand Bansal, K. V. Arya & Xin-She Yang (2016)
Lévy flight artificial bee colony algorithm, International Journal of Systems Science, 47:11,
2652-2670, DOI: 10.1080/00207721.2015.1010748

To link to this article:  http://dx.doi.org/10.1080/00207721.2015.1010748

Published online: 17 Mar 2015.

Submit your article to this journal 

Article views: 284

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tsys20
http://www.tandfonline.com/loi/tsys20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207721.2015.1010748
http://dx.doi.org/10.1080/00207721.2015.1010748
http://www.tandfonline.com/action/authorSubmission?journalCode=tsys20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tsys20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00207721.2015.1010748
http://www.tandfonline.com/doi/mlt/10.1080/00207721.2015.1010748
http://crossmark.crossref.org/dialog/?doi=10.1080/00207721.2015.1010748&domain=pdf&date_stamp=2015-03-17
http://crossmark.crossref.org/dialog/?doi=10.1080/00207721.2015.1010748&domain=pdf&date_stamp=2015-03-17


International Journal of Systems Science, 2016
Vol. 47, No. 11, 2652–2670, http://dx.doi.org/10.1080/00207721.2015.1010748

Lévy flight artificial bee colony algorithm

Harish Sharmaa,∗, Jagdish Chand Bansal b, K. V. Aryaa and Xin-She Yangc

aDepartment of Information Communication and Technology, ABV-Indian Institute of Information Technology and Management,
Gwalior, India; bDepartment of Mathematics, South Asian University, New Delhi, India; cSchool of Science and Technology, Middlesex

University, London, UK

(Received 23 June 2012; accepted 21 April 2013)

Artificial bee colony (ABC) optimisation algorithm is a relatively simple and recent population-based probabilistic approach
for global optimisation. The solution search equation of ABC is significantly influenced by a random quantity which helps
in exploration at the cost of exploitation of the search space. In the ABC, there is a high chance to skip the true solution
due to its large step sizes. In order to balance between diversity and convergence in the ABC, a Lévy flight inspired search
strategy is proposed and integrated with ABC. The proposed strategy is named as Lévy Flight ABC (LFABC) has both
the local and global search capability simultaneously and can be achieved by tuning the Lévy flight parameters and thus
automatically tuning the step sizes. In the LFABC, new solutions are generated around the best solution and it helps to
enhance the exploitation capability of ABC. Furthermore, to improve the exploration capability, the numbers of scout bees
are increased. The experiments on 20 test problems of different complexities and five real-world engineering optimisation
problems show that the proposed strategy outperforms the basic ABC and recent variants of ABC, namely, Gbest-guided
ABC, best-so-far ABC and modified ABC in most of the experiments.

Keywords: numerical optimisation; swarm intelligence; memetic algorithm; Lévy flight local search

1. Introduction

Swarm intelligence (SI) has become an emerging and in-
teresting area in the field of nature-inspired computing that
has been used to solve optimisation problems during the
past decade. SI is largely based on the collective behaviour
of social creatures. Swarm-based optimisation algorithms
find solution by collaborative trial and error process. So-
cial creatures utilise their ability of social learning to solve
complex tasks. Peer to peer learning behaviour of social
colonies is the main driving force behind the development of
many efficient swarm-based optimisation algorithms. Re-
searchers have analysed such behaviours and designed al-
gorithms that can be used to solve nonlinear, nonconvex or
discrete optimisation problems. Previous research works
(Dorigo & Di Caro, 1999; Kennedy & Eberhart, 1995;
Price, Storn, & Lampinen, 2005; Vesterstrom & Thom-
sen, 2004) have shown that algorithms based on SI have
great potential to find solutions of real-world optimisa-
tion problems. The algorithms that have emerged in recent
years include ant colony optimisation (ACO) (Dorigo & Di
Caro, 1999), particle swarm optimisation (PSO) (Kennedy
& Eberhart, 1995), bacterial foraging optimisation (BFO)
(Passino, 2002), etc.

Artificial bee colony (ABC) optimisation algorithm in-
troduced by Karaboga (2005) is a recent addition in this
category. This algorithm is inspired by the behaviour of

∗
Corresponding author. Email: harish.sharma0107@gmail.com

honey bees when seeking a quality food source. Like any
other population-based optimisation algorithm, ABC con-
sists of a population of potential solutions. The potential
solutions are food sources of honey bees. The fitness is de-
termined in terms of the quality (nectar amount) of the food
source. ABC is relatively a simple, fast and population-
based stochastic search technique in the field of nature-
inspired algorithms.

There are two fundamental processes which drive the
swarm to update in ABC: the variation process, which en-
ables exploring different areas of the search space, and
the selection process, which ensures the exploitation of the
previous experience. However, it has been shown that the
ABC may occasionally stop proceeding toward the global
optimum even though the population has not converged
to a local optimum (Karaboga & Akay, 2009). It can be
observed that the solution search equation of ABC algo-
rithm is good at exploration but poor at exploitation (Zhu
& Kwong, 2010). Therefore, to maintain the proper balance
between exploration and exploitation behaviour of ABC, it
is highly required to develop a local search (LS) approach
in the basic ABC to exploit the search region. In this paper,
a LS strategy inspired from Lévy flight random walk is pro-
posed and incorporated with ABC. The proposed strategy
is used for finding the global optima of a unimodal and/or
multimodal functions by iteratively reducing the step size

C© 2015 Taylor & Francis

http://dx.doi.org/10.1080/00207721.2015.1010748
mailto:harish.sharma0107@gmail.com


International Journal of Systems Science 2653

in updating process of the candidate solution in the search
space within which the optima is known to exist. Further-
more, to improve the diversity of the algorithm, numbers
of scout bees are increased. The proposed strategy is com-
pared to recent variants of ABC, named, gbest-guided ABC
(GABC) algorithm (Zhu & Kwong, 2010), best-so-far ABC
(BSFABC) (Banharnsakun, Achalakul, & Sirinaovakul,
2011) and modified ABC (MABC) (Akay & Karaboga,
2012).

Rest of the paper is organised as follows. Section 2
describes a brief review on memetic approach. Basic ABC
is explained in Section 3. Lévy flight search strategy (LFSS)
is proposed and described in Section 4. In Section 5, LFSS
is incorporated with ABC. In Section 6, performance of the
proposed strategy is analysed over test problems. In Section
7, five real-world engineering optimisation problems are
solved using proposed strategy. Finally, in Section 8, paper
is concluded.

2. Brief review on memetic approach

In the field of optimisation, memetic computing is an in-
teresting approach to solve the complex problems (Ong,
Lim, & Chen, 2010). Memetic is synonymous to memes
which can be described as ‘instructions for carrying out
behaviour, stored in brains’ (Blackmore, 1999). Memetic
computing is defined as ‘... a paradigm that uses the notion
of memes as units of information encoded in computational
representations for the purpose of problem solving’ (Ong
et al., 2010). Memetic computing can be seen then as a sub-
ject which studies complex structures composed of simple
modules (memes), which interact and evolve adapting to
the problem in order to solve it (Neri, 2012). A good sur-
vey on memetic computing can be found in Ong et al.
(2010), Neri (2012), and Chen, Ong, Lim, and Tan (2011).
Memetic algorithms can be seen as an aspect of the re-
alisation or condition-based subset of memetic computing
(Chen et al., 2011). The term ‘memetic algorithm’ (MA)
was first presented by Moscato (1989) as a population-based
algorithm having local improvement strategy for search of
solution. MAs are hybrid search methods that are based on
the population-based search framework (Eiben & Smith,
2003; Fogel & Michalewicz, 1997) and neighbourhood-
based LS framework (Hoos & Stützle, 2005). Popular ex-
amples of population-based methods include genetic algo-
rithms (GAs) and other evolutionary algorithms, while tabu
search and simulated annealing are two prominent LS repre-
sentatives. The main role of MA in evolutionary computing
is to provide a LS to establish exploitation of the search
space. LS algorithms can be categorised as (Neri, 2012)

• stochastic or deterministic behaviour,
• single solution or multisolution-based search,
• steepest descent or greedy-approach-based

selection.

An LS is thought of as an algorithmic structure con-
verging to the closest local optimum, while the global
search should have the potential of detecting the global
optimum. Therefore, to maintain a proper balance between
exploration and exploitation behaviour of an algorithm, it is
highly required to incorporate an LS approach in the basic
population-based algorithm to exploit the search region.

Generally, population-based search algorithms like GA
(Goldberg & Holland, 1988), evolution strategy (Beyer &
Schwefel, 2002), differential evolution (DE) (Price et al.,
2005), ACO (Dorigo & Di Caro, 1999), PSO (Kennedy,
2006), artificial immune system (Dasgupta, 2006), ABC
(Karaboga, 2005), etc. are stochastic in nature (Yang,
2010b). In recent years, researchers hybridised the LS
procedures with the population-based algorithms to im-
prove the exploitation capability of the population-based
algorithms (Caponio, Neri, & Tirronen, 2009; Ishibuchi,
Yoshida, & Murata, 2003; Mininno & Neri, 2010; Neri
& Tirronen, 2009; Ong, Nair, & Keane, 2003; Valen-
zuela & Smith, 2002; Wang, Wang, & Yang, 2009). Fur-
thermore, MAs have been successfully applied to solve
a wide range of complex optimisation problems like
multiobjective optimisation (Goh, Ong, & Tan, 2009;
Knowles, Corne, & Deb, 2008), continuous optimisation
(Ong & Keane, 2004; Ong et al., 2003), combinatorial
optimisation (Ishibuchi et al., 2003; Repoussis, Taran-
tilis, & Ioannou, 2009; Tang, Mei, & Yao, 2009), bioin-
formatics (Gallo, Carballido, & Ponzoni, 2009; Richer,
Goëffon, & Hao, 2009), flow shop scheduling (Ishibuchi
et al., 2003), scheduling and routing (Brest, Zumer, &
Maucec, 2006), machine learning (Caponio, Cascella, Neri,
Salvatore, & Sumner, 2007; Ishibuchi & Yamamoto, 2004;
Ruiz-Torrubiano & Suárez, 2010), etc.

