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Optimal Power Flow Analysis using Lévy Flight Spider
Monkey Optimization Algorithm

Abstract: Optimal power flow (OPF) is the most requisite tool in the power system
analysis. The OPF is relatively a difficult constrained optimization problem and broadly
solved by conventional as well as modern intelligent methods. In this paper the authors
proposed a levy flight spider monkey optimization (LFSMO) algorithm to solve the standard
OPF problem for IEEE 30-bus system, which is proposed to improve the exploitation
capability of spider monkey optimization (SMO) algorithm. The performance of LFSMO is
evaluated by testing it over 25 benchmark functions.

Keywords: Spider Monkey Optimization; Swarm Intelligence; Lévy Flight Local Search;
Optimal Power Flow

1 Introduction

The fundamentals of optimal power flow (OPF) problem analysis provides optimum utilization of
electrical power to produce economic and secure operating conditions for planning and operation of
power system. In power systems, to optimize the objective function like fuel cost, the power flow
equations and operational limits are considered as equality constraints while limits on control variables
are considered as inequality constraints on system dependent variables. In OPF problem, generator
real power, bus voltage, reactive power for shunt volt-ampere reactive (VAR) compensation, and
transformer tap setting are the control variables, while load bus voltage, transmission line loadings,
and generators reactive powers are system dependent variables.

The OPF problem, in general, is a non-convex, highly constrained nonlinear, large-scale
optimization problem. The OPF problem was first introduced by Carpentier in 1962 (Carpentier,
1962, 1979) and formulated by Dommel et. al. (Dommel & Tinney, 1968). Since then it has been
an area of interest for many researchers. The different OPF problems have been worked out by
applying various mathematical techniques such as Newton-based method (Sun, Ashley, Brewer,
Hughes, & Tinney, 1984), linear programming (Mota-Palomino & Quintana, 1986; Al-Muhawesh &
Qamber, 2008), non-linear programming (Habibollahzadeh, Luo, & Semlyen, 1989), and interior point
method (Granville, 1994; Wei, Sasaki, Kubokawa, & Yokoyama, 1998). While applying the classical
mathematical techniques, the fuel cost characteristic of a generating unit is assumed to be smooth
and convex functions. These methods are sensitive towards initial solutions and may fail due to initial
improper values of variables. The practical power systems are difficult to solve by these classical
mathematical techniques due to their nonlinear characteristics of prohibited operating zones, valve-
point effects, and piecewise quadratic cost functions. Therefore, an efficient strategy is highly required
to deal the non-convex, non-linear, and multi-modular power system problems.

Researchers analyzed the efficiency of the nature inspired algorithms (NIA) to deal with such kind
of problems and have applied many NIA strategies like genetic algorithm (GA) (Bakirtzis, Biskas,
Zoumas, & Petridis, 2002), particle swarm optimization (PSO) (Abido, 2002a), tabu search (TS)
(Abido, 2002b), evolutionary programming (EP) (Ongsakul & Tantimaporn, 2006; Yuryevich & Wong,
1999), differential evolution (DE) (Sayah & Zehar, 2008), simulated annealing (SA) (Roa-Sepulveda
& Pavez-Lazo, 2003), and improved meta-heuristics (Reddy & Bijwe, 2016). The reported results
showed significant improvement in the accuracy as compared to the classical mathematical techniques.
Therefore, it is suggested to apply the meta-heuristic techniques to solve the complex OPF problem
for which deterministic mathematical technologies are not able to produce desired results.
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Bansal et. al. (Bansal, Sharma, Jadon, & Clerc, 2014) introduced a well-tested swarm intelligence
based algorithm, namely spider monkey optimization (SMO) algorithm. The SMO algorithm relies
on the food foraging behavior of spider monkeys (SMs). The reported results stated that the SMO
algorithm performs better than the artificial bee colony (ABC), DE (DE/rand/bin/1), PSO (PSO-
2011), and covariance matrix adaptation evolution strategies (CMA-ES) algorithms.

Further, through experiments and literature, SMO is presented as an efficient algorithm for solving
the multimodal problems due to its structured swarm based search strategy. The SMO algorithm has
shown its efficiency to solve real world problems of power system like capacitor placement (A. Sharma,
Sharma, Bhargava, Sharma, & Bansal, 2016) and lower order system modeling (A. Sharma, Sharma,
Bhargava, & Sharma, 2016).

Therefore, in this paper, SMO algorithm is applied to solve a multimodal OPF (IEEE-30 bus)
problem. Though SMO achieves efficient solutions but due to the presence of a random component
in the position update process, there is always a chance to get skip of the real solution. Therefore,
incorporation of local search strategy may improve the exploitation capability and may reduce the
risk of skipping the real solution. So, to enhance the exploitation capability of the SMO algorithm,
a local search strategy, namely lévy flight local search (LFLS) (H. Sharma, Bansal, Arya, & Yang,
2015) is incorporated with SMO. The developed approach is named as a lévy flight spider monkey
optimization (LFSMO) algorithm. The performance of the proposed strategy is evaluated by testing it
on 25 well-known benchmark functions. This set of functions includes unimodal, multimodal, separable,
and nonseparable complex functions. Further, the proposed LFSMO is also applied to solve the OPF
problem, and the reported results are compared with PSO, DE, ABC and other state-of-art methods
available in the literature.

The paper is organised as shown in Figure 1 as follows: Basic SMO is explained in Section 2. Section
3, describes a brief review of local search strategies. LFLS is described in Section 4. In Section 5, LFLS
is incorporated with SMO. The performance of LFSMO is evaluated in Section 6. The OPF problem
is explained in Section 7. In Section, 8 SMO and LFSMO are applied to solve OPF problem. Finally,
in Section 9, paper is concluded.

2 Spider Monkey Optimization (SMO) Algorithm

In the field of swarm intelligence based algorithms, SMO algorithm is a new approach, developed by
Bansal et. al. (Bansal, Sharma, et al., 2014). SMO algorithm relies on the foraging behavior and social
structure of SMs. SMs have been categorized as fission fusion social structure (FFSS) based animals,
in which individuals form small impermanent parties whose member belongs to a larger community.
Monkeys split themselves from larger to smaller groups and vice versa based on scarcity and availability
of food.

