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Abstract Biogeography-based optimization (BBO) is an emerging meta-heuristic algorithm. Due to
ease of implementation and very few user-dependent parameters, BBO gained popularity among re-
searchers. The performance of BBO is highly dependent on its two operators, migration and mutation.
The performance of BBO can significantly be improved by either modifying these operators or by in-
troducing a new operator into it. This paper proposes new operator, namely disruption operator to
improve the capability of exploration and exploitation in BBO. The proposed DisruptBBO (DBBO)
has been tested on well-known benchmark problems and compared with various versions of BBO and
other state-of-the-art metaheuristics. The experimental results and statistical analyses confirm the su-
perior performance of the proposed DBBO in solving various nonlinear complex optimization problems.
The proposed algorithm has also been applied to the optimal power flow optimization problem from
the electrical engineering background.

Keywords Disruption operator · Migration operator · Optimal power flow · Biogeography-based
optimization

1 Introduction

Population-based meta-heuristic algorithms have gained popularity in recent years. Requirements of
techniques for more accurate and efficient solutions to real life optimization problems motivate re-
searchers to develop new meta-heuristic algorithms. Biogeography-based optimization (BBO) algorithm
is a recent addition to the area of a meta-heuristic algorithm. It is inspired by the migration phenomenon
of species among various habitats. It was introduced by Dan Simon in 2008 [25].
BBO gained attention of researchers because of few parameters to tune and relatively higher efficiency
it achieves. There have been many improvement in the original BBO algorithm by implementing im-
proved migration and mutation in original BBO algorithm. In [15], Ma et al. proposed Blended BBO
(B-BBO). In B-BBO, migration operator combines the features of both immigrating and emigrating
islands and is employed to handle constrained optimization problems. In [26], Simon et al. proposed
a Linearized BBO (LBBO) for improving solution of non-separable problems. LBBO combined with
periodic re-initialization and local search operator and developed an algorithm for global optimization
in continuous search space. In [14], Lohakare et al. proposed a memetic BBO named as aBBOmDE.
In aBBOmDE, the performance of BBO is accelerated with the modified DE (differential evolution),
so that the convergence speed is enhanced and exploitation is achieved by using original migration
operator. In [7], Feng et al. proposed an Improved BBO (IBBO) by integrating a new improved mi-
gration operator and introducing some other implementations. Here the improved migration operator
simultaneously adopts more information from emigrating habitat as well as from two other randomly
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selected habitats. That maintains population diversity and preserves exploitation ability. In [29], Xiong
et al. propose an enhanced BBO variant, called Polyphyletic BBO (POLBBO) by using polyphyletic
migration operator that formally utilizes as many as four individuals informations to construct a new
solution vector that is expected to increase the population diversity. In [28], Wang et al. introduced the
krill herd migration operator in BBO algorithm to exploit the search region thoroughly. In [3], Bansal
proposed a modified version of BBO with modified blended crossover and polynomial mutation (BBO-
MBLX-PM). The performance of BBO-MBLX-PM algorithm shown to be more successful compared
to the original BBO algorithm. In [10], Guo et al. introduce a backtracking BBO (BBBO) algorithm.
BBBO algorithm uses external population information for generating new population and improving
the exploration ability of algorithm. The most recent survey on BBO can found in [9], Guo et al. and
[8], Garg et al.
Although, various proposed variants have shown improvements in the performance of original BBO.
This observation leads to explore BBO for further improvements. This has been tried in this paper
by incorporating disruption operator in BBO. This paper implements disruption operator in BBO for
better exploration and exploitation search capabilities of the algorithm.
Disruption operator is defined in section 3. Disruption operator has already been successfully applied in
Gravitational search algorithm (GSA) [21] and Bare-bones Particle Swarm Optimization [13]. In [21],
Sarafrazi et al. proposed Improved gravitational search algorithm (IGSA). In IGSA, the new operator
(disruption operator) is able to improve the ability of GSA to explore further and exploit the search re-
gion. Here searching starts with exploration and as the time passes it switches to exploitation. Recently
the same operator is applied in bare-bones particle swarm optimization by Liu et al. [13] and proposed
the disruption bare-bones particle swarm optimization (DBPSO) algorithm to overcome lack diversity
and premature convergence. The proposed DBPSO is able to enhance the diversity along with speed
up convergence rate of Bare-bones particle swarm optimization (BPSO). In DBPSO, the ith position
of particle is changed if the ratio of distance between ith particle and the particle whose fitness is just
better than i to the distance between ith particle and best particle is less than the specific threshold.
The paper also establishes the proposed DisruptBBO (DBBO) by applying it to an electrical engineer-
ing optimization problem, optimal power flow (OPF).
Rest of the paper is organized as follows: The details BBO described in section 2. The implementation
of disruption operator in BBO is explained in section 3. Through various experiments and statistical
analysis, the proposed DBBO is tested over test problems in section 4. In section 5, the proposed DBBO
is applied to optimal power flow problem. Section 6 concluded the paper.

2 Biogeography-based optimization

The well known method of studying geographical distribution of biological organisms is biogeography,
whose earliest works can be traced back to the days by Alfred Wallace and Charles Darwin [25].
The mathematical model of biogeography was brought in picture by Robert Mac Arther and Edward
Wilson. They considered the migration of species from one island to another island, the arrival of new
species and the extinction of some existing species [17]. Recently a new evolutionary population-based
optimization technique has been proposed which is based on the basic nature of biogeography. It has
been named biogeography-based optimization (BBO) [25]. However whereas the study of biogeography
considers evolution, migration and extinction, BBO is inspired by only migration of species among
islands. In biogeography model, the fitness of a geographical area is assessed by habitat suitability
index (called HSI). Habitats which are more suitable for species to reside are said to have high HSI.
Similarly, habitats which are less suitable for species to reside are said to have low HSI. In this way high
HSI habitats house a relatively larger number of species. The characterization of habitability is called
suitability index variable. Rainfall, vegetation, temperature, etc., are called suitability index variables
(SIV s). The migration of species among different habitats is mainly controlled by two parameters,
immigration rate (λ) and emigration rate (µ). λ and µ are functions of the number of species in a
habitat. Ps(t) is the probability that there are s species in the habitat at any time t.

Ps(t+∆t) = Ps(t)(1− λs∆t− µs∆t) + Ps−1λs−1∆t+ Ps+1µs+1∆t (1)
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Where λs is immigration rate when there are s species in the habitat. µs is emigration rate when there
are s species in the habitat.
At time t+∆t one of the following conditions must hold for s species in the habitat.

1. If there are s species in the habitat at time t then there will be no immigration and no emigration
of species within time t and t+∆t.

2. If there are (s− 1) species in the habitat at time t then one species will immigrate between time t
and t+∆t.

3. If there are (s + 1) species in the habitat at time t then one species will emigrate between time t
and t+∆t.

For ignoring the probability of more than one immigration or emigration, ∆t is assumed to be very
small. Taking limit as ∆t −→ 0

Ṗs =


−(λs + µs)Ps + µs+1Ps+1, s = 0

−(λs + µs)Ps + λs−1Ps−1 + µs+1Ps+1, 1 ≤ s ≤ smax − 1

−(λs + µs)Ps + λs−1Ps−1, s = smax

(2)

We can obtain a matrix relation exhibiting the dynamic equations of the probabilities of number of
species in the habitat as

Ṗ0

Ṗ1

...

...

ṖSmax

 =



−(λ0 + µ0) µ1 0 · · · 0

λ0 −(λ1 + µ1) µ2 · · ·
...

...
. . .

. . .
. . .

...
...

. . . λn−2 −(λn−1 + µn−1) µn

0 · · · 0 λn−1 −(λn + µn)





P0

P1

...

...
PSmax

 (3)

The primary concept of biogeography has been used to design a population-based optimization pro-
cedure that can be potentially applied to optimize many engineering optimization problems. BBO is
based on two simple biogeography concepts (migration and mutation). In the designed BBO algorithm
each habitat H has a potential m× 1 vector solution where m is the number of SIV s in each habitat.
HSI of each habitat corresponds to fitness function of population-based algorithms. Habitat with the
highest HSI reveals is the best candidate for the optimum solution among all habitats. It is assumed
that the ecosystem constitutes of Np habitats i.e. the population size is Np. In the basic BBO algorithm,
the immigration and emigration rates vary linearly with the number of species (Fig. 1) and they are
calculated using the following formulae:

λi = I

(
1− ki

n

)
(4)

µi = E

(
ki
n

)
(5)

Here λi stands for immigration rate of ith individual (island),
µi stands for emigration rate of ith individual (island),
I stands for maximum possible immigration rate,
E stands for maximum possible emigration rate,
n stands for maximum possible number of species that island can support, and
ki stands for fitness rank of ith island after sorting fitness of ith island. Thus, for the worst solution ki
is considered as 1 and for the best solution ki is considered as n.
It suffices to assume a linear relationship between the number of species and migration rate from view

point of many applications. The relation between migration rate (λ and µ) and the number of species is
illustrated in Fig. 1. If there are zero species on the island, then immigration rate is maximum, denoted
by I. If there are maximum number of species (Smax) on the island, then emigration rate is maximum,
denoted by E. At the state of an equilibrium, the number of species is denoted by S0 and in equilibrium
state, immigration rate and emigration rate are equal. The islands referred as high HSI islands if the
number of species is above than S0 and the island is referred as low HSI island if the number of species
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is less than S0. Algorithm 1 describes the pseudo code of BBO.