Ong and Keane (2004) introduced strategies for MAs
control that decide at runtime which LS method is to be
chosen for the local refinement of the solution. Further-
more, they proposed multiple LS procedures during an MA
search in the spirit of Lamarckian learning. Furthermore,
Ong, Lim, Zhu, and Wong (2006) described a classification
of memes adaptation in adaptive MAs on the basis of the
mechanism used and the level of historical knowledge on
the memes employed. Then, the asymptotic convergence
properties of the adaptive MAs are analysed according to
the classification. Nguyen, Ong, and Lim (2009) presented
a novel probabilistic memetic framework that models MAs
as a process involving the decision of embracing the sepa-
rate actions of evolution or individual learning and analysed
the probability of each process in locating the global opti-
mum. Furthermore, the framework balances evolution and
individual learning by governing the learning intensity of
each individual according to the theoretical upper bound
derived while the search progresses.

In past, very few efforts have been done to incor-
porate an LS with ABC. Kang, Li, Ma, and Li (2011)
proposed a Hooke Jeeves ABC (HJABC) algorithm for



2654 H. Sharma et al.

numerical optimisation. In HJABC, authors incorporated
an LS technique which is based on HJ method (Hooke &
Jeeves, 1961) with the basic ABC. Furthermore, Mezura-
Montes and Velez-Koeppel (2010) introduced a variant of
the basic ABC named Elitist ABC. In their work, the au-
thors integrated two LS strategies. The first LS strategy is
used when 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%
and 97% of function evaluations have been completed. The
purpose of this is to improve the best solution achieved
so far by generating a set of 1000 new food sources in its
neighbourhood. The other LS works when 45%, 50%, 55%,
80%, 82%, 84%, 86%, 88%, 90%, 91%,92%, 93%, 94%,
95%, 96%, 97%, 98% and 99% of function evaluations have
been reached.

Fister, Fister, and Zumer (2012) proposed a memetic
ABC for large-scale global optimisation. In their pro-
posed work, ABC is hybridised with two LS heuristics: the
Nelder–Mead algorithm (Rao & Rao, 2009) and the ran-
dom walk with direction exploitation (Rao & Rao, 2009).
The former is attended more towards exploration, while
the latter more towards exploitation of the search space.
The stochastic adaptive rule as specified by Neri (Cotta &
Neri, 2012) is applied for balancing the exploration and
exploitation.

Kang et al. (2011) presented a novel hybrid HJABC
algorithm with intensification search based on the HJ pat-
tern search and the ABC. In the HJABC, two modifications
are proposed, one is the fitness (fiti) calculation function
of basic ABC is changed and calculated by Equation (1)
and another is that an HJ LS is incorporated with the basic
ABC

fiti = 2 − SP + 2(SP − 1)(pi − 1)

NP − 1
, (1)

here pi is the position of the solution in the whole population
after ranking, SP ∈ [1.0, 2.0] is the selection pressure. A
medium value of SP = 1.5 can be a good choice and NP is
the number of solutions.

Furthermore, Kang, Li, and Ma (2011) described a
Rosenbrock ABC (RABC) that combines Rosenbrock’s ro-
tational direction method with ABC for accurate numerical
optimisation. In RABC, exploitation phase is introduced in
the ABC using Rosenbrock’s rotational direction method.

3. Artificial bee colony (ABC) algorithm

The ABC algorithm is relatively recent SI-based algorithm.
The algorithm is inspired by the intelligent food foraging
behaviour of honey bees. In ABC, each solution of the
problem is called food source of honey bees. The fitness is
determined in terms of the quality of the food source. In
ABC, honey bees are classified into three groups, namely
employed bees, onlooker bees and scout bees. The numbers
of employed bees are equal to the onlooker bees. The em-

ployed bees are the bees which searches the food source and
gather the information about the quality of the food source.
Onlooker bees which stay in the hive search the food sources
on the basis of the information gathered by the employed
bees. The scout bee searches new food sources randomly in
places of the abandoned food sources. Similar to the other
population-based algorithms, ABC solution search process
is an iterative process. After, initialisation of the ABC pa-
rameters and swarm, it requires the repetitive iterations of
the three phases, namely employed bee phase, onlooker bee
phase and scout bee phase. Each of the phases is described
as follows.

3.1. Initialisation of the swarm

The parameters for the ABC are the number of food sources,
the number of trials after which a food source is considered
to be abandoned and the termination criteria. In the ba-
sic ABC, the numbers of food sources are equal to the
employed bees or onlooker bees. Initially, ABC generates
a uniformly distributed population of SN solutions where
each solution xi (i = 1, 2, . . . , SN) is a D-dimensional vec-
tor. Here D is the number of variables in the optimisation
problem and xi represent the ith food source in the swarm.
Each food source is generated as follows:

xij = xminj + rand[0, 1](xmaxj − xminj ), (2)

here xminj and xmaxj are bounds of xi in jth direction and
rand[0, 1] is a uniformly distributed random number in the
range [0, 1].

3.2. Employed bee phase

In the employed bee phase, employed bees modify the cur-
rent solution (food source) based on the information of
individual experience and the fitness value of the new solu-
tion. If the fitness value of the new solution is higher than
that of the old solution, the bee updates her position with
the new one and discards the old one. The position update
equation for ith candidate in this phase is

vij = xij + φij (xij − xkj ), (3)

here k ∈ {1, 2, . . . , SN} and j ∈ {1, 2, . . . , D} are randomly
chosen indices. k must be different from i. φij is a random
number between [−1, 1].

3.3. Onlooker bees phase

After completion of the employed bees phase, the onlooker
bees phase starts. In onlooker bees phase, all the employed
bees share the new fitness information (nectar) of the new
solutions (food sources) and their position information
with the onlooker bees in the hive. Onlooker bees anal-
yse the available information and select a solution with a



International Journal of Systems Science 2655

probability probi related to its fitness. The probability probi

may be calculated using following expression (there may
be some other but must be a function of fitness):

probi = fitnessi∑SN
i=1 fitnessi

, (4)

here fitnessi is the fitness value of the solution i. As in
the case of the employed bee, it produces a modification
on the position in its memory and checks the fitness of
the candidate source. If the fitness is higher than that of
the previous one, the bee memorises the new position and
forgets the old one.

3.4. Scout bees phase

If the position of a food source is not updated up to predeter-
mined number of cycles, then the food source is assumed to
be abandoned and scout bees phase starts. In this phase, the
bee associated with the abandoned food source becomes
scout bee and the food source is replaced by a randomly
chosen food source within the search space. In ABC, pre-
determined number of cycles is a crucial control parameter
which is called limit for abandonment.

Assume that the abandoned source is xi. The scout bee
replaces this food source by a randomly chosen food source
which is generated as follows:

xij = xminj + rand[0, 1](xmaxj − xminj ),

for j ∈ {1, 2, . . . , D}, (5)

where xminj and xmaxj are bounds of xi in jth direction.

3.5. Main steps of the ABC algorithm

Based on the above explanation, it is clear that there are
three control parameters in ABC search process: the num-
ber of food sources SN (equal to number of onlooker or
employed bees), the value of limit and the maximum num-
ber of iterations. The pseudo-code of the ABC is shown in
Algorithm 1. (Karaboga & Akay, 2009).

Algorithm 1. Artificial bee colony algorithm
Initialise the parameters;
while Termination criteria is not satisfied do

Step 1: employed bee phase for generating new food
sources.
Step 2: onlooker bees phase for updating the food
sources depending on their nectar amounts.
Step 3: scout bee phase for discovering the new food
sources in place of abandoned food sources.
Step 4: memorise the best food source found so far.

end while
Output the best solution found so far.

4. Lévy flight inspired search strategy

LS algorithms can be seen as a population-based stochas-
tic algorithms, where main task is to exploit the avail-
able knowledge about a problem. Generally, in LS algo-
rithms, some or all individuals in the population are im-
proved by some LS method. LS algorithms are basically
designed to incorporate a LS strategy between iterations
of a population-based search algorithm. In this way, the
population-based global search algorithms are hybridised
with LS algorithms and the hybridised algorithms named
as MAs. In MAs, the global search capability of the main al-
gorithm explore the search space, trying to identify the most
promising search space regions while the LS part scrutinises
the surroundings of some initial solution, exploiting it in
this way.

In this paper, we are proposing an LS strategy inspired
by Lévy flight random walk and named LFSS. In past,
the flight behaviour of many animals and insects has been
analysed in various studies which exhibit the important
properties of Lévy flights (Brown, Liebovitch, & Glendon,
2007; Pavlyukevich, 2007; Reynolds & Frye, 2007; Yang
& Deb, 2010). Furthermore, this flight behaviour has been
applied to optimisation and search algorithms, and the re-
ported results show its importance in the field of solution
search algorithms (Pavlyukevich, 2007; Reynolds & Frye,
2007; Shlesinger, 2006; Shlesinger, Zaslavsky, & Frisch,
1995). Recently, Yang proposed a new metaheuristic algo-
rithm by combining Lévy flights with the search strategy
via the firefly algorithm (Yang, 2010a).

The Lévy flight is a random walk in which the steps are
defined in terms of the step lengths, which have a certain
probability distribution. The random step lengths are drawn
from a Lévy distribution which is defined in Equation (6):

L(s) ∼ |s|−1−β, where β (0 < β ≤ 2)

is an index and s is the step length. (6)

In this paper, a Mantegna algorithm (Yang, 2010b) for
a symmetric Lévy stable distribution is used for generating
random step sizes. Here, ‘symmetric’ means that the step
size may be positive or negative.

In Mantega’s algorithm, the step length s can be calcu-
lated by

s = u

|v|1/β
, (7)

where u and v are drawn from normal distributions. That
is

u ∼ N (0, σu
2), v ∼ N (0, σv

2), (8)



2656 H. Sharma et al.

where

σu =
{

�(1 + β)sin(πβ/2)

β�[(1 + β)/2]2(β−1)/2

}1/β

, σv = 1. (9)

This distribution (for s) obeys the expected Lévy distribu-
tion for |s| ≥ |s0|, where s0 is the smallest step length (Yang,
2010b). Here �(.) is the Gamma function and calculated as
follows:

�(1 + β) =
∫ ∞

0
tβe−t dt. (10)

In a special case when β is an integer, then we have �(1 +
β) = β!.