2.1 Main steps of SMO algorithm

The SMO algorithm consists of six phases: Local Leader phase, Global Leader phase, Local Leader
Learning phase, Global Leader Learning phase, Local Leader Decision phase and Global Leader
Decision phase. Each of the phases is explained as follows:

2.1.1 Initialization of the Population

Initially, SMO generates an equally distributed initial population of N, SMs where each monkey SMi (i
= 1, 2, ...,N) is a D-dimensional vector and SMi represents the i

th SM in the population. SM represents
the potential solution of the problem under consideration. Each SMi is initialized as follows:

SMij = SMminj + U(0, 1)× (SMmaxj − SMminj) (1)

where SMminj and SMmaxj are respectively lower and upper bounds of SMi in jth direction and
U(0, 1) is a uniformly distributed random number in the range [0, 1].
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Figure 1 Flow chart of organization of paper
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2.1.2 Local Leader Phase (LLP)

Here each SM updates it’s current position based on gathered information from the local leader as well
as local group members. The fitness value of the so obtained new position is computed. If the fitness
value of the new position is superior to the old position, then the SM modifies it’s position with the
new one. The position update equation for ith SM (which is a member of kth local group) in this phase
is

SMnewij = SMij + U(0, 1)× (LLkj − SMij) + U(−1, 1)× (SMrj − SMij) (2)

where SMij is the jth dimension of the ith SM, LLkj represents the jth dimension of the kth local
group leader position. SMrj is the jth dimension of the rth SM which is chosen arbitrarily within kth

group such that r 6= i. U(0, 1) is a uniformly distributed random number between 0 and 1.

2.1.3 Global Leader Phase (GLP)

In this phase, all SMs update their positions using knowledge of global leader and local group members
experience. The position update equation for this phase is as follows:

SMnewij = SMij + U(0, 1)× (GLj − SMij) + U(−1, 1)× (SMrj − SMij) (3)

Where GLj is the jth dimension of the global leader position and j is the randomly chosen index. The
positions of SMs (SMi) are updated based on a probability probi which is a function of fitness. In this
way, a better candidate will have more chance to make it better. The probability probi is calculated as
(H. Sharma, Bansal, & Arya, 2014):

probi = 0.9×
fitnessi

max fitness
+ 0.1 (4)

Here fitnessi is the fitness value of ith SM and max fitness is the highest fitness in the group.
The fitness of the newly generated SMs is calculated and compared with the old one, and the better
position is adopted.

2.1.4 Global Leader Learning (GLL) Phase

In this phase, the position of the SM having best fitness in the population is selected as the updated
position of the global leader using greedy selection. Further, the position of global leader is checked
whether it is updating or not and if not then the global limit count is incremented by 1.

2.1.5 Local Leader Learning (LLL) Phase

In this phase, the position of the SM having best fitness in that group is selected as the updated
position of the local leader using greedy selection. Next, if the modified position of the local leader
is compared with the old one and if the local leader is not updated, then the local limit count is
incremented by 1.

2.1.6 Local Leader Decision (LLD) Phase

If any local leader is not updated up to a preset threshold called local leader limit, then all the members
of that minor group update their positions either by random initialization or by using combined
information from the global leader and local leader through Equation 5.

SMnewij = SMij + U(0, 1)× (GLj − SMij) + U(0, 1)× (SMij − LLkj) (5)

It is apparent from Equation 5 that the updated dimension of this SM is attracted towards global
leader and repels from the local leader.
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2.1.7 Global Leader Decision (GLD) Phase

In this phase, the global leader is monitored, and if it is not updated up to a preset number of iterations
called global leader limit (GLL), then the global leader divides the population into minor groups.
Firstly, the population is divided into two groups and then three groups and so on till the maximum
number of groups (MG) are formed. After every division local leader learning process is initiated to
choose the local leader in the newly formed groups. The case in which a maximum number of groups
are formed and even then the position of global leader is not updated then the global leader combines
all the minor groups to form a single group.