Algorithm 1 Biogeography-based optimization algorithm

Initialize the population
Population size← Np;
Sort the population according to the increasing order of fitness
Calculate λ and µ
Generation index← GenIndex;
for GenIndex = 1 to MaxGen do

Apply migration
for i = 1 to Np do

Select habitat Hi according to λi
if rand(0, 1) < λi then

for e = 1 to Np do
Select habitat He according to µe
Replace the selected SIV of Hi by randomly selected SIV of He

end for
end if

end for
Apply mutation
for i = 1 to Np do

Compute mutation probability m(S)
if rand(0, 1) < m(S) then

Replace Hi(SIV ) with randomly generated SIV
end if

end for
Sort the population according to the increasing order of fitness
Keep the elite solution
Stop, if termination criteria satisfied

end for

Migration and mutation are two crucial operators in BBO. “Migration” and the “Mutation” pro-
cedures evolve new candidate solutions. This procedure of governing the habitats to the “Migration”
procedure, followed by the “Mutation” procedure, is continued to next generation until the termination
criteria are satisfied. These criteria can be the maximum number of generations or obtaining the desired
solution. The basic concept of migration procedure is to probabilistically share the information between
habitats by utilizing the immigration rate (λs) and emigration rate (µs). The migration operator is same

Fig. 1: Relation between number of species and migration rate [25]
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as the crossover operator of the evolutionary algorithm and is responsible for sharing the feature among
candidate solutions for modifying fitness. In the migration procedure, immigrating habitat is selected
according to the probability of immigration rate and emigrating habitat is selected according to the
probability of emigration rate of habitats. Then it is probabilistically decided as to which of the SIV of
immigrating habitat needs to be modified. Once the SIV is selected, algorithm replaces that SIV by
emigrating habitat’s SIV . The other important phenomenon is the mutation. The mutation occurs by
sudden changes in islands due to occurrence of the random events. It is responsible for maintaining the
diversity of island in BBO process. Analysis of Fig. 1 reveals that very high HSI solutions and very
low HSI solutions have very low probabilities while medium HSI solutions have the relatively high
probability to exist as a solution. So mutation gives same chance to improve low HSI solutions as to
high HSI solutions. The mutation rate mut(i) is expressed as:

mut(i) = mmax

(
1− Pi

Pmax

)
(6)

where mmax is the user defined parameter and Pmax = max{Pi}; i=1, 2,...., Np.

3 Disrupted biogeography-based optimization

3.1 Motivation

This section proposes a modified version of biogeography-based optimization using disruption operator.
Operator “Disruption”, originated from astrophysics. It is the phenomenon: “When a swarm of grav-
itationally bound particles having a total mass, m, approaches too close to a massive object of mass
M , then the swarm tends to be torn apart. The same can happen to a solid body held together by
gravitational forces when it approaches a much more massive object”. It was given by Harwit [11]. To
incorporate the disruption phenomenon in BBO, it is assumed that highest HSI island is the star (best)
island, and other islands can potentially disrupt and scatter under the gravity of the star island.
In [21], a new operator named disruption operator is incorporated in the gravitational search algorithm.
Thus obtained version of GSA outperformed the original GSA and other related algorithms. Disruption
operator was introduced in GSA [21]. These facts motivated the authors to develop a suitable disruption
operator for BBO as well.

3.2 Disruption operator

In the context of paper the disruption operator D is defined as below:

D =

{
Ri,nbdU(− 1

2 ,
1
2 ), if Ri,best <

1
2DiaGenIndex

Ri,bestU(− 1
2 ,

1
2 ), otherwise.

(7)

In (7), Ri,nbd represents the Euclidean distance between island i and the island which is most close
to island i, U(− 1

2 ,
1
2 ) represents the uniformly distributed random numbers in the interval [− 1

2 ,
1
2 ].

DiaGenIndex is the maximum Euclidean distance between any two islands at the generation index
(GenIndex).

3.3 BBO with disruption operator

To maintain the diversity during the search as well as for achieving good convergence rate, disruption
operator defined in the subsection 3.2 is applied in BBO subject to a condition. Since the objective
of introducing disruption operator in BBO is to modify the search strategy with better exploration
and exploitation capabilities, therefore, it is obvious that the condition of applying disruption operator
must be dependent on the distances among individuals at the given time in the search space. Therefore
at any time, ith solution in BBO is disrupted (modified) using disruption operator, if the ratio of
distances between island i from its nearest neighboring island (other than star island) and the distance
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between island i from star island is less than predefined threshold C. i.e. In other words, in an iteration,
disruption operator is applied to the ith individual subject to the condition

Ri,nbd

Ri,best
< C (8)

Where Ri,best is the Euclidean distance between ith island and star island. In other words, Ri,nbd is the
Euclidean distance between ith island and it’s nearest island which is necessarily not the star island.
The parameter C in (8) is defined as below:

C = θ

(
1− GenIndex

MaxGen

)
(9)

Here, θ is a parameter which is either a constant or a function of generations. GenIndex is the gener-
ation index and MaxGen is the maximum number of generations. From condition (8), it is clear that
disruption of any individual highly depends on the value of C. Large values of C will provide more
opportunities for disruption to appear and hence more opportunities for the exploration. While small
values of C will restrict disruption operator to be implemented very frequently which will ultimately
lead to the exploitation of the search space. Therefore, generation wise decreasing value of C will provide
exploration in early generations while refining the solution at later generations. It can be seen from Eq.
(9), that C is a decreasing function of θ. In [21], a linearly decreasing C is considered as defined in Eq.
(9) with θ = 100. In [13], to examine the effect of θ on the performance of the proposed algorithm, a
number of experiments have been carried out with different values of θ = 0.1, 1, 10, 50 and 100. The
experiments of [13] show that θ = 10 performs better than other choices.
In this paper instead of considering a constant value of θ, a variable θ is adopted (details of θ is given
in section 4.1).
Moreover in the above cited articles, in the definition of disruption operator D, Ri,best is compared with
1, But Ri,best depends upon the search space range of the problem and therefore instead of 1 or any
other constant, it should be a function of the search space. Therefore in this paper instead of 1, half
of the maximum distance between any two islands at any generation ( 1

2DiaGenIndex) is considered for
comparison with Ri,best.
The disruption operator of [21] to any individual was defined as below:

Xi(new) = Xi(old) ∗D (10)

This approach of disruption operator implementation has an inherent drawback. Here D is defined as
below in Eq. (11):

D =

{
Ri,jU(− 1

2 ,
1
2 ), if Ri,best ≥ 1

1 +Ri,bestU(− 10−16

2 , 10
−16

2 ), otherwise.
(11)

Where Ri,j is the Euclidean distance between ith individual and jth individual. Here j is the nearest
neighborhood of the ithindividual. It is clear that in the case of very close individuals, the value of D
may become less than 1, too frequently. If D is less than 1, then the solution will converge towards
the origin. Now if the optimal solution of considered problem is at the origin, the algorithm becomes
biased and will converge quickly to the origin, but the algorithm will not converge to the near optimal
solution if the optimal solution far from the origin. Similarly in [13], the implementation of disruption
have been carried out by multiplying disruption operator to an individual. Therefore, in this paper for
any individual with condition (8) and the value of C given in Eq. (9), disruption as defined in Eq. (7)
is implemented as below:

Xi(new) = Xi(old) +D (12)

Now since D provides a disruption to an individual, therefore the value of D must not be large or a
very small quantity always.

Since disruption is applied with the condition
Ri,nbd

Ri,best
< C and C < 1 (see section 4.1). Thus,

Ri,nbd

Ri,best
< 1,

therefore Ri,best > Ri,nbd.
In order to visualize the effect of disruption operator on the population at any given time, consider
10 individuals in a 2-dimensional search space (Fig. 2). In Fig. 2, ith individual, best individual, nbd
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individual, DiaGenIndex, Ri,nbd, Ri,best and true solution are marked in rectangular search space [−1, 1].
For explanation of working of disruption operator, let us consider U(− 1

2 ,
1
2 ) = 0.43 in Eq. 13 and for

Eq. 14, U(− 1
2 ,

1
2 ) = −0.45. Now as can be seen in figures 2(a) and 2(d), Ri,nbd < Ri,best, therefore ith

individual is selected for disruption. In Fig. 2(b), condition Ri,best <
1
2DiaGenIndex is true and there-

fore disruption D is applied on the ith individual as given in Eq. (13) and the new position of the ith

individual is updated as given in Eq. (15). Finally after disruption new position of the ith individual is
seen in Fig. 2(c). Similarly in Fig. 2(e), condition Ri,best ≥ 1

2DiaGenIndex is true. So the disruption D is
applied on the ith individual as given in Eq. (14) and the new position of the ith individual is updated
as given in Eq. (15). Finally after disruption new position of the ith individual is given in Fig. 2(f).