In the proposed strategy, the step sizes are generated
using Lévy distribution to exploit the search area and cal-
culated as follows:

step size(t) = 0.001 × s(t) × SLC, (11)

here t is the iteration counter for LS strategy, s(t) is calcu-
lated using Lévy distribution as shown in Equation (7) and
SLC is the social learning component of the global search
algorithm.

In Lévy flights, the step sizes are too aggressive, that is,
they may generate new solutions often outside the domain
or on boundary. Since, the LS algorithms can be seen as
population-based stochastic algorithms, where main task
is to exploit the available knowledge about a problem and
steps sizes play an important role in exploiting the identified
region. Therefore, 0.001 multiplier is used in Equation (11)
to reduce the step size. The solution update equation of an
ith individual based on the proposed LS strategy is given in
Equation (12):

x ′
ij (t + 1) = xij (t) + step size(t) × U (0, 1), (12)

here xij is the individual which is going to modify its po-
sition, U(0, 1) is a uniformly distributed random number
between 0 and 1 and step_size(t) × U(0, 1) is the actual
random walks or flights drawn from Lévy distribution.

The pseudo-code of the proposed LFSS is shown in
Algorithm 2. In Algorithm 2, ε determines the termination
of LS.

5. Lévy flight artificial bee colony

Exploration and exploitation are the two important char-
acteristics of the population-based optimisation algorithms
such as GA (Goldberg & Holland, 1988), PSO (Kennedy &
Eberhart, 1995), DE (Storn & Price, 1997), BFO (Passino,
2002) and so on. In these optimisation algorithms, the ex-
ploration refers to the ability to investigate the various un-
known regions in the solution space to discover the global

Algorithm 2 Lévy flight search strategy
Input optimisation function Minf (x) and β;
Select an individual xi in the swarm which is going to
modify its position;
Initialise t = 1 and σv = 1;
Compute σu using Equation (9);
while (t < ε) do

Compute step size using Equation (11);
Generate a new solution x ′

i using Equation (12);
Calculate f (x ′

i);
if f (x ′

i) < f (xi) then
xi = x ′

i ;
end if
t = t + 1;

end while

optimum, while the exploitation refers to the ability to apply
the knowledge of the previous good solutions to find bet-
ter solutions. In practice, the exploration and exploitation
contradict with each other, and in order to achieve better
optimisation performance, the two abilities should be well
balanced. Karaboga and Akay (2009) (Karaboga & Akay,
2009) tested different variants of ABC for global optimisa-
tion and found that the ABC shows poor performance and
remains inefficient in exploring the search space. In ABC,
any potential solution updates itself using the information
provided by a randomly selected potential solution within
the current swarm. In this process, a step size which is a
linear combination of a random number φij ∈ [− 1, 1],
current solution and a randomly selected solution are used.
Now the quality of the updated solution highly depends
upon this step size. If the step size is too large, which may
occur if the difference of current solution and randomly se-
lected solution is large with high absolute value of φij, then
updated solution can surpass the true solution and if this
step size is too small, then the convergence rate of ABC
may significantly decrease. A proper balance of this step
size can balance the exploration and exploitation capability
of the ABC simultaneously. But, since this step size con-
sists of random component, so the balance cannot be done
manually.

The exploitation capability can be enhanced by incorpo-
ration of an LS algorithm with the ABC algorithm. There-
fore, in this paper, to balance the diversity and conver-
gence ability of ABC, the following four modifications are
proposed.

(1) To enhance the exploitation capability of ABC,
LFSS (described in Section 4) is incorporated with
the basic ABC. In this way, the situation of skip-
ping true solution can be avoided while maintaining
the speed of convergence. The Lévy flight search



International Journal of Systems Science 2657

algorithm, in case of large step sizes, can search
within the area that is jumped by the basic ABC.

(2) In the basic ABC, the food sources are updated, as
shown in equation (3). Inspired by PSO (Kennedy &
Eberhart, 1995) and GABC (Zhu & Kwong, 2010)
algorithms which, in order to improve the exploita-
tion, take advantage of the information of the global
best solution to guide the search of candidate so-
lutions, the solution search equation described by
Equation (3) is modified as follows (Zhu & Kwong,
2010):

vij = xij + φij (xij − xkj ) + ψij (xbestj − xij ),

here, ψ ij is a uniform random number in [0, C],
where C is a non-negative constant. For detailed
description refer to Zhu and Kwong (2010).

(3) In the basic ABC, food sources are randomly ini-
tialised by the scout bees in the static range (solu-
tion search space). Therefore, there is a chance to
jump outside of the already shrunken search space
and the knowledge of the current reduced space
(converged swarm) would be lost. Hence, in this
paper, the scout bees randomly initialise the aban-
doned food sources by using current interval in
the swarm which is, as the search does progress,
increasingly smaller than the corresponding initial
range. Now the following equation is used to update
a food source xi in the scout bee phase:

xij = aj + rand[0, 1](bj − aj ),

here, [aj, bj] is the shrunken search interval in the
jth direction.

(4) To enhance the exploration capability, the num-
bers of scout bees are increased. This modifica-
tion avoids situation of stagnation of the algorithm.
Therefore, in this paper, all the bees who crosses the
limit boundary are treated as the scout bees. How-
ever, only if this modification has been done in basic
ABC, then it may make ABC relatively less stable
as the scout bees do not use the previous knowledge
for generating new food solutions and hence pre-
vious learning has been lost. But in the proposed
strategy, first modification give more chance to best
solution to update itself. Second modification uses
the experience of global best solution and hence
improves the convergence and third modification
retains the acquired experience of the swarm about
the search area, hence helps in exploitation. There-
fore, in the first three modifications, better solutions
get more chance in search process and minimise
the threat of less stability while taking advantage
of fourth modification in exploration of the search
space.

0 10 20 30 40 50 60 70 80 90 100
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

Local search iterations

S
te

p
 s

iz
e

Figure 1. Size of Lévy flights in two dimension search space for
f11.

As described in the proposed first modification, a Lévy
flight random walk inspired LS is incorporated with the
basic ABC to improve the exploitation capability. In the
proposed LS strategy, step size is calculated as shown in
Equation (13)

step size(t) = 0.001 × s(t) × (xbestj (t) − xkj (t)), (13)

here, symbols have their usual meanings, SLC = (xbestj −
xkj) is the social learning component of the ABC algorithm
in which xbest is the best solution in the current swarm
and xk is the randomly selected solution within swarm and
xk 
= xbest. The solution update equation of the best indi-
vidual within the current swarm, based on the proposed LS
strategy, is given in Equation (14):

x ′
bestj (t + 1) = xbestj (t) + step size(t) × U (0, 1). (14)

The proposed strategy in ABC is hereby, named as
Lévy Flight ABC (LFABC). In LFSS, only the best par-
ticle of the current swarm updates itself in its neighbour-
hood. Figures 1, 2 and 3 show an example of the Lévy
flight random walk used to update an individual in two
dimension search space for Goldstein–Price function (f11),

3.8 3.85 3.9 3.95
0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

x1

x2 Starting Point

End Point

Figure 2. Best solution movement in the swarm during LFSS in
two dimension search space for f11.



2658 H. Sharma et al.

2.8 3 3.2 3.4 3.6 3.8 4
0.45

0.5

0.55

0.6

0.65

0.7

x1

x2

Local Search

Figure 3. Best solution movement using LFABC, in two dimen-
sion search space for f11.

refer Table 1. The pseudo-code of the proposed LFSS with
ABC is shown in Algorithm 3.

Algorithm 3 Lévy flight search strategy with ABC
Input optimisation function Minf (x) and β;
Select the best solution xbest in the swarm;
Initialise t = 1 and σv = 1;
Compute σu using Equation (9);
while (t < ε) do

Compute step size using Equation (11);
Generate a new solution x ′

best using Algorithm 4;
Calculate f (x ′

best);
if f (x ′

best) < f (xbest) then
xbest = x ′

best;
end if
t = t + 1;

end while

Algorithm 4 New solution generation
Input the best solution xbest and s;
for j = 1 to D do

if U (0, 1) > pr then
x ′

bestj = xbestj + 0.001 × s × (xbestj − xkj ) ×
U (0, 1);

else
x ′

bestj = xbestj ;
end if

end for
Return x ′

best

In Algorithms 3 and 4, ε is the termination criteria of the
proposed LS. pr is a perturbation rate (a number between 0
and 1) which controls the amount of perturbation in the best
solution, U(0, 1) is a uniform distributed random number
between 0 and 1, D is the dimension of the problem and xk

is a randomly selected solution within swarm. See Section
6.2 for details of these parameter settings.

The proposed LFABC consists of four phases: employed
bee phase, onlooker bee phase, scout bee phase and LFSS.
The pseudo-code of the LFABC algorithm is shown in Al-
gorithm 5.

Algorithm 5 Lévy Flight ABC
Initialise the parameters;
while Termination criteria do

Step 1: employed bee phase for generating new food
sources.
Step 2: onlooker bees phase for updating the food
sources depending on their nectar amounts.
Step 3: scout bee phase for discovering the new food
sources in place of abandoned food sources.
Step 4: apply Lévy Flight search strategy (LFSS) phase
using Algorithm 3.

end while
Print best solution.

6. Experimental results and discussion

6.1. Test problems under consideration

In order to analyse the performance of LFABC, 20 different
global optimisation problems (f1 to f20) are selected (listed
in Table 1). These are continuous optimisation problems and
have different degrees of complexity and multimodality.
Test problems f1 to f5 and f11 to f20 are taken from Ali,
Khompatraporn, and Zabinsky (2005) and test problems
f6 to f10 are taken from Suganthan et al. (2005) with the
associated offset values.

6.2. Experimental setting

To prove the efficiency of LFABC, it is compared with ABC
and recent variants of ABC named GABC (Zhu & Kwong,
2010), BSFABC (Banharnsakun et al., 2011) and MABC
(Akay & Karaboga, 2012). To test LFABC, ABC, GABC,
BSFABC and MABC over considered problems, following
experimental setting is adopted.

• Colony size NP = 50 (Diwold, Aderhold, Scheidler,
& Middendorf, 2011; El-Abd, 2011).