3 Recent Local Search Strategies

Researchers are constantly working in the field of memetic search approach. The exploitation of local
search space is established in evolutionary computing by application of local search strategy. Some
of the significant work in this area is presented in this paper. In 2008, J. Knowles et. al. (Knowles,
Corne, & Deb, 2008) introduced memetic algorithm (MA) for complex optimization problems like
multi-objective optimization. In 2009, F. Neri et. al. (F. Neri & Tirronen, 2009) incorporated scale
factor local search to improve exploitation capability of DE. In 2009, A. Caponio et. al. (Caponio, Neri,
& Tirronen, 2009) proposed super-fit memetic differential evolution (SFMDE) with two local search
strategies namely, Nelder Mead algorithm and Rosenbrock algorithm. In 2009, H. Wang et. al. (Wang,
Wang, & Yang, 2009) incorporated an adaptive hill climbing method as the local search technique with
an evolutionary algorithm. In 2009, C. K. Goh et. al. (Goh, Ong, & Tan, 2009) presented evolutionary
multi-objective optimization in uncertain environments. In 2009, K. Tang et. al. (Tang, Mei, & Yao,
2009) proposed an MA, namely memetic algorithm with extended neighborhood search (MAENS),
with a novel local search operator, namely merge-split (MS). In 2009, P. P. Repoussis et. al. (Repoussis,
Tarantilis, & Ioannou, 2009) presented an arc-guided evolutionary algorithm for the vehicle routing
problem with time windows. In 2009, J. M. Richer et. al. (Richer, Goëffon, & Hao, 2009) proposed
a memetic algorithm for phylogenetic reconstruction with maximum parsimony. In 2009, C. Gallo et.
al. (Gallo, Carballido, & Ponzoni, 2009) hybridized a new approach with an evolutionary algorithm
with local search for microarray biclustering. In 2009, S. S. Rao et. al. (Rao & Rao, 2009) addressed
the techniques and applications of real-world case studies. In 2010, Y. S. Ong et. al. (Ong, Lim, &
Chen, 2010) presented several deployments of memetic computing methodologies to solve complex real
world problems. In 2010, E. Mininno et. al. (Mininno & Neri, 2010) incorporated memetic approach
with DE in noisy optimization. In 2010, E. Mezura-Montes et. al. (Mezura-Montes & Velez-Koeppel,
2010)proposed elitist ABC algorithm integrated with two local search strategies, the first one is used
with 30, 40, 50, 60, 70, 80, 90, 95, and 97 percentages of function evaluations have been attained
while, the second is used with 45, 50, 55, 80, 82, 84, 86, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, and 99
percentages of function evaluations have been attained. In 2011, X. Chen et. al. (Chen, Ong, Lim, &
Tan, 2011) proposed a comprehensive multi-facet survey of recent research in memetic computation.
In 2011, F. Kang (Kang, Li, & Ma, 2011) combined Rosenbrocks rotational direction technique with
ABC to present Rosenbrock’s ABC (RABC). In 2012, Carlos et. al. (C. M. P. E. Neri Ferrante; Cotta,
Vol. 379, 2012) presented memetic computing for studying complex structures composed of simple
modules. In 2012, I. Fister et. al. (Fister Jr, Yang, Fister, & Brest, 2012) incorporated two local
search heuristics with ABC namely, Nelder-Mead algorithm (NMA) and random walk with direction
exploitation (RWDE). Further, I. Fister et. al. proposed memetic firefly algorithm for combinatorial
optimization (Fister Jr et al., 2012). Later in 2012, C. Cotta et. al. (Cotta & Neri, 2012) combined
various operators to inculcate them with the stochastic adaptive rule as specified for balancing the
exploration and exploitation. A brief review of nature inspired algorithms was presented by I. Fister et.
al. in 2013 (Fister Jr, Yang, Fister, Brest, & Fister, 2013). In same year, H. Sharma et. al. (H. Sharma,
Bansal, & Arya, 2013; H. Sharma, Jadon, Bansal, & Arya, 2013) introduced ABC algorithm with
opposition based l’evy flight local search (LFLS) strategy and LFLS with DE algorithm. In 2015, H.
Sharma et. al. (H. Sharma et al., 2015) integrated LFLS strategy with ABC. Recently in 2016 Singh
et. al. (Singh & Dhillon, 2016) presented multiobjective thermal power dispatch using opposition-based
greedy heuristic search. In the same year Lotfipour et. al. (Lotfipour & Afrakhte, 2016) propound a
discrete Teaching-Learning-Based Optimization algorithm to solve distribution system reconfiguration
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in presence of distributed generation. Further, In 2016, A. Sharma et. al. (A. Sharma, Sharma,
Bhargava, & Sharma, 2016) incorporated power law local search strategy with SMO algorithm for
solving real-world lower order system modeling problem. In same year A. Yadav et. al. proposed a new
searching ability testing technique in harmony search algorithm (HSA) (Yadav, Yadav, & Kim, 2016).
Further, A. Yadav et. al. hybridized PSO with gravitational search algorithm (GSA) to propose particle
swarm optimizer for global optimization (Yadav, Deep, Kim, & Nagar, 2016). Recently A. Sharma et.
al. proposed a Limaçon inspired local search strategy and incorporated it into SMO algorithm to solve
capacitor placement problem (A. Sharma, Sharma, Bhargava, Sharma, & Bansal, 2016).

From memetic search study, it is clear that every search region may be divided into two kinds of
search spaces, local search space, and global search space to find out local optimum and global optimum
respectively. The optimum equilibrium between exploration and exploitation in any algorithm is always
maintained, and it is suggested to inculcate a local search methodology in the primary population-
based algorithm for exploiting the search space. An identified region of a given search space can be
exploited by the local search algorithms; therefore, the local search algorithms are applied to the global
search algorithms to improve the exploitation capability of the global search algorithm. Here the main
algorithm explores while the local search exploits the search space. The main role of local search
algorithms in evolutionary computing is to refine an identified search area to establish exploitation of
the search space (C. M. P. E. Neri Ferrante; Cotta, Vol. 379, 2012).

4 Lévy Flight inspired Local Search Strategy

In this paper, a lévy flight local search (LFLS) strategy developed by Sharma et. al. (H. Sharma et al.,
2015), is applied with basic SMO to improve its exploitation capability. The LFLS strategy is inspired
by lévy flight random walk in which the step size is defined regarding the step-length with a particular
probability distribution. The Equation 6 is used to draw the lévy random step lengths distribution.

L(s) ∼ |s|−1−β , where β (0 < β ≤ 2) is an index and s is the step length (6)

In this work a lévy distribution in symmetric form i.e. either positive or negative step size is used,
known as Mantegna algorithm (Yang, 2011), in which step length s is calculated as follows;

s =
u

|v|1/β
(7)

where, u and v are drawn from normal distributions. That is

u ∼ N(0, σu
2), v ∼ N(0, σv

2) (8)

where,

σu =

{

Γ(1 + β)sin(πβ/2)

βΓ[(1 + β)/2]2(β−1)/2

}1/β

, σv = 1 (9)

This distribution (for s) obeys the expected lévy distribution for |s| ≥ |s0|, where s0 is the smallest
step length (Yang, 2011). Here Γ(.) is the Gamma function and calculated as follows:

Γ(1 + β) =

∫

∞

0

tβe−tdt (10)

If β is an integer, then Γ(1 + β) = β!.
In the proposed strategy, the step sizes are generated using lévy distribution to exploit the search

area and calculated as follows:

step size(t) = 0.002× s(t)× SLC (11)
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here t is the iteration counter for local search strategy, s(t) is calculated using lévy distribution
as shown in Equation 7 and the social learning component (SLC) is used from the global search
algorithm.