D = Ri,nbd ∗ 0.43, Where 0.43 is U(−1

2
,

1

2
) (13)

D = Ri,best ∗ −0.45, Where − 0.45 is U(−1

2
,

1

2
) (14)

Therefore,

Xi(new) = Xi(old) +D

Since X is a two dimensional vector.

(Xi,1, Xi,2)(new) = (Xi,1, Xi,2)(old) +D

Where D = Ri,k ∗ r
Where k is nbd or best individual and

r = U(−1

2
,

1

2
)

Also Ri,k = (Ri,k1, Ri,k2)

Now (Xi,1, Xi,2)(new) = (Xi,1, Xi,2)(old) + (Ri,k1, Ri,k2) ∗ r
= (Xi,1(old) +Ri,k1 ∗ r,Xi,2(old) +Ri,k2 ∗ r)

(15)

Clearly, if Ri,best <
1
2DiaGenIndex then the value of D will be a random number in the hypersphere

[−Ri,nbd

2 ,
Ri,nbd

2 ]. Obviously, initially the DiaGenIndex will be large and condition Ri,best <
1
2DiaGenIndex

shows that the distance between ith individual and the best individual is smaller, therefore, the dis-
ruption D is considered near the ith individual in the range [−Ri,nbd

2 ,
Ri,nbd

2 ]. Now at later generations,
DiaGenIndex will relatively be a smaller quantity and therefore the condition Ri,best ≥ 1

2DiaGenIndex

will represent that the distance between ith individual and the best individual is also small. In this case,
we required relatively high disruption. Therefore the disruption is considered near the best individual
in the range [−Ri,best

2 ,
Ri,best

2 ]. In this way, the proposed disruption operator explores initially and as
generation increases it helps to exploit the search space.
Thus, disruption operator as defined in equations (7), (8), (9) and (12) is applied to biogeography-based
optimization in expectation of development of a BBO with better exploration and exploitation strategy.
The BBO with disruption operator is named as DisruptBBO (DBBO). Working of DisruptBBO is given
in Algorithm 2.

4 Experimental results and discussion

In order to see the effect of inclusion of disruption operator in BBO, 20 different continuous, unbiased
minimization functions were selected with associated offset values as given in Table 1. This set of
problems consists of problems which are of varying degree of complexities some are multimodal and
some, separable and non-separable.
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(a) Initial position, Ri,nbd < Ri,best (b) Ri,best <
1
2
DiaGenIndex

(c) Updated position (d) Initial position, Ri,nbd < Ri,best

(e) Ri,best ≥ 1
2
DiaGenIndex (f) Updated position

Fig. 2: Position update process through disruption operator in 2-dimensional search space
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4.1 Experimental setting

The following experimental setting was adopted to observe the performance of the proposed DisruptBBO
metaheuristic.
- Population size Np = 50
- Mutation probability = 0.01

Algorithm 2 DisruptBBO

Initialize the population
Population size← Np;
Sort the population according to the increasing order of fitness
Calculate λ and µ
Generation index← GenIndex;
Maximum Generations←MaxGen;
for GenIndex = 1 to MaxGen do

According to the value of λ and µ, select habitat for migration
Apply migration as in Algorithm 1
Apply mutation as in Algorithm 1
Sort the population according to the increasing order of fitness
Apply disruption operator
for i = 1 to Np do

if
Ri,nbd

Ri,best
< θ(1− GenIndex

MaxGen
) then

if Ri,best <
1
2
DiaGenIndex then

D = Ri,nbdU(− 1
2
, 1
2

)
else
D = Ri,bestU(− 1

2
, 1
2

)
end if
Xi(new) = Xi(old) +D

else
Xi(new) = Xi(old)

end if
end for
Sort the population according to the increasing order of fitness
Keep the elite solution
Stop, if termination criteria satisfied

end for

- Elitism size = 2
- Maximum immigration rate = 1
- Maximum emigration rate = 1
- Maximum number of generations/iterations = 1000
- Total number of runs/simulations = 100
The value of θ has not been adopted from [21] and [13] but determined based an experimental analysis,
so that an optimal value of θ can be obtained. The performance of DBBO for the constant value of θ
such as 0.1, 0.2,..., 1 is tested on test problems f3, f4, f5, f6 and f19. As can be seen in Fig. 3, the
performance of DBBO with different values of θ between 0.1 and 1 is indistinguishable. Therefore, the
linearly increasing value of θ from 0.1 to 1 (Inc.(0.1-1)) and linearly decreasing value of θ from 1 to 0.1
(Dec.(1-0.1)) as defined in equations (16) and (17), respectively are considered for experiments.

θ = 0.1 +
(1− 0.1)

MaxGen
∗GenIndex (16)

θ = 1− (1− 0.1)

Maxgen
∗GenIndex (17)

Similar experiments were also been performed for linearly decreasing value of θ from 100 to 0.1 (Dec.(100-
0.1)), linearly increasing value of θ from 0.1 to 100 (Inc.(0.1-100)), constant values of θ, θ = 0.1, θ = 1,
θ = 10, θ = 50, and θ = 100. Fig. 4 shows the mean error over 100 runs. It is clear that the performance
of DBBO is very sensitive to θ, and the optimal choice of θ is its linearly decreasing value from 1 to 0.1.
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Table 1: Test problems (TP: Test Problem, D: Dimensions, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, NS: Non-Separable, AE:
Acceptable error)

TP Objective function Search
Range

Optimum Value D C AE

Alpine
f1(x) =

∑D
i=1 | (xisin(xi) | +0.1xi [-10, 10] f(0) = 0 30 M, S 1.0E-05

Axis parallel hy-
per ellipsoid

f2(x) =
∑D
i=1 ix

2
i [-5.12, 5.12] f(0) = 0 30 U, S 1.0E-05

De jong’s f4 f3(x) =
∑D
i=1 ix

4
i [-5.12, 5.12] f(0) = 0 30 U, S 1.0E-05

Ellipsoidal f4(x) =
∑D
i=1(xi − i)2 [-30, 30] f(1, 2, 3,..., D) = 0 30 U, S 1.0E-05

Griewank f5(x) =
∑D
i=1

x2i
4000

−
∏D
i=1 cos( xi√

i
) + 1 [-600, 600] f(0) = 0 30 M, NS 1.0E-05

Rosenbrock f6(x) =
∑D−1
i=1 [100(x2i − xi+1)2 + (xi − 1)2] [-2.048, 2.048] f(1) = 0 30 U, NS 1.0E-02

Salomon prob 3 f7(x) = 1− cos

(
2π
√∑D

i=1 x
2
i

)
+ 0.1

√∑D
i=1 x

2
i [-100, 100] f(0) = 0 30 M, S 1.0E-01

Schwefel f8(x) = −
∑D
i=1 xisin(| xi |1/2) [-512, 512] f(±[π(0.5 + k)]2)

= -418.9829 * D
30 M, S 1.0E-05

Schwefel221 f9(x) = max
i
| xi |, 1 ≤ i ≤ D [-100, 100] f(0) = 0 30 U, S 1.0E-05

Schwefel222 f10(x) =
∑D
i=1 | xi | +

∏D
i=1 | xi | [-10, 10] f(0) = 0 30 U, NS 1.0E-05

Sphere f11(x) =
∑D
i=1 x

2
i [-5.12, 5.12] f(0) = 0 30 U, S 1.0E-05

Pathological f12(x) =
∑D−1
i=1 0.5 +

sin2
√

(100x2i+x
2
i+1)−0.5

1+0.001(x2i−2xixi+1+x
2
i+1)

2 [-100, 100] f(0) = 0 30 M, NS 1.0E-05

Michalewicz f13(x) = −
∑D
i=1 sin(xi)

[
sini(xi)

2

π

]20
[0,π] fmin = -9.66015 10 M, S 1.0E-05

Zakharov’s f14(x) =
∑D
i=1 x

2
i +

(∑D
i=1

i
2
xi

)2
+
(∑D

i=1
i
2
xi

)4
[-5.12, 5.12] f(0) = 0 30 M, NS 1.0E-02

Neumaier3 f15(x) =
∑D
i=1(xi − 1)2 −

∑D
i=2 xixi−1 [-100, 100] fmin =

− (D∗(D+4)∗(D−1))
6

10 U, NS 1.0E-01

Brown 3 f16(x) =
∑D−1
i=1

[
(x2i )

(x2i+1+1) + (x2i+1)(x
2
i+1)