• φij = rand[ − 1, 1] .
• Number of food sources SN = NP/2.
• limit = D × SN (Akay & Karaboga, 2012; Karaboga

& Basturk, 2007).
• The stopping criteria is either maximum number of

function evaluations (which is set to be 200,000) is
reached or the acceptable error (mentioned in Table 1)
has been achieved.

• The number of simulations/run =100.
• C = 1.5 (Zhu & Kwong, 2010),



International Journal of Systems Science 2659

Table 1. Test problems.

Test problem Objective function Search range
Optimum
value D Acceptable error

Neumaier 3
problem (NF3)

f1(x) = ∑D
i=1 (xi − 1)2 −∑D

i=2 xixi−1

[ − D2, D2] f (�0) =
−(D × (D +
4)(D − 1))/6.0

10 1.0E − 01

Beale function f2(x) =
[1.5 − x1(1 − x2)]2 +
[2.25 − x1(1 − x2

2 )]2 +
[2.625 − x1(1 − x3

2 )]2

[−4.5, 4.5] f(3, 0.5) = 0 2 1.0E − 05

Colville
function

f3(x) = 100[x2 − x2
1 ]2 +

(1 − x1)2 + 90(x4 − x2
3 )2 +

(1 − x3)2 + 10.1[(x2 −
1)2 + (x4 − 1)2] +
19.8(x2 − 1)(x4 − 1)

[−10, 10] f (�1) = 0 4 1.0E − 05

Branins′s
function

f4(x) =
a(x2 − bx2

1 + cx1 − d)2 +
e(1 − f ) cos x1 + e

x1 ∈ [ − 5, 10], x2

∈ [0, 15]
f( − π , 12.275) =
0.3979

2 1.0E − 05

Kowalik
function

f5(x) =∑11
i=1

[
ai − x1(b2

i +bi x2)

b2
i +bi x3+x4

]2
[−5, 5] f(0.1928, 0.1908,

0.1231, 0.1357)
= 3.07E − 04

4 1.0E − 05

Shifted
Rosenbrock

f6(x) = ∑D−1
i=1 (100(z2

i −
zi+1)2 + (zi − 1)2) + fbias,
z = x − o + 1, x = [x1, x2,
. . . , xD], o = [o1, o2, . . . ,
oD]

[−100, 100] f(o) = fbias = 390 10 1.0E − 01

Shifted sphere f7(x) = ∑D
i=1 z2

i + fbias, z
= x − o, x = [x1, x2, . . . ,
xD], o = [o1, o2, . . . , oD]

[−100, 100] f(o) = fbias =
−450

10 1.0E − 05

Shifted
Rastrigin

f8(x) =∑D
i=1(z2

i − 10 cos(2πzi) +
10) + fbias,z = (x−o),
x=(x1,x2,...,xD),
o=(o1,o2,...,oD)

[−5, 5] f(o) = fbias =
−330

10 1.0E − 02

Shifted
Griewank

f9(x) = ∑D
i=1

z2
i

4000 −∏D
i=1 cos( zi√

i
) + 1 + fbias, z

= (x − o), x = [x1, x2, . . . ,
xD], o = [o1, o2, . . . , oD]

[−600, 600] f(o) = fbias =
−180

10 1.0E − 05

Shifted Ackley f10(x) =
−20 exp(−0.2

√
1
D

∑D
i=1 z2

i ) −
exp( 1

D

∑D
i=1 cos(2πzi)) +

20 + e + fbias, z = (x − o),
x = (x1, x2, . . . , xD), o =
(o1, o2, . . . , oD)

[−32, 32] f(o) = fbias =
−140

10 1.0E − 05

Goldstein–Price f11(x) =
(1 + (x1 + x2 + 1)2(19 −
14x1 + 3x2

1 − 14x2 +
6x1x2 + 3x2

2 ))(30 + (2x1 −
3x2)2(18 − 32x1 + 12x2

1 +
48x2 − 36x1x2 + 27x2

2 ))

[−2, 2] f(0, −1) = 3 2 1.0E − 14

Six-hump camel
back

f12(x) =
(4 − 2.1x2

1 + x4
1/3)x2

1 +
x1x2 + (−4 + 4x2

2 )x2
2

[−5, 5] f( − 0.0898,
0.7126) =
−1.0316

2 1.0E − 05

Easom’s
function

f13(x) =
−cosx1cosx2e

((−(x1−π )2−(x2−π )2))

[−10, 10] f(π , π ) = −1 2 1.0E − 13

Dekkers and
Aarts

f14(x) =
105x2

1 + x2
2 − (x2

1 + x2
2 )2 +

10−5(x2
1 + x2

2 )4

[−20, 20] f(0, 15) = f(0,
−15) = −24777

2 5.0E − 01

(continued)



2660 H. Sharma et al.

Table 1. (Continued)

Test problem Objective function Search range
Optimum
value D Acceptable error

Hosaki problem f15 =
(1 − 8x1 + 7x2

1 − 7/3x3
1 +

1/4x4
1 )x2

2 exp(−x2)

x1 ∈ [0, 5], x2 ∈ [0,
6]

−2.3458 2 1.0E − 6

McCormick f16(x) =
sin(x1 + x2) + (x1 −
x2)2 − 3

2 x1 + 5
2 x2 + 1

x1 ∈ [ − 1.5, 4], x2

∈ [ − 3, 3]
f( − 0.547,
−1.547)=−1.9133

30 1.0E − 04

Meyer and Roth f17(x) =∑5
i=1

(
x1x3ti

1+x1 ti+x2vi
− yi

)2
[−10, 10] f(3.13, 15.16,

0.78) = 0.4E −
04

3 1.0E − 03

Shubert f18(x) = −∑5
i=1 i cos((i +

1)x1 + 1)
∑5

i=1 i cos((i +
1)x2 + 1)

[−10, 10] f(7.0835, 4.8580)
= −186.7309

2 1.0E − 05

Sinusoidal f19(x) =
−[A

∏n
i=1 sin(xi − z) +∏n

i=1 sin(B(xi − z))], A =
2.5, B = 5, z = 30

[0, 180] f ( �90 + z) =
−(A + 1)

10 1.0E − 02

Moved axis
parallel
hyper-ellipsoid

f20(x) = ∑D
i=1 5ix2

i [−5.12, 5.12] f(x) = 0; x(i) =
5i, i = 1: D

30 1.0E − 15

5 10 15 20 25
1958

1960

1962

1964

1966

1968

1970

1972

1974

Local search termination criteria (Maximum number of iterations)

S
u

cc
es

s 
R

at
e

Figure 4. Effect of LFSS termination criteria (ε) on SR.

• The value of β = 2 is to be set based on the empirical
experiments.

• To set termination criteria of LFSS, the performance
of LFABC is measured for considered test problems
on different values of ε and results are analysed in
Figure 4. It is clear from Figure 4 that ε = 15 gives
better results. Therefore, termination criteria is set to
be ε = 15.

• Parameter settings for the algorithms GABC, BS-
FABC and MABC are similar to their original re-
search papers.

• In order to investigate the effect of the parameter
pr, described by Algorithm 4 on the performance of
LFABC, its sensitivity with respect to different val-
ues of pr in the range [0.1, 1] is examined in Figure 5.
It can be observed from Figure 5 that the test prob-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1750

1800

1850

1900

1950

2000

pr

S
u

cc
es

s 
R

at
e

Figure 5. Effect of parameter pr on SR.

lems are very sensitive towards pr and value 0.2 gives
comparatively better results. Therefore, pr = 0.2 is
selected for the experiments in this paper.

6.3. Results comparison

Numerical results with experimental setting of Subsection
6.2 are given in Table 2. In Table 2, standard deviation
(SD), mean error (ME), average function evaluations (AFE)
and success rate (SR) are reported. Table 2 shows that
most of the time LFABC outperforms in terms of relia-
bility, efficiency and accuracy as compared to the basic
ABC, GABC, BSFABC and MABC. Some more intensive
analyses based on acceleration rate (AR) (Rahnamayan,
Tizhoosh, & Salama, 2008), performance indices (PI) and



International Journal of Systems Science 2661

Table 2. Comparison of the results of test problems.