In lévy flights, the step sizes are too aggressive, that is, they may generate new solutions often
outside the domain or on a boundary. Since, the local search algorithms can be seen as a population
based stochastic algorithms, where the main task is to exploit the available knowledge about a problem
and steps sizes play a major role in exploiting the identified region. Therefore, 0.002 multiplier is used
in Equation 11 to reduce the step size. The multiplier is selected through empirical experiments. The
solution update equation of an ith individual, based on the proposed local search strategy is given in
Equation 12:

x′

ij(t+ 1) = xij(t) + step size(t)× U(0, 1) (12)

here xij is the individual which is going to modify its position, U(0, 1) is a uniformly distributed
random number between 0 and 1 and step size(t)× U(0, 1) is the actual random walks or flights drawn
from lévy distribution.

The pseudo-code of the proposed LFLS is shown in Algorithm 1 (H. Sharma et al., 2015). In

Algorithm 1 Lévy Flight Local Search Strategy:

Input optimization function Minf(x) and β;
Select an individual xi in the swarm which is going to modify its position;
Initialize t = 1 and σv = 1;
Compute σu using Equation 9;
while (t < ǫ) do
Compute step size using Equation 11;
Generate a new solution x′

i using Equation 12;
Calculate f(x′

i);
if f(x′

i) < f(xi) then
xi = x′

i;
end if
t = t+ 1;

end while

Algorithm 1, ǫ determines the termination of local search.

5 Lévy Flight Spider Monkey Optimization

Bansal et. al. (Bansal, Sharma, et al., 2014) show that exploration and exploitation cannot be balanced
due to the presence of random component and there is always a high chance to skip the true solution.
Therefore, to expedite the exploitation capability of SMO, a lévy flight local search (LFLS) strategy
is incorporated with it. The LFLS, in the case of large step sizes, can search within the area which
otherwise was not exploited by the basic SMO. In LFLS, the step size is calculated using Equation 13:

step size = 0.002× s(t)× (xbestj − xkj)× U(0, 1) (13)

here, t is the iteration counter for local search strategy. Social learning component (SLC) is (xbestj −
xkj) in which xbest is the best solution in the current swarm and xk is the randomly selected solution
within population and xk 6= xbest. The position update equation of the best individual within the
current population is given by Equation 14:

x′

bestj(t+ 1) = xbestj(t) + step size(t) (14)

In LFLS, only the best particle of the current swarm updates itself in its neighborhood. The pseudo-
code of the proposed LFLS with SMO is shown in Algorithm 2.
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Algorithm 2 Lévy Flight Local Search Strategy with SMO:

Input optimization function Minf(x) and β;
Select the best solution xbest in the swarm;
Initialize t = 1 and σv = 1;
Compute σu using Equation 9;
while (t < ǫ) do
Compute step size using Equation 13;
Generate a new solution x′

best using Algorithm 3;
Calculate f(x′

best);
if f(x′

best) < f(xbest) then
xbest = x′

best;
end if
t = t+ 1;

end while

Algorithm 3 New solution generation:

Input the best solution xbest and s;
for j = 1 to D do
if U(0, 1) > pr then
x′

bestj = xbestj + step size;
else
x′

bestj = xbestj ;
end if

end for
Return x′

best

In Algorithm 2 and 3, ǫ is the termination criteria of the proposed local search, pr is a perturbation
rate (a number between 0 and 1) which controls the amount of perturbation in the best solution,
U(0, 1) is a uniform distributed random number between 0 and 1, D is the dimension of the problem
and xk is a randomly selected solution within swarm. See section 6.1 for details of these parameter
settings.

The proposed lévy flight SMO (LFSMO) consists of seven phases: local leader phase, global leader
phase, local leader learning phase, global leader learning phase, local leader decision phase and global
leader decision phase and lévy flight local search phase (LFLS). The pseudo-code of the LFSMO
algorithm is shown in Algorithm 4.

Algorithm 4 Lévy Flight SMO:

Initialize the parameters;
while Termination criteria do
Step 1: Local Leader phase.
Step 2: Global Leader phase.
Step 3: Local Leader Learning phase.
Step 4: Global Leader Learning phase.
Step 5: Local Leader Decision phase.
Step 6: Global Leader Decision phase.
Step 7: Apply Lévy Flight Local Search Strategy (LFLS) phase using Algorithm 2.

end while
Print best solution.
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6 Experimental Results and Discussion

To analyze the performance of LFSMO, 25 different global optimization problems (f1 to f25) (listed
in Table 1) are selected. These are continuous optimization problems and have different degrees
of complexity and multimodality. Test problems f1 to f25 are taken from (Ali, Khompatraporn, &
Zabinsky, 2005; Suganthan et al., 2005) with the associated offset values. All the experiments are
carried out by the algorithms implemented in MATLAB 7.8 on a personal computer with the Intel
Core i7 processor, 4GB RAM, and Windows 7 operating system.
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0Table 1: Test problems. D: Dimensions, C: Characteristic, U: Unimodal, M:

Multimodal, S: Separable, N: Non-Separable, AE: Acceptable Error

Test Problem Objective function search

Range

Optimum Value D AE C

De Jong f4 f1(x) =
∑D

i=1 i× (xi)
4

[-5.12, 5.12] f(~0) = 0 30 1.0E − 05 M, S

Rastrigin f2(x) = 10D +
∑D

i=1[x
2
i − 10 cos(2πxi)] [-5.12 5.12] f(~0) = 0 30 1.0E − 05 M, N

Ackley
f3(x) = −20 + e+ exp(− 0.2

D

√

∑D

i=1 xi
3) [-1 1] f(~0) = 0 30 1.0E − 05 M, N

−exp( 1
D

∑D

i=1 cos (2πxi)xi)

Exponential f4(x) = −(exp(−0.5
∑D

i=1 xi
2)) + 1 [-1 1] f(~0) = −1 30 1.0E − 05 M, N

Zakharov f5(x) =
∑D

i=1 xi
2 + (

∑D

i=1
ixi

2
)
2
+ (

∑D

i=1
ix1
2
)
4

[-5.12 5.12] f(~0) = 0 30 1.0E − 02 M, N

Cigar f6(x) = x0
2 + 100000

∑D

i=1 xi
2

[-10 10] f(~0) = 4 30 1.0E − 05 U, S

brown3 f7(x) =
∑D−1

i=1 (xi
2(xi+1)