]
[-1, 4] f(0) = 0 30 U, NS 1.0E-05

Beale f17(x) = [1.5− x1(1− x2)]2 + [2.25− x1(1− x22)]2 +
[2.625− x1(1− x23)]2

[-4.5, 4.5] f(3, 0.5) = 0 2 U, NS 1.0E-05

Easom f18(x) = −cosx1cosx2e((−(x1−π)2−(x2−π)2)) [-100, 100] f(π, π) = -1 2 U, S 1.0E-13

Ackley f19(x) = −20 exp

(
−0.2

√
1
D

∑D
i=1 x

2
i

)
−

exp( 1
D

∑D
i=1 cos(2πxi)) + 20 + e

[-30, 30] f(0) = 0 30 M, NS 1.0E-05

Rastrigin f20(x) =
∑D
i=1[x2i − 10 cos(2πxi)] + 10D [-5.12, 5.12] f(0) = 0 30 M, S 1.0E-05
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Therefore, for all further experiments, θ is considered to be linearly decreasing from 1 to 0.1 in DBBO.
Now with linearly decreasing value of θ given in Eq. (17), the value of C changes as given in Eq. (18):

C = 1− 1.9 ∗GenIndex
MaxGen

+
0.9 ∗GenIndex2

MaxGen2
(18)

The effect of the modified choice of θ over C can be observed in Fig. 5. Fig. 5(a) depicts the variation in
C based on the choice of θ as given in ([21], [13]) while Fig. 5(b) shows the same in the case of the new
choice of θ. Obviously, now C is a nonlinear decreasing function of generations as compared to linearly
decreasing function of generations ([21], [13]).
Parameter settings for the algorithms: Basic BBO (BBO), Linearized BBO (LBBO) [26] and Blended
BBO (B-BBO) [15] are same as given above.

4.2 Results and discussion

Numerical results using experimental settings of Section 4.1 are given in Table 2. In Table 2, minimum
error (MinE), standard deviation (SD), mean error (ME), the mean number of generations (MG) and
success rate (SR) are reported. The numerical results are primarily compared with those of basic BBO,
LBBO, and B-BBO. The performances of these algorithms has been compared based on SR, MG, ME
and SD criteria. First, the algorithms are compared based on SR. If SR is not significantly different
then the comparison is based on MG. Similarly, if MG for the algorithms are not significantly different,
algorithms are compared based on ME and finally based on SD.
From Table 2, it can be observed that the performance of DBBO is better on 13 functions (f1, f2,
f4, f5, f6, f8, f10, f11, f12, f15, f16, f19, f20) from amongst all considered algorithms. These functions
are high dimensional and include unimodal, multimodal, separable, non-separable having solution at
the origin as well as at points other than origin. It can be concluded that DBBO has the capability
to balance exploration and exploitation efficiently for the high dimensional problems. However LBBO
outperforms DBBO over 6 functions (f3, f7, f9, f13, f17, f18). These functions include unimodal,
multimodal, separable and non-separable. f3, f7, f9 and f13 have the solutions at the origin. According
to this analysis, it is clear that most of the time LBBO gives better results for those problems which have
optimal solution at the origin. B-BBO outperforms DBBO over one function f14, which is multimodal
and non-separable. From these comparisons it is clear that most of the time DBBO outperforms in
the sense of reliability, efficiency, and accuracy as compared to BBO, B-BBO and is competitive with
LBBO.
Some more intensive statistical analyses based on Mann-Whiteny U rank sum test [5], Boxplot and
Performance Index [4] and diversity analysis [23] are also being presented with the numerical results of
BBO, LBBO, B-BBO and DBBO.

4.2.1 Statistical analysis

The empirical distribution of data is efficiently represented graphically by the boxplot analysis tool
[5]. The boxplots for SR, MG, and ME for all algorithms BBO, LBBO, B-BBO, and DBBO have
been depicted in Fig. 6. Figures 6(a), 6(b) and 6(c) show the boxplot regarding success rate, mean
generation index and mean error, respectively. Fig. 6(b) - 6(c), clearly show that DBBO performs
better as compared to the others from reliability, efficiency, and accuracy points of view.
From the boxplots of Fig. 6, it is clear that the outcome of SR, MG and ME are not normally
distributed. Therefore, a non-parametric test Mann-Whitney U rank sum [5] is applied to see the
difference among the performance of different algorithms. In the present study this test was performed
on mean error at 5% level of significance ( = 0.05) between DBBO - BBO, DBBO - LBBO and DBBO -
B-BBO. Table 3 shows the results of Mann-Whitney U rank sum test for mean error of 100 simulations.
In Table 3, ‘+’ sign appears if DBBO performs better than considered algorithms, ‘-’ sign appears,
if DBBO performs worse than considered algorithms and ‘=’ sign appears when on the compared
algorithms have no significant difference. Table 3 includes 48 ‘+’ signs out of 60 comparisons. Therefore,
we conclude that DBBO algorithm is significantly better than BBO, LBBO and B-BBO over considered
test problems.
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Fig. 3: Performance of DBBO with various values of θ between 0.1 to 1

Fig. 4: Performance of DBBO with various choices of θ

(a) Variation of C according to θ given in [21], [13] (b) Variation of C according to θ given in Eq. (17)

Fig. 5: Variation of constant C as a function of θ with respect to iterations
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Table 2: Comparison of DBBO with some BBO variants

Test problem Algorithm MinE SD ME MG SR

f1 BBO 2.33E-02 7.43E-03 3.42E-02 1000.00 0
LBBO 1.36E-03 1.23E-03 3.63E-03 1000.00 0
B-BBO 7.68E-03 1.85E-02 2.31E-02 1000.00 0
DBBO 1.37E-04 1.01E-03 1.45E-03 1000.00 0

f2 BBO 4.11E-02 6.21E-02 1.50E-01 1000.00 0
LBBO 6.93E-05 1.38E-04 3.00E-04 1000.00 0
B-BBO 3.72E-03 4.85E-03 1.12E-02 1000.00 0
DBBO 9.36E-06 9.90E-05 8.71E-05 997.73 7

f3 BBO 1.11E-05 2.34E-04 3.04E-04 1000.00 0
LBBO 3.48E-06 9.66E-07 9.17E-06 317.77 100
B-BBO 2.67E-06 7.53E-06 1.11E-05 901.51 78
DBBO 6.41E-06 7.32E-07 9.13E-06 590.63 100

f4 BBO 1.29E-01 1.36E-01 3.67E-01 1000.00 0
LBBO 3.77E-02 2.16E-01 2.36E-01 1000.00 0
B-BBO 2.41E+00 3.90E+00 8.42E+00 1000.00 0
DBBO 8.49E-06 3.56E-06 1.07E-05 974.76 79

f5 BBO 9.57E-01 2.03E-02 1.03E+00 1000.00 0
LBBO 6.65E-03 2.24E-02 3.95E-02 1000.00 0
B-BBO 1.60E-01 1.32E-01 4.24E-01 1000.00 0
DBBO 7.66E-06 9.24E-03 7.63E-03 990.51 18

f6 BBO 1.34E+01 2.96E+01 5.84E+01 1000.00 0
LBBO 2.51E+01 3.70E-01 2.72E+01 1000.00 0
BBBO 2.71E+01 2.17E-01 2.80E+01 1000.00 0
DBBO 1.60E-02 2.70E+01 2.43E+01 1000.00 0

f7 BBO 8.00E-01 2.22E-01 1.31E+00 1000.00 0
LBBO 3.00E-01 7.20E-02 4.69E-01 1000.00 0
B-BBO 4.00E-01 8.36E-02 6.22E-01 1000.00 0
DBBO 3.00E-01 9.24E-02 4.97E-01 1000.00 0

f8 BBO 3.78E+00 3.38E+00 9.46E+00 1000.00 0
LBBO 9.81E+00 9.61E+00 2.77E+01 1000.00 0
B-BBO 1.04E+02 1.19E+02 3.22E+02 1000.00 0
DBBO 3.84E-04 1.43E-03 9.85E-04 1000.00 0

f9 BBO 2.26E+00 1.11E+00 5.17E+00 1000.00 0
LBBO 1.85E-01 5.76E-02 3.00E-01 1000.00 0
B-BBO 7.63E-01 2.26E-01 1.35E+00 1000.00 0
DBBO 4.50E-01 4.76E-01 1.33E+00 1000.00 0

f10 BBO 4.21E-01 1.17E-01 6.82E-01 1000.00 0
LBBO 1.09E-02 5.11E-03 2.07E-02 1000.00 0
B-BBO 8.11E-02 3.75E-02 1.63E-01 1000.00 0
DBBO 3.41E-04 1.73E-03 2.29E-03 1000.00 0

f11 BBO 3.40E-03 3.95E-03 1.09E-02 1000.00 0
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LBBO 9.42E-06 1.06E-05 2.31E-05 993.74 8
B-BBO 3.25E-04 4.52E-04 1.01E-03 1000.00 0
DBBO 7.80E-06 6.65E-06 1.24E-05 887.54 75