Test
function Algorithm SD ME AFE SR

f1 ABC 8.36E−01 9.66E−01 197,813.12 4
LFABC 6.84E−02 1.07E−01 39,650.81 95
GABC 1.58E+00 1.16E+00 191,063.41 11

BSFABC 5.19E+00 4.18E+00 200,026.1 0
MABC 6.65E−03 9.91E−02 127,828.88 98

f2 ABC 1.55E−06 8.74E−06 16,402.52 100
LFABC 2.84E−06 7.52E−06 3746.11 100
GABC 3.02E−06 5.28E−06 9553.01 100

BSFABC 2.31E−05 1.26E−05 43,260.44 96
MABC 2.76E−06 5.12E−06 9974.54 100

f3 ABC 1.15E−01 1.62E−01 194,852.27 4
LFABC 1.29E−03 9.19E−03 65,107.64 100
GABC 1.39E−02 1.72E−02 161,149.56 42

BSFABC 3.47E−02 2.38E−02 156,594.82 42
MABC 1.05E−02 1.42E−02 98,919.26 82

f4 ABC 5.98E−06 5.13E−06 2020.3 100
LFABC 7.12E−06 6.34E−06 14,867.54 93
GABC 6.50E−06 5.56E−06 17,019.79 92

BSFABC 6.92E−06 6.03E−06 33,561.7 84
MABC 6.95E−06 5.87E−06 24,764.92 89

f5 ABC 7.33E−05 1.70E−04 181,870.15 21
LFABC 1.79E−04 1.37E−04 61,386.26 95
GABC 2.69E−05 8.42E−05 81,335.87 95

BSFABC 6.27E−05 1.30E−04 140,290.92 59
MABC 7.05E−05 2.08E−04 148,042.35 58

f6 ABC 1.61E+00 9.45E−01 173,849.01 23
LFABC 7.64E−01 2.53E−01 66,632.89 95
GABC 1.16E−01 9.64E−02 110,835.85 93

BSFABC 4.21E+00 2.64E+00 183,435.91 17
MABC 9.14E−01 6.63E−01 128,771.75 54

f7 ABC 2.39E−06 7.25E−06 9014.5 100
LFABC 2.36E−06 7.27E−06 6203.32 100
GABC 2.24E−06 6.86E−06 5545 100

BSFABC 2.32E−06 7.09E−06 18,064.5 100
MABC 1.66E−06 7.72E−06 8671 100

f8 ABC 9.61E+00 8.68E+01 200,011.85 0
LFABC 2.07E+01 1.30E+02 200,026.27 0
GABC 9.87E+00 8.46E+01 200,008.55 0

BSFABC 1.76E+01 1.20E+02 200,036.17 0
MABC 1.13E+01 8.26E+01 200,014.08 0

f9 ABC 2.54E−03 8.42E−04 69,495.97 90
LFABC 7.35E−04 8.01E−05 40,382.88 100
GABC 2.97E−06 5.48E−06 40,280.38 100

BSFABC 5.83E−03 4.02E−03 105,148.43 64
MABC 1.03E−03 1.54E−04 78,393.47 98

f10 ABC 1.84E−06 7.86E−06 16,615.5 100
LFABC 1.34E−06 8.66E−06 10,934.63 100
GABC 1.28E−06 8.55E−06 9376.5 100

BSFABC 1.74E−06 8.21E−06 31,209 100
MABC 1.00E−06 8.85E−06 14,268.06 100

f11 ABC 6.06E−06 1.18E−06 107,740.64 61
LFABC 4.40E−15 5.22E−15 4468.6 100
GABC 4.33E−15 4.63E−15 4017.73 100

BSFABC 4.89E−15 6.67E−15 13,388.95 100
MABC 4.31E−15 5.04E−15 12,893.26 100

(continued)



2662 H. Sharma et al.

Table 2. (Continued).

Test
function Algorithm SD ME AFE SR

f12 ABC 1.07E−05 1.24E−05 982.52 100
LFABC 1.51E−05 1.33E−05 70,344.57 65
GABC 1.44E−05 1.69E−05 100,300.68 50

BSFABC 1.39E−05 1.86E−05 118,329.65 41
MABC 1.51E−05 1.65E−05 98,785 51

f13 ABC 5.27E−05 1.98E−05 197,359.89 4
LFABC 3.28E−14 5.60E−14 14,065.55 100
GABC 3.48E−12 3.97E−13 51,043.52 99

BSFABC 3.23E−14 4.83E−14 4680.58 100
MABC 2.51E−03 1.29E−03 200,025.34 0

f14 ABC 4.95E−03 4.89E−01 1424.57 100
LFABC 5.68E−03 4.91E−01 687.8 100
GABC 5.02E−03 4.89E−01 778 100

BSFABC 5.34E−03 4.91E−01 2775.72 100
MABC 5.85E−03 4.91E−01 2326.44 100

f15 ABC 5.91E−06 5.50E−06 656.5 100
LFABC 6.16E−06 5.45E−06 12,378.82 94
GABC 6.47E−06 5.81E−06 18,342.24 91

BSFABC 6.53E−06 6.58E−06 38,545.38 81
MABC 6.35E−06 5.53E−06 16,954.62 92

f16 ABC 7.00E−06 8.89E−05 1244.56 100
LFABC 6.96E−06 9.04E−05 587.42 100
GABC 6.00E−06 8.74E−05 612.5 100

BSFABC 6.57E−06 8.79E−05 989.56 100
MABC 7.01E−06 8.86E−05 1711.38 100

f17 ABC 2.84E−06 1.95E−03 31,280.19 100
LFABC 3.10E−06 1.95E−03 3418.07 100
GABC 3.18E−06 1.95E−03 5088.67 100

BSFABC 2.99E−06 1.95E−03 19,162.9 100
MABC 2.80E−06 1.95E−03 8565.87 100

f18 ABC 5.89E−06 5.19E−06 4572.09 100
LFABC 5.83E−06 5.16E−06 1619.34 100
GABC 5.71E−06 5.02E−06 2467.47 100

BSFABC 5.17E−06 4.37E−06 9081.59 100
MABC 5.98E−06 5.21E−06 27,782.89 100

f19 ABC 1.89E−03 7.64E−03 51,845.51 100
LFABC 1.67E−03 8.35E−03 22,030.31 100
GABC 2.13E−03 7.70E−03 47,747.58 100

BSFABC 2.05E−03 7.75E−03 64,507.74 100
MABC 8.94E−02 6.21E−01 200,033.69 0

f20 ABC 1.47E−16 8.20E−16 59,699 100
LFABC 1.09E−16 8.75E−16 44,903 100
GABC 9.98E−17 8.66E−16 48,738.5 100

BSFABC 2.37E−16 7.17E−16 71,124 100
MABC hline 7.11E−17 9.03E−16 59,554 100

boxplots have been carried out for results of ABC and its
variants.

LFABC, ABC, GABC, BSFABC and MABC are com-
pared through SR, ME and AFE in Table 2. First SR is
compared for all these algorithms and if it is not possible to
distinguish the algorithms based on SR, then comparison is
made on the basis of AFE. ME is used for comparison if it
is not possible on the basis of SR and AFE both. Outcome
of this comparison is summarised in Table 3. In Table 3,

‘+’ indicates that the LFABC is better than the considered
algorithms and ‘−’ indicates that the algorithm is not bet-
ter or the difference is very small. The last row of Table 3
establishes the superiority of LFABC over ABC, GABC,
BSFABC and MABC.

Furthermore, we compare the convergence speed of the
considered algorithms by measuring the AFEs. Smaller
AFEs means higher convergence speed. In order to min-
imise the effect of the stochastic nature of the algorithms,



International Journal of Systems Science 2663

Table 3. Summary of Table 2 outcome.

LFABC vs LFABC vs LFABC vs LFABC vs
Function ABC GABC BSFABC MABC

f1 + + + −
f2 + + + +
f3 + + + +
f4 − + + +
f5 + + + +
f6 + + + +
f7 + − + +
f8 − − − −
f9 + − + +

f10 + − + +
f11 + − + +
f12 − + + +
f13 + + − +
f14 + + + +
f15 − + + +
f16 + + + +
f17 + + + +
f18 + + + +
f19 + + + +
f20 + + + +
Total number 16 15 18 18
of + sign

the reported function evaluations for each test problem are
the average over 100 runs. In order to compare convergence
speeds, we use the which is defined as follows, based on
the AFEs for the two algorithms ALGO and LFABC:

AR = AFEALGO

AFELFABC
, (15)

ABC LFABC GABC BSFABC MABC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
5

A
ve

ra
g

e 
N

u
m

b
er

 o
f 

F
u

n
ct

io
n

 E
va

lu
at

io
n

s

Figure 6. Boxplots graphs for AFE.

where ALGO ∈ {ABC, GABC, BSFABC, MABC} and
AR > 1 means LFABC is faster. In order to investigate the
AR of the proposed algorithm compared to the basic ABC
and its variants, results of Table 2 are analysed and the value
of AR is calculated using Equation (15). Table 4 shows a
clear comparison between LFABC and ABC, LFABC and
GABC, LFABC and BSFABC, and LFABC and MABC in
terms of AR. It is clear from Table 4 that convergence speed
of LFABC is faster among all the considered algorithms.

For the purpose of comparison in terms of consolidated
performance, boxplot analyses have been carried out for
all the considered algorithms. The empirical distribution of
data is efficiently represented graphically by the boxplot
analysis tool (Williamson, Parker, & Kendrick, 1989). The
boxplots for ABC, LFABC, GABC, BSFABC and MABC
are shown in Figure 6. It is clear from this figure that LFABC

Table 4. Acceleration rate (AR) of LFABC compare to the basic ABC, GABC, BSFABC and MABC.

Test problems ABC GABC BSFABC MABC

f1 4.988879672 4.818650867 5.044691395 3.22386554
f2 4.378547346 2.550114652 11.54809656 2.662639378
f3 2.992771202 2.475125193 2.405168119 1.519318777
f4 0.135886636 1.144761675 2.257380844 1.665703943
f5 2.962717553 1.32498494 2.285379823 2.411652868
f6 2.609057029 1.663380502 2.752933424 1.932555379
f7 1.453173462 0.893876182 2.912069666 1.397799888
f8 0.999927909 0.999911412 1.000049493 0.999939058
f9 1.720926541 0.997461796 2.603787298 1.941255057

f10 1.519530153 0.857505009 2.854143213 1.304850736
f11 24.11060287 0.899102627 2.996229244 2.885301884
f12 0.013967247 1.425848221 1.682143341 1.404301711
f13 14.0314378 3.628974338 0.332769071 14.22093981
f14 2.071198023 1.131142774 4.035649898 3.382436755
f15 0.053034134 1.481743817 3.113816987 1.369647511
f16 2.118688502 1.042695176 1.684586837 2.91338395
f17 9.151418783 1.48875535 5.606350952 2.506054586
f18 2.823428063 1.523750417 5.608204577 17.15692196
f19 2.353371786 2.167358517 2.928135827 9.079930786
f20 1.329510278 1.085417455 1.58394762 1.326281095



2664 H. Sharma et al.

is better than the considered algorithms as interquartile
range and median are comparatively low.

Furthermore, to compare the considered algorithms, by
giving weighted importance to the SR, the ME and the
average number of function evaluations, PI are calculated
(Bansal & Sharma, 2012). The values of PI for the ABC,
LFABC, GABC, BSFABC and MABC are calculated by
using following equations:

PI = 1

Np

Np∑
i=1

(k1α
i
1 + k2α

i
2 + k3α

i
3),

where αi
1 = Sri

Tri ; αi
2 =

{
Mfi

Afi , if Sri > 0.

0, if Sri = 0.
; and αi

3 = Moi

Aoi ,

i = 1, 2, . . . , Np ,

• Sri = successful simulations/runs of ith problem.
• Tri = total simulations of ith problem.
• Mfi = minimum of average number of function eval-

uations used for obtaining the required solution of ith
problem.

• Afi = average number of function evaluations used
for obtaining the required solution of ith problem.

• Moi = minimum of ME obtained for the ith problem.
• Aoi = ME obtained by an algorithm for the ith prob-

lem.
• Np = total number of optimisation problems evalu-

ated.