2+1
+ xi+1

2xi
2+1

) [-1 4] f(~0) = 0 30 1.0E − 05 U, N

Axis parallel
hyper-ellipsoid

f8(x) =
∑D

i=1 i× x2
i [-5.12, 5.12] f(~0) = 0 30 1.0E − 05 U, S

Sum of different
powers

f9(x) =
∑D

i=1 |xi|
i+1

[-1, 1] f(~0) = 0 30 1.0E − 05 M, S

Rotated hyper-
ellipsoid

f10(x) =
∑D

i=1

∑i

j=1 x
2
j [-65.536,

65.536]
f(~0) = 0 30 1.0E − 05 M, S

Ellipsoidal f11(x) =
∑D

i=1 (xi − i)2 [-D, D] f(1, 2, 3, ..., D) = 0 30 1.0E − 05 U, S

Beale function f12(x) = [1.5 − x1(1− x2)]
2 + [2.25 − x1(1− x2

2)]
2 + [2.625 −

x1(1− x3
2)]

2
[-4.5, 4.5] f(3, 0.5) = 0 2 1.0E − 05 M, N

Colville function f13(x) = 100[x2 − x2
1]

2 + (1− x1)
2 + 90(x4 − x2

3)
2 + (1−

x3)
2 + 10.1[(x2 − 1)2 + (x4 − 1)2] + 19.8(x2 − 1)(x4 − 1)

[-10, 10] f(~1) = 0 4 1.0E − 05 M, N

Kowalik f14(x) =
∑11

i=1[ai −
x1(b

2
i
+bix2)

b2
i
+bix3+x4

]2 [-5, 5] f(0.192833,
0.190836, 0.123117,
0.135766) = 0.000307486

4 1.0E − 05 M, N

2D Tripod
function

f15(x) = p(x2)(1 + p(x1)) + |(x1 + 50p(x2)(1− 2p(x1)))|+
|(x2 + 50(1− 2p(x2)))|

[-100, 100] f(0,−50) = 0 2 1.0E − 04 M, N

Shifted
Rosenbrock

f16(x) =
∑D−1

i=1 (100(z2i − zi+1)
2 + (zi − 1)2) + fbias, z = x−

o+ 1, x = [x1, x2, ....xD], o = [o1, o2, ...oD ]
[-100, 100] f(o) = fbias = 390 10 1.0E − 01 M, N

Shifted Sphere f17(x) =
∑D

i=1 z
2
i + fbias, z = x− o ,x = [x1, x2, ....xD], o =

[o1, o2, ...oD ]
[-100, 100] f(o) = fbias = −450 10 1.0E − 05 M, S

Shifted Ackley f18(x) = −20 exp(−0.2
√

1
D

∑D

i=1 z
2
i )− exp( 1

D

∑D

i=1 cos(2πzi)) +

20 + e+ fbias, z = (x− o), x = (x1, x2, ........xD), o =
(o1, o2, ........oD)

[-32, 32] f(o) = fbias = −140 10 1.0E − 05 M, S

Six-hump camel
back

f19(x) = (4− 2.1x2
1 + x4

1/3)x
2
1 + x1x2 + (−4 + 4x2

2)x
2
2 [-5, 5] −1.0316 2 1.0E − 03 M, N

Easom’s function f20(x) = −cosx1cosx2e
((−(x1−π)2−(x2−π)2)) [-10, 10] f(π, π) = −1 2 1.0E − 13 M, S

Dekkers and
Aarts

f21(x) = 105x2
1 + x2

2 − (x2
1 + x2

2)
2 + 10−5(x2

1 + x2
2)

4
[-20, 20] f(0, 15) = f(0,−15) =

−24777
2 5.0E − 01 M, N

McCormick f22(x) = sin(x1 + x2) + (x1 − x2)
2 − 3

2
x1 +

5
2
x2 + 1 −1.5 ≤ x1 ≤

4,−3 ≤ x2 ≤

3

f(−0.547, −1.547)=
−1.9133

30 1.0E − 04 M, N

to be cont’d on next page
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Table 1: Test problems. D: Dimensions, C: Characteristic, U: Unimodal, M:
Multimodal, S: Separable, N: Non-Separable, AE: Acceptable Error

Test Problem Objective function search

Range

Optimum Value D AE C

Meyer and Roth
Problem

f23(x) =
∑5

i=1(
x1x3ti

1+x1ti+x2vi
− yi)

2
[-10, 10] f(3.13, 15.16, 0.78) =

0.4E − 04
3 1.0E − 03 U, N

Shubert f24(x) = −
∑5

i=1 i cos((i+ 1)x1 + 1)
∑5

i=1 i cos((i+ 1)x2 + 1) [-10, 10] f(7.0835, 4.8580) =
−186.7309

2 1.0E − 05 M, S

Pressure Vessel f25=0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3 x1=[1.1, 12.5]

x2=[0.6, 12.5]
x3=[0, 240]
x4=[0, 240]

f(~0) = 0 4 1.0E − 05 M, S
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6.1 Experimental Setting

To analyze the performance of LFSMO, it is compared with basic SMO, PSO − 2011, ABC, DE,
CMA− ES, and PLSMO with following experimental settings (Bansal, Sharma, et al., 2014):

• Population Size N=50,

• MG = N/10,

• GlobalLeaderLimit = 50,

• LocalLeaderLimit =1500,

• pr ∈ [0.1, 0.4], linearly increasing over iterations,

prG+1 = prG + (0.4− 0.1)/MIR (15)

where, G is the iteration counter, MIR is the maximum number of iterations.,

• The stopping criteria is either maximum number of function evaluations (which is set to be
200000) is reached or the acceptable error (mentioned in Table 1) has been achieved,

• The number of simulations/run =100,

• To set termination criteria of LFLS, the performance of LFSMO is measured for considered
test problems on different values of ǫ and results in terms of success are analyzed in Figure 2(a).
It is clear from Figure 2(a) that ǫ = 10 gives better results (highest value of sum of success).
Therefore, termination criteria is set to be ǫ = 10,

• The value of β = 0.002 is to be set based on the empirical experiments as shown in Figure 2 (b),

• Parameter settings for the algorithm SMO, ABC, PSO − 2011, DE, PLSMO, CMA− ES, are
similar to their legitimate research papers respectively.