f12 BBO 2.53E+00 5.05E-01 3.50E+00 1000.00 0
LBBO 2.64E+00 6.11E-01 4.36E+00 1000.00 0
B-BBO 3.09E+00 6.86E-01 4.76E+00 1000.00 0
DBBO 1.25E-03 3.19E-01 1.57E-01 1000.00 0

f13 BBO 9.66E+00 1.43E-12 9.66E+00 1000.00 0
LBBO 9.66E+00 6.36E-13 9.66E+00 1000.00 0
B-BBO 9.66E+00 4.30E-12 9.66E+00 1000.00 0
DBBO 9.66E+00 2.27E-12 9.66E+00 1000.00 0

f14 BBO 9.09E+00 1.15E+01 2.57E+01 1000.00 0
LBBO 2.00E-01 7.09E-01 1.11E+00 1000.00 0
B-BBO 1.95E-01 1.79E-01 4.67E-01 1000.00 0
DBBO 6.44E-01 1.83E+00 3.00E+00 1000.00 0

f15 BBO 1.01E-01 2.06E+01 2.34E+01 1000.00 0
LBBO 9.99E-02 2.97E+00 4.68E+00 997.76 1
B-BBO 4.37E+00 8.15E+00 2.04E+01 1000.00 0
DBBO 3.22E-02 1.06E+00 6.11E-01 651.32 49

f16 BBO 1.56E-03 1.88E-03 5.04E-03 1000.00 0
LBBO 1.53E-04 2.09E-04 4.88E-04 1000.00 0
B-BBO 2.74E-02 2.92E-02 8.08E-02 1000.00 0
DBBO 9.52E-06 4.07E-05 4.77E-05 995.84 6

f17 BBO 2.57E-07 2.12E-05 1.19E-05 607.84 77
LBBO 8.09E-07 7.62E-02 7.63E-03 641.44 87
B-BBO 1.04E-07 7.86E-02 7.89E-03 840.02 52
DBBO 1.22E-06 3.98E-03 2.54E-03 985.04 2

f18 BBO 9.00E-06 4.90E-01 6.10E-01 1000.00 0
LBBO 1.11E-15 2.97E-14 4.73E-14 66.62 100
B-BBO 2.01E-08 7.36E-06 5.02E-06 1000.00 0
DBBO 3.40E-14 1.71E-01 3.10E-02 992.94 2

f19 BBO 4.81E-01 1.91E-01 8.63E-01 1000.00 0
LBBO 1.03E-02 5.14E-03 2.03E-02 1000.00 0
B-BBO 1.08E-01 3.24E-01 3.68E-01 1000.00 0
DBBO 3.16E-04 5.89E-04 1.73E-03 1000.00 0

f20 BBO 6.35E-01 5.27E-01 1.49E+00 1000.00 0
LBBO 6.28E-03 3.01E-01 1.44E-01 1000.00 0
B-BBO 2.39E+00 2.49E+00 7.54E+00 1000.00 0
DBBO 8.66E-06 3.01E-01 1.24E-01 996.18 7

In order to analyze the diversity variation during the search in the considered algorithms we use the
diversity measure as defined in [20]. The diversity measure of D-dimensional problem is defined as

diversity(DA) =
1

L×Np

Np∑
i=1

√√√√ D∑
j=1

(xji − x̄j)2

 (19)
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Where L is the length of longest diagonal in the search space, D is the dimensionality of the problem,
xji is the jth dimension of the ith individual and x̄j is the jth value of the average point (x̄) at any
generation. The average point is calculated as the mean of the position of all individuals as given in Eq.
(20).

X̄ = (x̄1, x̄2, ......, x̄D) =

 1

Np

Np∑
i=1

x1i ,
1

NP

Np∑
i=1

x2i , .....,
1

Np

Np∑
i=1

xDi

 (20)

The diversity measure is dependent on the population size, problem dimension and search ranges. Low

(a) Boxplot for success rate (b) Boxplot for mean number of generations

(c) Boxplot for mean error

Fig. 6: Comparison based on boxplots

population diversity shows that population has clusters in small regions. Conversely, high population
diversity shows that the population is scattered in a wide region. Low population diversity measure is
responsible for local convergence. However, high diversity measure is responsible for poor convergence.
In this test same parameter setting is considered as given in section 4.1 except the total number of
simulations which is set to be 1. In order to determine the diversity measurement for all considered
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algorithms in single run for selected function (f4, f5, f11, f20) are shown in figures 7, 8, 9, and 10.
The selected functions include unidimensional, multidimensional, separable and non-separable. Here
function f4 has the optimal solution far from the origin and functions f5, f11 and f20 have optimal
solution at origin. In order to clearly visualize the impact of diversity measure for all selected functions,
we plotted the graphs in four ranges of iterations. In the first range, diversity measure from initial
iteration to the iterations where diversity of proposed DBBO algorithm is comparatively larger than
other considered algorithms. In the second range, diversity measure of proposed DBBO algorithm is
comparatively lower than other considered algorithms. In the third range, diversity measure in last 200
iterations from (800-1000) is considered. In the fourth range, diversity measure in all iterations from
(0-1000) is considered. Figures 7(a), 8(a), 9(a) and 10(a) represent diversity measure in the first range,
figures 7(b), 8(b), 9(b) and 10(b) represent diversity measure in the second range, figures 7(c), 8(c), 9(c)
and 10(c) represent diversity measure in the third range and finally figures 7(d), 8(d), 9(d) and 10(d)
represent diversity measure in the fourth range of iterations. From the analysis of diversity measure for
four selected functions, it can be said that the diversity of proposed DBBO algorithm is comparatively
higher in the initial iterations and lower in later iterations than other considered algorithms. In order
to see the compared effect of diversity in proposed DBBO algorithm, we tested two algorithms DBBO
and BBO independently 30 times on three functions (f5, f11, f20). Fig. 11 shows the diversity measure
between the BBO and DBBO algorithms with an average over 30 runs on three functions. Figures 11(a),
11(d) and 11(g), show the diversity measure of three functions in 0 to 1000 iteration. In initial iterations,
it is difficult to distinguish diversity measure between DBBO and BBO algorithms. Thus, the diversity
measure of three functions (f5, f11, f20) in initial stage (0-50 iteration) is shown in figures 11(b),
11(e) and 11(h), respectively. Here we observe that in initial stage there is slight difference in diversity
measure between DBBO and BBO algorithms and diversity measure of DBBO algorithm decreases
with iterations as compare to BBO algorithm. Therefore from the analysis of diversity measure, it is
concluded that fast convergence is performed by DBBO algorithm at later iterations as compared to
BBO algorithm.

Table 3: Comparison of DBBO and other BBO variants based on Mann-whiteny U rank sum test

Test problem DBBO V s BBO DBBO V s LBBO DBBO V s B-BBO
f1 + + +
f2 + + +
f3 + = +
f4 + + +
f5 + + +
f6 + + +
f7 + - -
f8 + + +
f9 + - =
f10 + + +
f11 + + +
f12 + + +
f13 = - +
f14 + - -
f15 + + +
f16 + + +
f17 - + +
f18 + - -
f19 + + +
f20 + + +

Total number of + sign 18 14 16

Further to see the performance of considered algorithm by giving the weighted importance to success
rate, mean generation index and mean error, performance indices (PIs) were evaluated [23]. The value
of PI(performance index) for BBO, LBBO, B-BBO and DBBO are evaluated using

PI =
1

N

N∑
i=1

(k1α
i
1 + k2α

i
2 + k3α

i
3) (21)
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Where αi
1 =

Sri

Tri
; αi

2 =

{
MinGi

MGi , if Sri > 0

0, if Sri = 0
and αi

3 =
Moi

Aoi

i = 1, 2, ....., N

- Sri = Successful simulations/runs of the ith problem.
- Tri = Total simulation of the ith problem.
- MinGi = Minimum of mean generation index used for obtaining the required solution of the ith

problem.
- MGi = Mean generation index used for obtaining the required solution of the ith problem.
- Moi = Minimum of mean error obtained for the ith problem.
- Aoi = Mean error obtained by an algorithm for the ith problem.
- N = Total number of optimization problems evaluated.
The corresponding weight assigned to the success rate, mean generation index and mean error are
represented by k1, k2, and k3, respectively where k1 + k2 + k3 = 1 and 0 ≤ k1, k2, k3 ≤ 1. For
calculating PIs equal weights are assigned to two variables while weight of remaining variable vary from
0 to 1 as given in [6]. The resultant cases are:

(a) Diversity measure of sphere function from 1− 130
iterations

(b) Diversity measure of sphere function from 270− 1000
iterations

(c) Diversity measure of sphere function from 800− 1000
iterations

(d) Diversity measure of sphere function from 1− 1000
iterations

Fig. 7: Diversity comparison for sphere function in a single run
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1. k1 = W, k2 = k3 = 1−W
2 , 0 ≤W ≤ 1;