The weights assigned to the SR, the average number of
function evaluations and the ME are represented by k1, k2

and k3, respectively, where k1 + k2 + k3 = 1 and 0 ≤ k1,
k2, k3 ≤ 1. To calculate the PIs, equal weights are assigned
to two variables while weight of the remaining variables
vary from 0 to 1 as given in Bansal and Sharma (2012).
Following are the resultant cases:

(1) k1 = W, k2 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

(2) k2 = W, k1 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

(3) k3 = W, k1 = k2 = 1−W
2 , 0 ≤ W ≤ 1

The graphs corresponding to each of the cases (1), (2)
and (3) for ABC, LFABC, GABC, BSFABC and MABC
are shown in Figure 7(a)–(c), respectively. In these figures,
the weights k1, k2 and k3 are represented by horizontal axis,
while the PI is represented by the vertical axis.

In case (1), average number of function evaluations
and the ME are given equal weights. PIs of the considered
algorithms are superimposed in Figure 7(a) for comparison
of the performance. It is observed that PI of LFABC are
higher than the considered algorithms. In case (2), equal
weights are assigned to the SR and ME and in case (3),
equal weights are assigned to the SR and average number

of function evaluations. It is clear from Figure 7(b) and 7(c)
that the algorithms perform same as in case (1).

7. Applications of LFABC to engineering
optimisation problems

To see the robustness of the proposed strategy, five well-
known engineering optimisation problems, namely, pres-
sure vessel (confinement method) (Wang, Gao, & Ovaska,
2008), Lennard-Jones (Clerc, 2012), parameter estimation
for frequency-modulated (FM) sound waves (Das & Sug-
anthan, 2010), compression spring (Onwubolu & Babu,
2004; Sandgren, 1990) and welded beam design optimi-
sation problem (Mahdavi, Fesanghary, & Damangir, 2007;
Ragsdell & Phillips, 1976) are solved. The considered en-
gineering optimisation problems are described as follows.

7.1. Pressure vessel design

The pressure vessel design is to minimise the total cost
of the material, forming and welding of a cylindrical ves-
sel (Wang et al., 2008). There are four design variables
involved: x1, (Ts, shell thickness), x2 (Th, spherical head
thickness), x3 ( R, radius of cylindrical shell) and x4 ( L,
shell length). The mathematical formulation of this typical
constrained optimisation problem is as follows:

E1( �X) = 0.6224x1x3x4 + 1.7781x2x
2
3

+ 3.1611x2
1x4 + 19.84x2

1x3,

subject to

g1( �X) = 0.0193x3 − x1,

g2( �X) = 0.00954x3 − x2,

g3( �X) = 750 × 1728 − πx2
3

(
x4 + 4

3
x3

)
.

The search boundaries for the variables are 1.125 ≤ x1 ≤
12.5, 0.625 ≤ x2 ≤ 12.5, 1.0E − 8 ≤ x3 ≤ 240 and 1.0E − 8
≤ x4 ≤ 240. The known global optimum solution isf(1.125,
0.625, 55.8592, 57.7315) = 7197.729 (Wang et al., 2008).
A algorithm is said to be successful if it finds error less than
1.0E − 5.

7.2. Lennard-Jones

It is a potential energy minimisation problem of a set of
N atoms. The position Xi of the atom i has three coordi-
nates, and therefore, the dimension of the search space is
3N. In practice, the coordinates of a point x are the con-
catenation of the ones of the Xi. In short, we can write



International Journal of Systems Science 2665

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k
1
)

P
er

fo
rm

an
ce

 In
d

ex

 

 
ABC
LFABC
GABC
BSFABC
MABC

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k
2
)

P
er

fo
rm

an
ce

 In
d

ex

 

 
ABC
LFABC
GABC
BSFABC
MABC

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k
3
)

P
er

fo
rm

an
ce

 In
d

ex

 

 
ABC
LFABC
GABC
BSFABC
MABC

(c)

Figure 7. Performance index for test problems: (a) for case (1), (b) for case (2) and (c) for case (3).

X = (X1, X2, . . . , XN), and we have then

E2( �X) =
N−1∑
i=1

N∑
j=i+1

(
1

‖Xi − Xj‖2α
− 1

‖Xi − Xj‖α

)
.

In this study, N = 5, α = 6 and the search space is [−2, 2]
(Clerc, 2012).

7.3. Frequency-modulated (FM) sound wave

Frequency-modulated (FM) sound wave synthesis has an
important role in several modern music systems. The
parameter optimisation of an FM synthesiser is a six-
dimensional optimisation problem where the vector to
be optimised is �X = {a1, w1, a2, w2, a3, w3} of the sound
wave given in Equation (16). The problem is to generate
a sound (1) similar to target (2). This problem is a highly
complex multimodal one having strong epistasis, with min-
imum value f ( �Xsol) = 0. This problem has been tackled
using GAs in Refs [1,2]. The expressions for the estimated
sound and the target sound waves are given as

y(t) = a1sin(w1tθ + a2sin(w2tθ + a3sin(w3tθ ))), (16)

y0(t) = (1.0)sin((5.0)tθ − (1.5)sin((4.8)tθ

+ (2.0)sin((4.9)tθ ))), (17)

respectively, where θ = 2π /100 and the parameters are
defined in the range [−6.4, 6.35]. The fitness function is the
summation of square errors between the estimated wave (1)
and the target wave (2) as follows:

E3( �X) =
100∑
i=0

(y(t) − y0(t))2.

Acceptable error for this problem is 1.0E − 05, i.e. an
algorithm is considered successful if it finds the error less
than the acceptable error in a given number of generations.

7.4. Compression spring

The considered fourth engineering optimisation application
is compression spring problem (Onwubolu & Babu, 2004;



2666 H. Sharma et al.

Table 5. Comparison of the results of test problems.

Test
function Algorithm SD ME AFE SR

E1 ABC 1.21E+01 1.78E+01 200,022.32 0
LFABC 1.62E+00 1.03E+00 199,313.43 3
GABC 4.04E+00 6.04E+00 200,023.52 0

BSFABC 2.23E+01 2.73E+01 200,038.25 0
MABC 8.64E+00 1.47E+01 200,025.66 0

E2 ABC 1.32E−04 8.65E−04 73,667.4 99
LFABC 1.16E−04 9.13E−04 29,437.45 98
GABC 7.03E−04 1.15E−03 112,503.53 73

BSFABC 3.54E−04 9.74E−04 126,621.9 81
MABC 1.65E−01 4.49E−01 140,965.5 25

E3 ABC 5.23E+00 5.99E+00 200,033.41 0
LFABC 5.22E+00 3.99E+00 160,861.01 45
GABC 4.86E+00 3.69E+00 191,679.01 11

BSFABC 4.86E+00 1.02E+01 200,031.93 0
MABC 3.05E+00 2.81E+00 200,018.79 0

E4 ABC 1.17E−02 1.36E−02 187,602.32 10
LFABC 1.27E−03 1.37E−03 147,049.12 24
GABC 9.50E−03 8.64E−03 189,543.56 11

BSFABC 3.08E−03 3.02E−02 200,031.13 0
MABC 6.59E−03 5.28E−03 181,705.01 15

E5 ABC 8.75E−02 2.52E−01 200,017.84 1
LFABC 5.07E−03 9.38E−02 38,992.28 100
GABC 9.22E−03 9.91E−02 116,903.66 68

BSFABC 5.12E−03 9.46E−02 53,885.62 98
MABC 4.91E−03 9.36E−02 32,049.47 100

Sandgren, 1990). This problem minimises the weight of a
compression spring, subject to constraints of minimum de-
flection, shear stress, surge frequency and limits on outside
diameter and on design variables. There are three design
variables: the wire diameter x1, the mean coil diameter x2

and the number of active coils x3. This is a simplified version
of a more difficult problem. The mathematical formulation
of this problem is

x1 ∈ {1, . . . , 70} granularity 1,

x2 ∈ [0.6, 3],

x3 ∈ [0.207, 0.5] granularity 0.001,

and four constraints

g1 = 8Cf Fmaxx2

πx3
3

− S ≤ 0,

g2 = lf − lmax ≤ 0,

g3 = σp − σpm ≤ 0,

g4 = σw − Fmax

− FpK ≤ 0,

with

Cf = 1 + 0.75
x3

x2 − x3
+ 0.615

x3

x2
,

Fmax = 1000,

S = 189, 000,

lf = Fmax

K
+ 1.05(x1 + 2)x3,

lmax = 14,

σp = Fp

K
,

σpm = 6,

Fp = 300,

K = 11.5 × 106 x4
3

8x1x
3
2

,

σw = 1.25,

and the function to be minimised is

E4( �X) = π2 x2x
2
3 (x1 + 2)

4
.

The best known solution is f(7, 1.386599591, 0.292) =
2.6254. Acceptable error for this problem is 1.0E − 04.

7.5. Welded beam design optimisation problem

The problem is to design a welded beam for minimum cost,
subject to some constraints (Mahdavi et al., 2007; Ragsdell
& Phillips, 1976). The objective is to find the minimum
fabricating cost of the welded beam subject to constraints
on shear stress τ , bending stress σ , buckling load Pc, end



International Journal of Systems Science 2667

Table 6. Summary of Table 5 outcome.

LFABC vs LFABC vs LFABC vs LFABC vs
Function ABC GABC BSFABC MABC

E1 + + + +
E2 − + + +
E3 + + + +
E4 + + + +
E5 + + + −

deflection δ and side constraint. There are four design vari-
ables: x1, x2, x3 and x4. The mathematical formulation of
the objective function is described as follows:

E5(�x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2),

subject to

g1(�x) = τ (�x) − τmax ≤ 0,

g2(�x) = σ (�x) − σmax ≤ 0,

g3(�x) = x1 − x4 ≤ 0,

g4(�x) = δ(�x) − δmax ≤ 0,

g5(�x) = P − Pc(�x) ≤ 0,

0.125 ≤ x1 ≤ 5, 0.1 ≤ x2, x3 ≤ 10 and 0.1 ≤ x4 ≤ 5,

where

τ (�x) =
√

τ ′2 − τ ′τ ′′ x2

R
+ τ ′′2,

τ ′ = P√
2x1x2

, τ ′′ = MR

J
,M = P

(
L + x2

2

)
,

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k
1
)

P
er

fo
rm

an
ce

 In
d

ex

 

 
ABC
LFABC
GABC
BSFABC
MABC

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k
2
)

P
er

fo
rm

an
ce

 In
d

ex

 

 
ABC
LFABC
GABC
BSFABC
MABC

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k
3
)

P
er

fo
rm

an
ce

 In
d

ex

 

 
ABC
LFABC
GABC
BSFABC
MABC

(c)

Figure 8. Performance index for engineering optimisation problems: (a) for case (1), (b) for case (2) and (c) for case (3).