(a) (b)
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Figure 2 Variation in sum of success (a) LFSS termination criteria ǫ (b) with parameter β.
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6.2 Results Comparison

The numerical outcomes acquired are presented in Table 2 for success rate (SR), average number of
function evaluations (AFE), mean error (ME), and standard deviation (SD).

The LFSMO, SMO, PSO − 2011, ABC, DE, CMA− ES and one recent significant variant of
SMO namely, PLSMO are compared in terms of SR, AFE, ME, and SD as presented in Table
2. The outcomes present that LFSMO is competitive than SMO and other considered algorithms
for most of the benchmark test problems. The considered algorithms are also equated through Mann-
Whitney U rank sum test (H. Sharma et al., 2015), acceleration rate (AR) and boxplot analysis. Mann-
Whitney U rank sum test is applied on average number of function evaluations. For all considered
algorithms the test is performed at 5% significance level (α = 0.05) and the output results for 100
simulations are presented in Table 3. In this table ‘+’ sign indicates that LFSMO is better while
‘-’ sign shows that the other considered algorithm is better. The ‘=’ sign represents that both the
compared algorithms perform almost equally. The LFSMO outperforms as compared to all other
considered algorithms for 7 test problems including f2 − f4, f8, f9, f11, and f24. LFSMO performs
better than basic SMO for 16 test problems, f2 − f4, f8, f9, f11 − f16, f19, and f21, f22, f24, f25. The
LFSMO shows better results for 24 test problems when compared with PSO − 2011 algorithm, f1 −
f19 and f21 − f25. The LFSMO performs better for 22 test problems, f2 − f14, f16 − f18, f20 − f25
in comparison with ABC. The LFSMO performs better for 23 test problems in comparison with
DE, f1 − f4 and f6 − f19, and f21 − f25. In comparison with CMA− ES, LFSMO performs better
on 16 functions, f1 − f11, f17, f19, f23 − f25. The LFSMO shows better results for 12 test problems,
f2 − f4, f8, f9, f11, f12, f14, f15, f19, f21, and f24 when compared with a recent significant variant of
SMO namely, PLSMO algorithm. On functions f22, f25, LFSMO and PLSMO show almost equal
performance. The above discussion represents that LFSMO may be a competitive candidate in the
field of swarm intelligence.

Further, the convergence speed of considered algorithms are compared by analysis of AFEs. There
is an inverse relation between AFEs and convergence speed, for smaller AFEs the convergence speed
will be higher and vice-versa. For minimizing the effects of stochastic nature of algorithm, the reported
AFEs are averaged for 100 runs for each considered test problem. The convergence speed is compared
using acceleration rate (AR) for the considered algorithms which is calculated as follows:

AR =
AFEALGO

AFELFSMO
, (16)

Here, ALGO ∈ {SMO,ABC,PSO − 2011, DE,CMA− ES, PLSMO} and AR > 1 represents that
LFSMO is faster than the compared algorithm. The AR results are shown in Table 4. The results in
Table 4 show that LFSMO converge faster than the considered algorithms for most of the considered
benchmark test functions.

The graphical distribution of empirical data of the considered algorithms is efficiently represented
by the boxplot analysis (H. Sharma et al., 2015). The boxplots for LFSMO and other considered
algorithms are represented in Figure 3. It is clear from this figure that LFSMO performs better than
the considered algorithms as interquartile range, and the median is quite low.

In Table 1, the characteristics of test problems in terms of separability, non-separability, uni-
modularity, and multi-modularity are shown. The above analysis in reference of Table 1 proves that the
proposed LFSMO performs better for nonseparable and multimodal functions. Therefore, the proposed
variant is best-suited for the multimodal, non-separable problems.
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4Table 2: Comparison of the results of test problems

Test Measure LFSMO SMO PSO-2011 ABC DE PLSMO CMA-ES

Problem

f1

SD 1.26E-06 1.20E-06 8.62E-07 3.11E-06 8.51E-07 9.49E-07 1.96E-06
ME 8.54E-06 8.49E-06 9.03E-06 4.90E-06 9.01E-06 8.68E-06 7.37E-06
AFE 13325.96 10725.66 32596.5 9578.5 20859.5 11198.07 20907.6
SR 100 100 100 100 100 100 100

f2

SD 1.61E-06 1.56E-06 1.40E+01 3.30E-06 4.63E+00 1.23E-06 1.67E-03
ME 8.58E-06 8.24E-06 3.87E+01 5.66E-06 1.49E+01 8.81E-06 4.73E-06
AFE 25378.14 96073.45 200050 49984 200000 104046.74 200128
SR 100 100 0 100 0 100 0

f3

SD 1.30E-01 9.32E-07 3.66E-07 1.54E-06 4.42E-07 5.44E-07 3.49E-07
ME 1.86E-02 9.26E-06 9.69E-06 8.63E-06 9.46E-06 9.44E-06 9.46E-06
AFE 25000.8 32438.7 77352 48726.5 43100.5 36013.61 64509.5
SR 98 100 100 100 100 100 100

f4

SD 6.94E-07 7.46E-07 6.15E-07 2.34E-06 9.15E-07 8.37E-07 1.19E-06
ME 9.06E-06 8.96E-06 9.33E-06 7.12E-06 8.98E-06 8.96E-06 8.61E-06
AFE 9003.88 9794.07 28227.5 16974 17269 10149.51 22933.3
SR 100 100 100 100 100 100 100