2. k2 = W, k1 = k3 = 1−W
2 , 0 ≤W ≤ 1;

3. k3 = W, k1 = k2 = 1−W
2 , 0 ≤W ≤ 1;

(a) Diversity measure of griewank function from 1− 120
iterations

(b) Diversity measure of griewank function from 200− 1000
iterations

(c) Diversity measure of griewank function from 800− 1000
iterations

(d) Diversity measure of griewank function from 1− 1000
iterations

Fig. 8: Diversity comparison for griewank function in a single run

The graph corresponding to each case (1), (2) and (3) for the considered algorithms BBO, LBBO, B-
BBO, and DBBO are depicted in Fig. 12. In these figures weights k1, k2, and k3 are represented along
X-axis while the PI is represented along Y-axis.
In case (1), mean generation index and the mean error have assigned equal weights, in case (2), success
rate and mean error have assigned equal weights and in case (3) success rate and mean generation index
have assigned equal weights. In all the cases PI of DBBO algorithm is higher compared to these of
considered algorithms. Thus, DBBO performs better than BBO, LBBO and B-BBO over the consid-
ered criteria. From above statistical analyses, it is concluded that DBBO is a better performer when
we consider some popular variants of BBO.
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(a) Diversity measure of rastrigin function from 1− 180
iterations

(b) Diversity measure of rastrigin function from 300− 1000
iterations

(c) Diversity measure of rastrigin function from 800− 1000
iterations

(d) Diversity measure of rastrigin function from 1− 1000
iterations

Fig. 9: Diversity comparison for rastrigin function in a single run

In order to justify the validity of proposed DBBO, it is also compared with some most recent BBO
variants and other state-of-the-art algorithms. BBO with modified blended crossover and polynomial
mutation (BBO-MBLX-PM) [3] and backtracking BBO (BBBO) [10] are selected as most recent BBO
variants for comparison. In Table 4, results of BBO-MBLX-PM are presented in column 3. These have
been taken from original paper [3]. For a fair comparison, DBBO parameters are set same as those
of BBO-MBLX-PM. Table 4 presents the comparison between BBO-MBLX-PM algorithm and DBBO
algorithm on 20 test problems. In Table 4, average fitness (MeanF) over 30 runs is reported for each
test problem. The best performances in Table 4 are marked in bold font. Results show that performance
of DBBO algorithm is better than BBO-MBLX-PM algorithm. Similarly, in Table 5, DBBO algorithm
is compared with BBBO algorithm. Here BBBO results are reported from [10], and DBBO parameters
are also set same as in BBBO. In Table 5, minimum error (BestE), average error (MeanE) are reported
for each test problem. The best performances in Table 5 are marked in bold font. The performance of
DBBO algorithm is better than BBBO algorithm based on average error comparison, but BBBO algo-
rithm is better based on minimum error. Finally, it is concluded that DBBO is a competitive algorithm
to the most recent variants of BBO.
The comparison has extended to state-of-the-art algorithms, second best particle (SP-PSO) [24], par-
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(a) Diversity measure of ellipsoidal function from 1− 120
iterations

(b) Diversity measure of ellipsoidal function from 150− 1000
iterations

(c) Diversity measure of ellipsoidal function from 800− 1000
iterations

(d) Diversity measure of ellipsoidal function from 1− 1000
iterations

Fig. 10: Diversity comparison for ellipsoidal function in a single run

ticle swarm optimization with second global best particle (SG-PSO) [24], lévy distributed differential
evolution (LdDE) [12] and hybrid artificial bee colony optimizer (HABC) [16] algorithms. Again for
all these comparisons parameters of DBBO and compared algorithms’ were set to be same. Results of
compared algorithms have been reproduced from their original articles. In tables 6, 7, 8 and 9, best
performances are marked by bold font. Table 6 presents the comparison among SP-PSO, SG-PSO and
DBBO algorithms. In Table 6, the average function value (MeanF) is reported for each test problem.
It is clearly shown that performance of DBBO is better than SG-PSO and SP-PSO. In tables 7 and 8,
LdDE and DBBO algorithms are considered for comparison. Comparison results in tables 7 and 8 are
for 10-dimensional and 30-dimensional test problems, respectively. The reported results in tables 7 and
8 are the best error value (BestE), mean best error value (MeanE) and standard deviation (Std). Re-
sults in tables 7 and 8 show that DBBO outperforms the LdDE algorithm both for 10-dimensional and
30-dimensional test problems. Table 9 reports the comparison between hybrid artificial bee colony opti-
mizer (HABC) algorithm and DBBO algorithm. Here the average fitness value (MeanF) and standard
deviation (Std) are reported. Results clearly show that DBBO algorithm outperforms the HABC algo-
rithm. The overall comparisons thus show that proposed DBBO algorithm is competing with the current
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(a) Diversity measure of sphere function from 1− 1000
iterations

(b) Diversity measure of sphere function from 1− 50
iterations

(c) Diversity measure of sphere function over 30 run

(d) Diversity measure of griewank function from 1− 1000
iterations

(e) Diversity measure of griewank function from 1− 50
iterations

(f) Diversity measure of griewank function over 30 run

(g) Diversity measure of rastrigin function from 1− 1000
iterations

(h) Diversity measure of rastrigin function from 1− 50
iterations

(i) Diversity measure of rastrigin function over 30 run

Fig. 11: Comparing diversity BBO and DBBO over average of 30 runs
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state-of-the-art metaheuristics and is highly recommended for multi-dimensional complex optimization
problems.

(a) Performance index for case (1) (b) Performance index for case (2)

(c) Performance index for case (3)

Fig. 12: Performance index for test problems in several cases
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Table 4: Comparison of DBBO and BBO-MBLX-PM [3]

S. No. Test Problem BBO-MBLX-PM (MeanF) DBBO (Mean)
1 Sphere 1.63E-13 9.2500E-06
2 De Jongs f4 0.00E+00 9.3100E-05
3 Griewank 4.93E-03 3.91E-03
4 Rosenbrok 2.51E+01 2.38E+01
5 Rastrigin 2.37E-10 1.94E-03
6 Ackley 2.12E-06 9.24E-06
7 Alpine 3.79E-08 9.58E-04
8 Michalewicz -8.63E+00 -8.66E+00
9 Cosine Mixture -3.00E+00 -3.00E+00
10 Exponential -1.00E+00 -1.00E+00
11 Zakharovs 1.37E-02 1.36E-02
12 Cigar 1.60E-07 7.09E-08
13 brown3 1.68E-13 9.53E-10
14 Schewel prob 3 4.74E-07 3.66E-08
15 Salomon Problem 3.70E-01 2.70E-01
16 Axis parallel hyperellipsoid 3.44E-12 3.19E-12
17 Pathological 9.48E-01 1.71E-01
18 Rotated hyper-ellipsoid function 3.78E-10 2.67E-11
19 step function 0.00E+00 0.00E+00
20 Quartic function 8.45E+00 6.54

Table 5: Comparison of DBBO and BBBO [10]

S.No. Test Problem BBBO (MeanE) BBBO (BestE) DBBO (MeanE) DBBO (BestE)
1 Ackley 4.0410E-08 3.5382E-10 9.6108E-04 6.5183E-04
2 Fletcher 1.0815E+03 8.9584E+02 1.0461E+03 1.3848E+02
3 Griewank 1.0000E+00 1.0000E+00 1.4609E-02 2.2166E-03
4 Penalty1 2.3358E-10 1.2771E-17 9.6871E-11 8.9706E-13
5 Penalty2 4.0188E-10 9.9903E-16 2.2299E-11 9.4637E-14
6 Quartic 4.9392E-28 5.7239E-33 1.6467E-20 1.0796E-22
7 Generalised Rastrigin 3.0731E-03 1.7764E-15 5.0184E-03 2.7020E-03
8 Generalized Rosenbrock 1.7909E+01 1.4269E+01 2.3197E+01 1.3138E-02
9 Schwefel1.2 1.1579E-02 2.5455E-04 1.1180E-02 4.4731E-04
10 Schwefel2.21 3.2209E+00 1.3212E+00 1.2325E-01 9.2813E-02
11 Schwefel2.22 1.8714E-07 2.7737E-08 2.9836E-05 2.0926E-05
12 Schwefel2.26 6.6094E-01 3.3967E-02 4.7871E-04 3.0605E-04
13 Sphere 1.9718E-14 4.6913E-17 3.3336E-06 2.2111E-07
14 Step 3.6727E-01 0.0000E+00 0.0000E+00 0.0000E+00

Table 6: Comparison of DBBO, SG-PSO [24], and SP-PSO [24]