2668 H. Sharma et al.

R =
√

x2
2

4
+

(
x1 + x3

2

)2

,

J = 2

/ (√
2x1x2

[
x2

2

4
+

(
x1 + x3

2

)2
])

,

σ (�x) = 6PL

x4x3
2
, δ(�x) = 6PL3

Ex4x3
2
,

Pc(�x) = 4.013Ex3x4
3

6L2

(
1 − x3

2L

√
E

4G

)
,

P = 6000 lb, L = 14 in., δmax = 0.25 in.,

σmax = 30, 000 psi,

τmax = 13600 psi, E = 30 × 106 psi, G = 12 × 106 psi.

The best known solution is (0.205730, 3.470489, 9.036624,
0.205729), which gives the function value 1.724852. Ac-
ceptable error for this problem is 1.0E − 01.

7.6. Experimental results

To solve the constraint optimisation problems (E1, E4 and
E5), a penalty function approach is used in the experiments.
In this approach, the search is modified by converting the
original problem into an unconstrained optimisation prob-
lem by adding a penalty term in case of constraints violation
as shown below

f (x) = f (x) + β,

where f(x) is the original function value and β is the penalty
term which is set to 103.

Table 5 shows the experimental results of the considered
algorithms on the engineering optimisation problems. It is
clear from Table 5 that the LFABC strategy performs better
than the considered algorithms.

Furthermore, the algorithms are compared through SR,
ME and AFE. On the basis of results shown in Table 5,
the results of comparison are given in Table 6. It is clear
from Table 6 that the performance of LFABC is better or
comparable to the considered algorithms.

The algorithms are also compared on the basis of PI.
The PI are calculated same as described in Section 6.3
and the results for each case are shown in Figure 8. It
is observed from Figure 8 that the inclusion of the LFSS
approach enhances the performance of ABC compared to
the basic ABC and its recent variants.

8. Conclusion

ABC can be efficient, but it has a drawback that may lead
to incorrect optimal solutions. In this paper, a Lévy flight
random walk inspired search strategy is proposed and in-
corporated with ABC. This Lévy flight based strategy can

carry out both local and global search simultaneously with
a focus on more efficient LS. Therefore, it can be more ef-
ficient than any standard Gaussian random walks. The pro-
posed modified ABC is named as LFABC. In the proposed
LS, new solutions are generated in the neighbourhood of
the best solution depending upon a newly introduced pa-
rameter, perturbation rate. Furthermore, the proposed al-
gorithm has been extensively compared with other recent
variants of ABC, namely, GABC, BSFABC and MABC and
with the help of experiments over test problems and engi-
neering optimisation problems. Our simulation results have
shown that the LFABC can outperform other algorithms
considered in our tests in terms of reliability, efficiency and
accuracy.

Disclosure statement
No potential conflict of interest was reported by the authors.

Notes on contributors
Harish Sharma is working as an associate
professor at Rajasthan Technical Univer-
sity. He has more than 10 year of teach-
ing experience. In past, he has served as
an assistant professor at Government En-
gineering College Jhalawar and Vardhman
Mahaveer Open University, Kota. He re-
ceived his BTech, MTech degree in Com-
puter Engg. from Government Engineering

College, Kota and Rajasthan Technical University, Rajasthan in
2003 and 2009, respectively. Dr Sharma has obtained his PhD
in information communication and technology from ABV-Indian
Institute of Information Technology and Management, Gwalior,
India. His area of research is nature inspired algorithms and soft
computing.

Jagdish Chand Bansal is an assistant pro-
fessor at South Asian University New Delhi.
Dr Bansal has obtained his PhD in math-
ematics from IIT Roorkee. Before joining
SAU New Delhi, he has worked as an as-
sistant professor at ABV-Indian Institute of
Information Technology and Management
Gwalior and BITS Pilani. He is the editor
in chief of “International Journal of Swarm

Intelligence (IJSI)” published by Inderscience. His primary area
of interest is nature inspired optimisation techniques. He has pub-
lished more than 40 research papers in various international jour-
nals/conferences.

Karm Veer Arya is working as an asso-
ciate professor at ABV-Indian Institute of
Information Technology and Management,
Gwalior, India. He earned PhD degree in
computer science and engineering from In-
dian Institute of Technology (IIT Kanpur),
Kanpur, India. He has more than 20 years
of experience to teach the undergraduate
and postgraduate classes. He has published

more than 75 journal and conference papers in the area of in-
formation security, image processing, biometrics, wireless ad hoc
networks and soft computing.



International Journal of Systems Science 2669

Xin-She Yang obtained his DPhil in ap-
plied mathematics from the University of
Oxford. He then worked at Cambridge Uni-
versity and National Physical Laboratory
(UK) as a senior research scientist. Now he
is a research professor/reader at Middlesex
University London, an adjunct professor at
Reykjavik University (Iceland) and a guest
professor at Xi’an Polytechnic University

(China). He is the IEEE CIS Chair for the task force on busi-
ness intelligence and knowledge management, Director of Inter-
national Consortium for Optimisation and Modelling in Science
and Industry (iCOMSI), and the editor-in-chief of International
Journal of Mathematical Modelling and Numerical Optimisation
(IJMMNO).

ORCID
Jagdish Chand Bansal http://orcid.org/0000-0001-9029-
5129

References
Akay, B., & Karaboga, D. (2012). A modified artificial bee colony

algorithm for real-parameter optimization. Information
Sciences, 192, 120–142.

Ali, M., Khompatraporn, C., & Zabinsky, Z. (2005). A numerical
evaluation of several stochastic algorithms on selected con-
tinuous global optimization test problems. Journal of Global
Optimization, 31(4), 635–672.

Banharnsakun, A., Achalakul, T., & Sirinaovakul, B. (2011). The
best-so-far selection in artificial bee colony algorithm. Ap-
plied Soft Computing, 11(2), 2888–2901.

Bansal, J.C., & Sharma, H. (2012). Cognitive learning in dif-
ferential evolution and its application to model order reduc-
tion problem for single-input single-output systems. Memetic
Computing, 4(3), 209–229.

Beyer, H., & Schwefel, H. (2002). Evolution strategies – a com-
prehensive introduction. Natural computing, Springer, 1(1),
3–52.

Blackmore, S. (1999). The meme machine. Oxford: Oxford Uni-
versity Press.

Brest, J., Zumer, V., & Maucec, M.S. (2006, July). Self-adaptive
differential evolution algorithm in constrained real-parameter
optimization. In Evolutionary Computation, 2006. CEC 2006.
IEEE Congress on (pp. 215–222). IEEE.

Brown, C., Liebovitch, L., & Glendon, R. (2007). Lévy flights
in Dobe Ju/’hoansi foraging patterns. Human Ecology, 35(1),
129–138.

Caponio, A., Cascella, G., Neri, F., Salvatore, N., & Sumner, M.
(2007). A fast adaptive memetic algorithm for online and
offline control design of PMSM drives. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, 37(1),
28–41.

Caponio, A., Neri, F., & Tirronen, V. (2009). Super-fit control
adaptation in memetic differential evolution frameworks. Soft
Computing – A Fusion of Foundations, Methodologies and
Applications, 13(8), 811–831.

Chen, X., Ong, Y., Lim, M., & Tan, K. (2011). A multi-facet survey
on memetic computation. IEEE Transactions on Evolutionary
Computation, 15(5), 591–607.

Clerc, M. (2012). List based PSO for real problems. Retrieved
from http://clerc.maurice.free.fr/pso /ListBasedPSO /List-
BasedPSO28PSOsite29.pdf

Cotta, C., & Neri, F. (2012). Memetic algorithms in continuous
optimization. Handbook of Memetic Algorithms, 1, 121–134.

Das, S., & Suganthan, P. (2010). Problem definitions and evalua-
tion criteria for CEC 2011 competition on testing evolution-
ary algorithms on real world optimization problems (Tech.
Rep.). Kolkata: Jadavpur University and Singapore: Nanyang
Technological University.

Dasgupta, D. (2006). Advances in artificial immune systems.
IEEE Computational Intelligence Magazine, 1(4), 40–49.

Diwold, K., Aderhold, A., Scheidler, A., & Middendorf, M.
(2011). Performance evaluation of artificial bee colony op-
timization and new selection schemes. Memetic Computing,
3(3), 149–162.

Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: A
new meta-heuristic. In Proceedings of the 1999 Congress on
Evolutionary Computation, 1999. CEC 99 (Vol. 2, pp. 28–29).
Washington, DC: IEEE.

Eiben, A., & Smith, J. (2003). Introduction to evolutionary com-
puting. Berlin: Springer Verlag.

El-Abd, M. (2011). Performance assessment of foraging algo-
rithms vs. evolutionary algorithms. Information Sciences,
182(1), 243–263.

Fister, I., Fister, I., Jr., & Zumer, J.B. (2012). Memetic artificial
bee colony algorithm for large-scale global optimization. In
Evolutionary Computation (CEC), 2012 IEEE Congress on
(pp. 1–8). IEEE.

Fogel, D., & Michalewicz, Z. (1997). Handbook of evolutionary
computation. Abingdon: Taylor & Francis.

Gallo, C., Carballido, J., & Ponzoni, I. (2009). Bihea: A hybrid
evolutionary approach for microarray biclustering. Advances
in Bioinformatics and Computational Biology, 1, 36–47.

Goh, C., Ong, Y., & Tan, K. (2009). Multi-objective memetic
algorithms (Vol. 171). Berlin: Springer Verlag.

Goldberg, D.E., & Holland, J.H. (1988). Genetic algorithms and
machine learning. Machine Learning, 3(2), 95–99.