f5

SD 1.11E-03 9.68E-04 1.80E-02 1.44E+01 5.10E-04 5.99E-04 4.5E-02
ME 9.44E-03 9.15E-03 2.20E-02 9.75E+01 9.43E-03 9.56E-03 9.73E+01
AFE 152136.9 142800.47 196434 200000 69828.5 120875.68 200128
SR 99 100 31 0 100 100 0

f6

SD 7.32E-07 9.57E-07 6.96E-07 2.20E-06 8.75E-07 9.05E-07 9.97E-07
ME 9.01E-06 8.93E-06 9.29E-06 7.77E-06 9.02E-06 8.78E-06 8.77E-06
AFE 28300.25 22572 69125.5 34887 39861.5 23403.64 70154.2
SR 100 100 100 100 100 100 100

f7

SD 8.21E-07 6.39E-07 6.26E-07 2.13E-06 8.21E-07 9.09E-07 1.25E-06
ME 8.97E-06 9.10E-06 9.24E-06 7.84E-06 9.01E-06 8.80E-06 8.39E-06
AFE 15855.55 12635.37 35048.5 20917 22253.5 13133.47 32220.5
SR 100 100 100 100 100 100 100

f8

SD 9.92E-07 8.60E-07 6.37E-07 2.04E-06 1.01E-06 6.80E-07 8.90E-07
ME 8.97E-06 9.00E-06 9.33E-06 7.96E-06 8.92E-06 9.08E-06 8.88E-06
AFE 9451 14811.39 44374.5 22672 25899 15385.16 38151.9
SR 100 100 100 100 100 0 100

f9

SD 1.83E-06 1.81E-06 1.38E-06 2.65E-06 2.02E-06 1.59E-06 3.27E-06
ME 7.89E-06 7.43E-06 8.48E-06 5.16E-06 7.23E-06 7.95E-06 7.05E-06
AFE 4480.46 5229.18 9897 16229 7950 5347.58 51777.2
SR 100 100 100 100 100 100 84

f10

SD 9.81E-07 7.77E-07 8.13E-07 1.94E-06 9.82E-07 8.37E-07 9.51E-07
ME 8.80E-06 9.05E-06 9.20E-06 8.11E-06 8.86E-06 8.94E-06 8.56E-06
AFE 23294.44 18535.77 56547 28270.5 32747.5 19424.76 42997.6
SR 100 100 100 100 100 100 100

f11

SD 8.48E-07 8.45E-07 5.56E-07 2.35E-06 8.74E-07 7.94E-07 9.88E-07
ME 8.89E-06 8.78E-06 9.33E-06 7.52E-06 8.93E-06 8.97E-06 8.60E-06
AFE 12287.89 15453.9 44306 24219.5 27365.5 15960.9 40125.9
SR 100 100 100 100 100 100 100

f12

SD 2.51E-06 2.74E-06 2.81E-06 1.83E-06 2.81E-06 3.11E-06 2.44E-06
ME 7.38E-06 4.33E-06 4.96E-06 8.29E-06 4.74E-06 5.27E-06 3.75E-06
AFE 1282.57 1593.9 2753.5 16954.05 1415.5 1288.84 787.1
SR 100 100 100 100 100 100 100

f13

SD 5.87E-05 2.42E-04 2.24E-04 1.08E-01 1.66E-01 1.76E-03 2.07E-04
ME 9.74E-04 7.54E-04 8.13E-04 1.58E-01 5.34E-02 8.77E-03 6.48E-0
AFE 16756.98 51610.79 48776.5 200025.94 36451.5 12409.47 8173.3
SR 100 100 100 0 84 100 100

to be cont’d on next page
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Table 2: Comparison of the results of test problems (Cont.)

Test Measure LFSMO SMO PSO-2011 ABC DE PLSMO CMA-ES

Problem

f14

SD 1.15E-04 1.37E-05 1.18E-05 6.94E-05 3.32E-04 1.16E-04 7.19E-05
ME 1.15E-04 8.94E-05 8.97E-05 1.75E-04 2.39E-04 1.10E-04 2.5E-04
AFE 22406.22 40395.78 35865 183176.85 46592.5 36998.05 151.6
SR 98 100 100 17 79 0 100

f15

SD 2.71E-05 2.38E-05 2.71E-01 2.39E-05 2.71E-01 2.42E-05 2.75E-07
ME 7.04E-05 6.62E-05 8.01E-02 6.43E-05 8.01E-02 6.89E-05 4.87E-07
AFE 11108.01 16563.09 29745.5 7927.03 19150.5 17142.34 1574
SR 100 100 92 100 92 20 100

f16

SD 1.57E+00 4.54E+00 1.08E+01 1.24E+00 3.10E+00 7.77E+00 6.87E-05
ME 9.84E-01 1.90E+00 2.92E+00 7.92E-01 2.62E+00 1.33E+00 1.07E-03
AFE 151526.01 167177.49 187162.5 174330.22 193120.5 147412.82 160
SR 53 42 50 23 4 100 100

f17

SD 1.76E-06 1.82E-06 1.50E-06 2.61E-06 1.71E-06 1.72E-06 1.90E-06
ME 7.61E-06 7.38E-06 8.29E-06 6.97E-06 7.95E-06 7.55E-06 7.26E-06
AFE 7447.95 5953.86 15785.5 9042.5 10353.5 6174.79 9665.3
SR 100 100 100 100 100 100 100

f18

SD 1.03E-06 9.65E-07 1.05E-06 1.98E-06 1.17E-06 1.11E-06 1.07E-06
ME 8.65E-06 8.76E-06 8.93E-06 7.76E-06 8.81E-06 8.63E-06 8.64E-06
AFE 10403.87 9122.85 24630 16704.5 15564.5 9458.46 3521.933333
SR 100 100 100 100 100 100 100

f19

SD 1.58E-05 1.41E-05 1.18E-05 1.10E-05 1.49E-05 1.52E-05 2.35E-06
ME 1.59E-05 1.90E-05 1.75E-05 1.20E-05 1.67E-05 1.73E-05 5.37E-06
AFE 90452.22 125358.44 105570.5 1017 100761 104425.84 17365
SR 55 40 48 100 50 17 100