S.No. Test Problem SG-PSO (MeanF) SP-PSO (MeanF) DBBO (MeanF)
1 Sphere 0.00E+00 1.48E-06 1.2076E-04
2 Rosenbrock 2.08E+02 2.20E+01 2.0163E+01
3 Schwefel 4.20E+03 4.03E+03 1.5816E-02
4 Rastrigin 2.86E+01 3.28E+00 8.5885E-02
5 Weierstrass 1.60E+00 0.00E+00 6.5885E-06
6 Shifted Sphere 1.24E+04 1.63E+01 -9.9000E+01
7 Shifted Schwefels Problem 1.2 5.70E+06 1.73E+05 -1.0100E+02
8 Shifted Rosenbrock 2.99E+09 1.45E+05 7.5632E+01
9 Shifted Rastrigin 1.57E+02 1.29E+02 -3.2987E+02
10 Shifted Rotated Rastrigin 2.31E+02 1.72E+02 -321.05411
11 Shifted Rotated Weierstrass 2.77E+01 2.89E+01 1.82E+01
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Table 7: Comparison of DBBO and LdDE [12] for 10-dimensional problems

S.No. Test Problem LdDE (BestE) LdDE (MeanE) LdDE (Std) DBBO (BestE) DBBO (MeanE) DBBO (Std)
1 Shifted sphere function 3.82E-07 6.21E-07 1.65E-08 3.3073E-07 4.04E-07 2.20E-03
2 Shifted Schwefels problem 1.2 4.78E-07 7.12E-07 1.06E-07 1.14E-04 2.11E-03 3.92E-05
3 Shifted rotated high conditional elliptic function 9.72E-07 3.03E+01 1.30E+02 2.81E-07 2.27E-01 1.68E+01
4 Shifted Schwefels problem 1.2 with noise in fitness 2.71E-07 8.13E-07 1.23E-07 0.10290097 5.91E+00 1.02E+01
5 Schwefels problem 2.6 with global optimum on bounds 5.78E-07 8.99E-07 1.06E-08 2.32E-06 2.38E-05 6.32E-04
6 Shifted Rosenbrocks function 6.25E-03 4.86E-01 2.52E-01 3.30E+00 7.09E+01 7.27E+01
7 Shifted rotated Griewanks function without bounds No

bounds
5.98E-04 1.27E+03 3.88E-13 4.67E-02 1.62E-01 1.01E-01

8 Shifted rotated Ackleys function with global optimum on
bounds

2.01E+01 2.02E+01 6.21E-02 1.91E+01 2.00E+01 5.23E-02

9 Shifted Rastrigins function 7.71E-03 3.73E+00 4.89E+00 7.60E-03 1.29E-02 5.42E-03
10 Shifted rotated Rastrigins function 4.98E+00 1.28E+01 7.91E+00 4.97E+00 1.21E+01 7.51E+00
11 Shifted rotated Weierstrass function 8.32E-03 1.69E+00 1.42E+00 2.15E-03 2.98E-01 4.68E-02
12 Schwefels problem 2.13 5.89E-03 6.58E+00 7.61E+00 3.80E-03 3.32E+00 4.96E+00
13 Expanded extended Griewanks plus Rosenbrocks function 3.30E-03 2.23E+00 8.61E-02 8.16E-04 2.27E-03 1.51E-03
14 Shifted rotated expanded Scaffers 2.20E+00 2.07E+00 2.58E-01 2.10E+00 2.07E+00 2.24E-01
15 Hybrid composite function 1.35E+02 4.88E+02 1.86E+02 1.09E-02 2.03E+02 2.07E+02
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Table 8: Comparison of DBBO and LdDE [12] for 30-dimensional problems

S.No. Test Problem LdDE (BestE) LdDE (MeanE) LdDE (Std) DBBO (BestE) DBBO (MeanE) DBBO (Std)
1 Shifted sphere function 7.48E-07 9.14E-07 5.08E-08 6.22E-07 8.91E-07 4.82E-03
2 Shifted Schwefels problem 1.2 8.82E-07 9.69E-07 3.05E-08 6.46E-04 1.55E-03 5.99E-05
3 Shifted rotated high conditional elliptic function 2.58E+03 1.57E+05 2.06E+05 2.50E+03 1.35E+05 2.02E+05
4 Shifted Schwefels problem 1.2 with noise in fitness 9.81E-07 6.35E-01 1.80E+00 2.55E+00 7.48E+00 2.91E+01
5 Schwefels problem 2.6 with global optimum on bounds 1.03E+02 1.28E+03 3.54E+02 9.94E+01 1.11E+03 1.01E+02
6 Shifted Rosenbrocks function 8.69E-03 1.44E-01 4.83E-01 9.49E+01 8.77E+02 2.31E+03
7 Shifted rotated Griewanks function without bounds No

bounds
4.69E+03 4.69E+03 2.91E-12 6.31E-01 9.66E-01 1.56E-01

8 Shifted rotated Ackleys function with global optimum on
bounds

2.09E+01 2.09E+01 2.98E-02 2.08E+01 2.09E+01 1.46E-02

9 Shifted Rastrigins function 3.98E+00 4.82E+01 2.92E+01 3.29E-02 9.77E-02 5.33E-02
10 Shifted rotated Rastrigins function 3.58E+01 7.65E+01 3.85E+01 3.47E+01 6.14E+01 2.71E+01
11 Shifted rotated Weierstrass function 1.32E+01 2.41E+01 5.60E+00 1.21E+01 1.52E+01 1.66E+00
12 Schwefels problem 2.13 2.99E-01 2.05E+03 2.85E+03 1.99E-01 1.25E+03 2.75E+03
13 Expanded extended Griewanks plus Rosenbrocks function 1.37E+00 3.08E+00 1.31E+00 8.31E-01 1.19E+00 2.63E-01
14 Shifted rotated expanded Scaffers 1.09E+01 1.05E+01 1.86E-01 1.03E+01 1.04E+01 1.69E-01
15 Hybrid composite function 1.74E-01 3.37E+02 7.07E+01 1.12E-01 3.24E+02 1.14E+01
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Table 9: Comparison of DBBO and HABC [16]

Sr. No. Test Problem HABC (MeanF) HABC (Std) DBBO (MeanF) DBBO (Std)
1 Sphere 0.0000E+00 0.0000E+00 1.2076E-03 4.1856E-04
2 Rosenbrock 1.1011E+00 1.5612E+00 2.0193E+01 1.7700E+01
3 Quadric 1.8232 E-02 2.1319 E-02 1.6612E-02 1.4200E-02
4 Sin 6.6598E-15 6.8549E-15 1.9785E-14 3.1297E-14
5 Rastrigin 0.0000E+00 0.0000E+00 6.5885E-02 3.4415E-02
6 Schwefel 3.9011E+02 1.6016 E+02 3.5816E-02 2.0600E-02
7 Ackley 7.1161E-07 3.68E- 07 7.8430E-08 1.7061E-08
8 Griewank 3.285 E-04 1.6344 E-03 1.2020E-02 1.3321E-02
9 Shifted Sphere -4.5000E+02 1.4978E-14 -4.4992E+02 4.7644E-02
10 Shifted Schwefel -1.2042E+02 5.4848E-14 -1.2000E+02 7.8970E-04
11 Shifted rosenbrock 4.0390E+02 3.7741E+01 1.5632E+01 2.1716E+01
12 Shifted rotated Griewank without bounds -1.7999E+02 7.7096E-03 -1.7917E+02 7.7565E-02
13 Shifted rotated Ackley -1.1905E+02 4.8932E-01 -1.1905E+02 4.4297E-02
14 Shifted Rastrigin -3.3000E+02 0.0000E+00 -3.2995E+02 1.6600E-02
15 Shifted rotated Rastrigin -2.4042E+02 2.4662E+01 -325.0551 6.51E+00

5 Application of DBBO to optimal power flow problem

5.1 Optimal power flow problem

Optimal power flow (OPF) is an important tool for power system operators that aims to optimize a
certain objective, subject to the network power flow equations of system, and equipment within operat-
ing limits. The minimization of fuel cost is widely considered objective function subject to equality and
inequality constraints among many objectives. Equality constraints in the form of power flow equations
and inequality constraints in the form of limits on control variables and operational limits on system
dependent variables. The control variables for the OPF problem are generator real powers, generator
bus voltages, the reactive powers for shunt VAR compensations and transformer tap settings. The sys-
tem dependent variables are the load bus voltages, transmission line loadings, and generators reactive
powers. In general, the OPF problem is nonlinear and non-convex optimization problem with large
number of constraints. The OPF optimization problem is generally solved by the conventional method
and intelligent method. Disrupt biogeography-based optimization (DBBO) algorithm is one of the in-
telligent methods for solving OPF optimization problem. The main purpose of solving optimal power
flow optimization problem is to find an optimal setting of control variable while satisfying the equality
and inequality constraints.