Hooke, R., & Jeeves, T. (1961). ‘Direct search’ solution of nu-
merical and statistical problems. Journal of the ACM (JACM),
8(2), 212–229.

Hoos, H., & Stützle, T. (2005). Stochastic local search: Founda-
tions and applications. Burlington, MA: Morgan Kaufmann.

Ishibuchi, H., & Yamamoto, T. (2004). Fuzzy rule selection by
multi-objective genetic local search algorithms and rule eval-
uation measures in data mining. Fuzzy Sets and Systems,
141(1), 59–88.

Ishibuchi, H., Yoshida, T., & Murata, T. (2003). Balance between
genetic search and local search in memetic algorithms for
multiobjective permutation flowshop scheduling. IEEE Trans-
actions on Evolutionary Computation, 7(2), 204–223.

Kang, F., Li, J., & Ma, Z. (2011). Rosenbrock artificial bee colony
algorithm for accurate global optimization of numerical func-
tions. Information Sciences, 181(16), 3508–3531.

Kang, F., Li, J., Ma, Z., & Li, H. (2011). Artificial bee colony al-
gorithm with local search for numerical optimization. Journal
of Software, 6(3), 490–497.

Karaboga, D. (2005). An idea based on honey bee swarm for
numerical optimization (Tech. Rep. TR06). Erciyes: Erciyes
Univ. Press.

Karaboga, D., & Akay, B. (2009). A comparative study of artifi-
cial bee colony algorithm. Applied Mathematics and Compu-
tation, 214(1), 108–132.

Karaboga, D., & Basturk, B. (2007). Artificial bee colony (ABC)
optimization algorithm for solving constrained optimization
problems. Foundations of Fuzzy Logic and Soft Computing,
1, 789–798.

Kennedy, J. (2006). Swarm intelligence. Handbook of Nature-
Inspired and Innovative Computing, 2, 187–219.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization.
In IEEE International Conference on Neural Networks, 1995:

http://orcid.org/0000-0001-9029-5129


2670 H. Sharma et al.

Proceedings (Vol. 4, pp. 1942–1948). University of Western
Australia, Perth, Western Australia: IEEE.

Knowles, J., Corne, D., & Deb, K. (2008). Multiobjective problem
solving from nature: From concepts to applications (Natural
computing series). Berlin: Springer.

Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An im-
proved harmony search algorithm for solving optimization
problems. Applied Mathematics and Computation, 188(2),
1567–1579.

Mezura-Montes, E., & Velez-Koeppel, R. (2010). Elitist artifi-
cial bee colony for constrained real-parameter optimization.
In 2010 Congress on Evolutionary Computation (CEC) (pp.
2068–2075). Barcelona: IEEE Service Center.

Mininno, E., & Neri, F. (2010). A memetic differential evolution
approach in noisy optimization. Memetic Computing, 2(2),
111–135.

Moscato, P. (1989). On evolution, search, optimization, genetic
algorithms and martial arts: Towards memetic algorithms.
Caltech concurrent computation program (C3P Report No.
826). Pasadena, CA: California Institute of Technology.

Neri, F., Cotta, C., & Moscato, P. (Eds.). (2012). Handbook of
memetic algorithms: Studies in computational intelligence
(Vol. 379). Berlin: Springer.

Neri, F., & Tirronen, V. (2009). Scale factor local search in differ-
ential evolution. Memetic Computing Journal, 1(2), 153–171.

Nguyen, Q., Ong, Y., & Lim, M. (2009). A probabilistic memetic
framework. IEEE Transactions on Evolutionary Computation,
13(3), 604–623.

Ong, Y., & Keane, A. (2004). Meta-Lamarckian learning in
memetic algorithms. IEEE Transactions on Evolutionary
Computation, 8(2), 99–110.

Ong, Y., Lim, M., & Chen, X. (2010). Research frontier: Memetic
computation – past, present & future. IEEE Computational
Intelligence Magazine, 5(2), 24–31.

Ong, Y., Lim, M., Zhu, N., & Wong, K. (2006). Classification
of adaptive memetic algorithms: A comparative study. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cy-
bernetics, 36(1), 141–152.

Ong, Y., Nair, P., & Keane, A. (2003). Evolutionary optimization
of computationally expensive problems via surrogate model-
ing. AIAA journal, 41(4), 687–696.

Onwubolu, G., & Babu, B. (2004). New optimization techniques
in engineering. Berlin: Springer Verlag.

Passino, K. (2002). Biomimicry of bacterial foraging for dis-
tributed optimization and control. Control Systems Magazine,
IEEE, 22(3), 52–67.

Pavlyukevich, I. (2007). Lévy flights, non-local search and sim-
ulated annealing. Journal of Computational Physics, 226(2),
1830–1844.

Price, K., Storn, R., & Lampinen, J. (2005). Differential evolution:
a practical approach to global optimization. Berlin: Springer
Verlag.

Ragsdell, K., & Phillips, D. (1976). Optimal design of a class
of welded structures using geometric programming. ASME
Journal of Engineering for Industries, 98(3), 1021–1025.

Rahnamayan, S., Tizhoosh, H., & Salama, M. (2008). Opposition-
based differential evolution. IEEE Transactions on Evolution-
ary Computation, 12(1), 64–79.

Rao, S., & Rao, S. (2009). Engineering optimization: Theory and
practice. Manhattan, NY: Wiley.

Repoussis, P., Tarantilis, C., & Ioannou, G. (2009). Arc-guided
evolutionary algorithm for the vehicle routing problem with
time windows. IEEE Transactions on Evolutionary Compu-
tation, 13(3), 624–647.

Reynolds, A., & Frye, M. (2007). Free-flight odor tracking in
Drosophila is consistent with an optimal intermittent scale-
free search. PLoS One, 2(4), e354.

Richer, J., Goëffon, A., & Hao, J. (2009). A memetic algorithm for
phylogenetic reconstruction with maximum parsimony. Evo-
lutionary Computation, Machine Learning and Data Mining
in Bioinformatics, 1, 164–175.

Ruiz-Torrubiano, R., & Suárez, A. (2010). Hybrid approaches and
dimensionality reduction for portfolio selection with cardinal-
ity constraints. IEEE Computational Intelligence Magazine,
5(2), 92–107.

Sandgren, E. (1990). Nonlinear integer and discrete programming
in mechanical design optimization. Journal of Mechanical
Design, 112, 223.

Shlesinger, M. (2006). Mathematical physics: Search research.
Nature, 443(7109), 281–282.

Shlesinger, M.F., Zaslavsky, G.M., & Frisch, U. (1995). Lévy
flights and related topics in physics. In Proceedings of the
International Workshop Held at Nice, Levy flights and related
topics in Physics, France, 27–30 June 1994 (Vol. 450, pp.
87–102). Springer.

Storn, R., & Price, K. (1997). Differential evolution – a simple
and efficient adaptive scheme for global optimization over
continuous spaces. Journal of Global Optimization, 11, 341–
359.

Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger,
A., & Tiwari, S. (2005). Problem definitions and evaluation
criteria for the CEC 2005 special session on real-parameter
optimization. In CEC 2005 (pp. 1–50). Kanpur: Kanpur Ge-
netic Algorithms Laboratory (KanGAL), Indian Institute of
Technology.

Tang, K., Mei, Y., & Yao, X. (2009). Memetic algorithm with
extended neighborhood search for capacitated arc routing
problems. IEEE Transactions on Evolutionary Computation,
13(5), 1151–1166.

Valenzuela, J., & Smith, A. (2002). A seeded memetic algorithm
for large unit commitment problems. Journal of Heuristics,
8(2), 173–195.

Vesterstrom, J., & Thomsen, R. (2004). A comparative study
of differential evolution, particle swarm optimization, and
evolutionary algorithms on numerical benchmark problems.
In Congress on Evolutionary Computation, 2004. CEC2004
(Vol. 2, pp. 1980–1987). Portland: IEEE.

Wang, H., Wang, D., & Yang, S. (2009). A memetic algorithm
with adaptive hill climbing strategy for dynamic optimiza-
tion problems. Soft Computing – A Fusion of Foundations,
Methodologies and Applications, 13(8), 763–780.

Wang, X., Gao, X., & Ovaska, S. (2008). A simulated annealing-
based immune optimization method. In Proceedings of the
International and Interdisciplinary Conference on Adap-
tive Knowledge Representation and Reasoning (pp. 41–47).
Espoo: Porvoo.

Williamson, D., Parker, R., & Kendrick, J. (1989). The box plot:
A simple visual method to interpret data. Annals of internal
medicine, 110(11), 916–918.

Yang, X. (2010a). Firefly algorithm, Levy flights and global op-
timization. Research and Development in Intelligent Systems
XXVI, 1, 209–218.

Yang, X. (2010b). Nature-inspired metaheuristic algorithms (2nd
ed.). Luniver Press. United Kingdom, Springer-Verlag Lon-
don Ltd, London, Conference held in Granada, Spain.

Yang, X.S., & Deb, S. (2010). Eagle strategy using Lévy walk
and firefly algorithms for stochastic optimization. In Na-
ture Inspired Cooperative Strategies for Optimization (NICSO
2010): Studies in Computational Intelligence (Vol. 284,
pp. 101–111). Berlin: Springer Verlag.

Zhu, G., & Kwong, S. (2010). Gbest-guided artificial bee colony
algorithm for numerical function optimization. Applied Math-
ematics and Computation, 217(7), 3166–3173.


	Abstract
	1. Introduction
	2. Brief review on memetic approach
	3. Artificial bee colony (ABC)
algorithm
	3.1. Initialisation of the swarm
	3.2. Employed bee phase
	3.3. Onlooker bees phase
	3.4. Scout bees phase
	3.5. Main steps of the ABC algorithm

	4. Lévy flight inspired search strategy
	5. Lévy flight artificial bee colony
	6. Experimental results and discussion
	6.1. Test problems under consideration
	6.2. Experimental setting
	6.3. Results comparison

	7. Applications of LFABC to engineering optimisation problems
	7.1. Pressure vessel design
	7.2. Lennard-Jones
	7.3. Frequency-modulated (FM)
sound wave
	7.4. Compression spring
	7.5. Welded beam design optimisation problem
	7.6. Experimental results

	8. Conclusion
	Disclosure statement
	References