5.2 Mathematical formulation of OPF formulation

Mathematical formulation of a general optimal power flow problem can be seen as:

Min F (u, x) (22)

subject to:
G(u, x) = 0 (23)

Hmin ≤ H(u, x) ≤ Hmax (24)

Where F is the objective function to be optimized, G is set of equality constraints representing nodal
power injections, and H is set of inequality constraints. The vector u consists of independent variables
or control variables which include generator bus voltages (Vg), generator real powers (Pg) except at
slack bus, transformer tap settings (T ), shunt VAR compensation (Qc). Vector x consists of dependent
variables or state variable which includes generator active power at slack bus (Pg1), load bus voltages
(Vl), generator reactive powers (Qg) and transmission line loading (line flow) (Sl). Hence, u and x can
be expressed as:

u = [Pg2....Pgng, Vg1....Vgng, Qc1....Qcnc, T1....Tnt] (25)
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x = [Pg1, Vl1....Vlnl, Qg1....Qgng, Sl1....SlNl] (26)

where ng, nc, nt, nl and Nl are the numbers of generators, shunt VAR compensators, regulating
transformers, load buses and transmission lines, respectively.
G(u, x) is the set of equality constraints which represents typical load flow equations of the type:

Pgi − Pdi − Vi
nb∑
k=1

Vk (Gik cos θik +Bik sin θik) = 0 (27)

and

Qgi −Qdi − Vi
nb∑
k=1

Vk (Gik sin θik +Bik cos θik) = 0 (28)

where Pgi and Qgi are the active and reactive powers at ith generator, Pdi and Qdi are the active
and reactive power demands at the ith bus, Gik and Bik are the transfer conductance and susceptance
between buses i and k, respectively, θik is the phase angle difference between the voltages at buses i
and k and nb is the total number of bus bars. Also H(u, x) is the set of system operational limiting
constraints which include following inequality constraints:

– Generator constraints:

Pmin
gi ≤ Pgi ≤ Pmax

gi , for i = 1, 2, ..., ng (29)

Qmin
gi ≤ Qgi ≤ Qmax

gi , for i = 1, 2, .., ng (30)

V min
gi ≤ Vgi ≤ V max

gi , for i = 1, 2, ..., ng (31)

– Security constraints:

V min
li ≤ Vli ≤ V max

li , for i = 1, 2, ..., nl (32)

Sli ≤ Smax
li , for i = 1, 2, ..., Nl (33)

– Transformer constraints:

Tmin
i ≤ Ti ≤ Tmax

i , for i = 1, 2, ..., nt (34)

– Shunt VAR compensator constraints:

Qmin
ci ≤ Qci ≤ Qmax

ci , for i = 1, 2, ..., nc (35)

In the present study, penalty function method has been adopted to handle constraints with respect to
dependent variables i.e, if any dependent variable violates its bound then square of that violation amount
multiplied by a fix penalty factor is added to its corresponding fitness function so that infeasible solutions
can be rejected. On the other hand, the constraints corresponding to control variables are handled by
generating them between the given bounds in its initialization phase. In this way, the modified objective
function for OPF is of the following form:

Min Fmod =F (u, x) + λp(Pg1 − P lim
g1 )2 + λv

nl∑
i=1

(Vli − V lim
li )2

+ λq

ng∑
i=1

(Qgi −Qlim
gi )2 + λs

Nl∑
i=1

(Sli − Slim
li )2

(36)

where λp, λv, λq and λs are the penalty factors (all were set to 105 in this study) and alim is the limit
value of the dependent variable a and is given as:

alim =

{
amax; a > amax

amin; a < amin
(37)
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5.2.1 Quadratic fuel cost function

The generator cost characteristics are defined as quadratic cost function of generator power output and
Eq. (36) is selected as the objective function to be optimized. In Eq. (36), the F (u, x) is designed for
this purpose as:

F (u, x) =

ng∑
i=1

fi(Pgi) =

ng∑
i=1

(ai + biPgi + ciP
2
gi) (38)

Where fi and Pgi are fuel cost and active power of ith generator, respectively. The variables ai, bi and ci
represent the cost coefficients of ith generator whose values have been considered from standard IEEE
30-bus system and are given here in Table 10. The total number of generators is represented by ng in
the system.

Table 10: Generator cost coefficients for quadratic fuel cost function

Cost coefficients
Bus No.

1 2 5 8 11 13
a 0.00 0.00 0.00 0.00 0.00 0.00
b 2.00 1.75 1.00 3.25 3.00 3.00
c 0.00375 0.01750 0.06250 0.00834 0.02500 0.02500

5.3 DBBO implementation for OPF

DBBO first initializes SIV s of each island which represents a potential solution. The structure of
each island is u = (Pg2....Pgng, Vg1....Vgng, Qc1....Qcnc, T1....Tnt) where each involved variable is self-
constrained i.e., each control variable of individual island u is initialized randomly within allowable
limits given in Table 11. If any control variable violates its lower or upper limits, then that is adjusted
to the corresponding violated limit. To handle the inequality constraints of dependent variables, the
modified objective function (Eq. 36) is considered to be optimized.

Table 11: The upper and lower limits of control variables.

Control variables Min Max Control variables Min Max
P1 50 200 T11 0.9 1.1
P2 20 80 T12 0.9 1.1
P5 15 50 T15 0.9 1.1
P8 10 35 T36 0.9 1.1
P11 10 30 Qc10 0 5
P13 12 40 Qc12 0 5
V1 0.95 1.1 Qc15 0 5
V2 0.95 1.1 Qc17 0 5
V5 0.95 1.1 Qc20 0 5
V8 0.95 1.1 Qc21 0 5
V11 0.95 1.1 Qc23 0 5
V13 0.95 1.1 Qc24 0 5

Qc29 0 5

5.4 Experimental setting, results and discussion

To validate the effectiveness and robustness of the DBBO algorithm, it has been applied on standard
IEEE 30-bus system. This test system consists of 6 generating units at buses 1, 2, 5, 8, 11 and 13
interconnected with 41 transmission lines with a total load of 283.4 MW and 126.2 MVAR and 4
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transformers with off-nominal tap ratios in lines 6− 9, 6− 10, 4− 12 and 28− 27. The shunt injections
are provided at buses 10, 12, 15, 17, 20, 21, 23, 24 and 29. Experimental setting is same as given in 4.1
except the total number of simulations. Here 50 simulations are considered for solving OPF problem.
Table 13 shows the optimal control parameter settings achieved by the DBBO and BBO algorithms for
OPF problem in quadratic fuel cost function. Table 12 presents the comparison results of BBO, DBBO
and other results from the literature. It can be observed from the tables 12 and 13 that DBBO gives
better results compared to other considered algorithms and is competing with BBO algorithm with
regard to achieving fuel cost.

Table 12: Minimum fuel cost for different methods for IEEE 30-bus system

Optimization methods Minimum fuel cost ($/h)
ITS [19] 804.5560
IEP[19] 802.4650
SADE-ALM [27] 802.4040
DE-OPF [22] 802.3940
IBF [2] 802.325
MSFLA [18] 802.287
ABC [1] 800.660
BBO 800.4852
DBBO 800.4564

Table 13: Best control variable settings by BBO and DBBO algorithms for quadratic fuel cost function.

Control variables BBO DBBO
P1 177.0859 177.293
P2 48.6604499 48.69543291
P5 21.36316102 21.33046969
P8 21.27492825 21.34609834
P11 11.90827271 11.75659277
P13 12.12408737 12.00449685
V1 1.081898126 1.086100863
V2 1.041281442 1.034739184
V5 1.032920165 1.034431247
V8 1.039071401 1.037189401
V11 1.066625182 1.07733275
V13 1.053257874 1.041313005
T11 1.022827852 1.080297079
T12 0.942469605 0.9
T15 0.977002946 0.958954479
T36 0.973209406 0.973701054
Qc10 4.997354561 5
Qc12 4.287750133 4.753830765
Qc15 4.189618845 5
Qc17 4.990626993 4.999713444
Qc20 4.330989237 4.656365932
Qc21 4.995054786 5
Qc23 3.501303645 3.494672339
Qc24 4.986178075 5
Qc29 2.430692314 2.502092122
Fuel cost ($/h) 800.4852501 800.4564996

6 Conclusion

This paper presents a modified BBO named as DisruptBBO (DBBO) to improve the exploration and
exploitation ability of BBO algorithms. The performance of DBBO is compared with BBO, LBBO, and
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B-BBO. Through intensive statistical analysis, improvement is shown in terms of reliability, efficiency,
and accuracy. To further validate the performance of DBBO over variants of BBO and other state-of-the-
art metaheuristics, its performance has been compared with BBO variants such as BBO-MBLX-PM,
and BBBO as well as with other state-of-the-art algorithms such as SG-PSO, SP-PSO, LdDE (10-
dimensional), LdDE (30-dimensional) and HABC. The comparison of the results show that on average
performance of DBBO is comparative with all other considered algorithms. DBBO has also been used
to optimize the OPF problem. The results show that performance of DBBO is competitive with that
of BBO for solving OPF optimization problem.
The future scope of this work is the implementation of the proposed disruption operator in other nature
inspired algorithms to make them more efficient.
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