f20

SD 3.25E-14 2.94E-14 2.92E-14 8.37E-05 2.80E-14 2.75E-14 1.40E07
ME 5.52E-14 4.40E-14 4.82E-14 3.09E-05 4.17E-14 4.81E-14 3.98E04
AFE 12672.21 11916.63 9796.5 186124.2 4798.5 12295.99 594
SR 100 100 100 16 100 100 100

f21

SD 5.26E-03 5.38E-03 5.55E-03 5.76E-03 4.80E-03 5.32E-03 8.17E-14
ME 4.92E-01 4.90E-01 4.92E-01 4.91E-01 4.89E-01 4.90E-01 7.83E-14
AFE 901.63 1249.38 5050 1407.52 2123 1185.32 9612
SR 100 100 100 100 100 100 100

f22

SD 7.19E-06 6.15E-06 6.86E-06 6.36E-06 6.54E-06 7.12E-06 1.76E+00
ME 8.84E-05 8.65E-05 8.84E-05 8.80E-05 8.78E-05 8.82E-05 2.05E01
AFE 730.37 738.54 1445 1176.04 971.5 728.94 258.433
SR 100 100 100 100 100 100 100

f23

SD 3.07E-06 3.02E-06 2.93E-06 2.61E-06 1.30E-05 3.16E-06 8.99E04
ME 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.25E02
AFE 1907.99 1861.2 3092 28795.15 3667.5 1845.37 142128
SR 100 100 100 100 99 100 87

f24

SD 5.65E-06 5.61E-06 1.37E-03 5.92E-06 5.16E-06 5.56E-06 6.27E-06
ME 5.31E-06 4.94E-06 3.12E-04 5.36E-06 4.48E-06 4.95E-06 7.32E-06
AFE 2238.63 4551.03 90199 4802.25 8287 3625.3 14262
SR 100 100 71 100 100 100 100

f25

SD 3.68E-05 6.42E-04 3.26E-05 9.88E+00 3.51E-05 2.43E-04 3.78E-05
ME 3.33E-05 1.21E-04 3.24E-05 1.64E+01 2.83E-05 7.01E-05 3.54E-05
AFE 77220.5 119586.19 98909 200024.59 77220.5 111623.22 87220.5
SR 68 53 60 0 65 0 62
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Table 3 Comparison based on Mann-Whitney U rank sum test at significant level α = 0.05 and average
number of function evolutions, TP: test problem.

TP LFSMO

Vs

SMO

LFSMO

Vs

PSO-

2011

LFSMO

Vs

ABC

LFSMO

Vs DE

LFSMO

Vs

PLSMO

LFSMO

Vs

CMA-

ES

f1 - + - + - +

f2 + + + + + +

f3 + + + + + +

f4 + + + + + +

f5 - + + - - +

f6 - + + + - +

f7 - + + + - +

f8 + + + + + +

f9 + + + + + +

f10 - + + + - +

f11 + + + + + +

f12 + + + + + -

f13 + + + + - -

f14 + + + + + -

f15 + + - + + -

f16 + + + + - -

f17 - + + + - +

f18 - + + + - -

f19 + + - + + -

f20 - - + - - +

f21 + + + + + -

f22 + + + + = -

f23 - + + + - +

f24 + + + + + +

f25 + + + + = +

Total
No. of +
sign

16 24 22 23 14 16

7 Optimal Power Flow Problem

The aim of solving OPF problem is to provide optimal settings of power system control variables
to ensure operational and physical constraints in terms of equality and inequality. Mathematical
formulation of a general OPF problem can be seen as:

MinF (u, x) (17)

subject to:

G(u, x) = 0 (18)

Hmin ≤ H(u, x) ≤ Hmax (19)

The objective function which is to be optimized is F , u the vector for control variables (independent
variables) which includes generator bus voltages (Vg), generator real powers (Pg) except at slack bus,
transformer tap settings (T ) and shunt VAR compensation (Qc) and x is the vector of state variables
(dependent variables) which includes generator active power at slack bus (Pg1), load bus voltages (Vl),
generator reactive powers (Qg) and transmission line loading (line flow) (Sl). Hence, u and x can be
expressed as:

u = [Pg2....Pgng , Vg1....Vgng , Qc1....Qcnc, T1....Tnt] (20)
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Table 4 Comparison based on Acceleration Rate (AR)

TP:Test Problem
TP LFSMO

Vs SMO

LFSMO

Vs PSO-

2011

LFSMO

Vs ABC

LFSMO

Vs DE

LFSMO

Vs

PLSMO

LFSMO

Vs CMA-

ES

f1 0.804869593 2.446090188 0.718784988 1.565328126 0.840319947 1.568937623

f2 3.785677359 7.882768398 1.969569086 7.880798199 4.099856806 7.88584191

f3 1.29750648 3.093980993 1.948997632 1.723964833 1.440498304 2.58029743

f4 1.087761054 3.135037339 1.885187275 1.917950928 1.127237369 2.547046384

f5 0.938631391 1.291166048 1.314605464 0.458984638 0.794519147 1.315446811

f6 0.797590127 2.442575596 1.232745294 1.408521126 0.82697644 2.478925098

f7 0.796905185 2.21048781 1.319222607 1.403514858 0.828320052 2.032127552

f8 1.567177018 4.695217437 2.398899587 2.740344937 1.627886996 4.036810919

f9 1.167107842 2.208924976 3.622172723 1.774371382 1.1935337 11.55622414

f10 0.795716489 2.427489135 1.213615781 1.405807566 0.833879673 1.845831022

f11 1.25765286 3.605663788 1.9710056 2.227030027 1.298912995 3.265483334

f12 1.242739188 2.14686138 13.21881067 1.103643466 1.004888622 0.613689701

f13 3.079957725 2.910816866 11.93687287 2.175302471 0.740555279 0.487754953

f14 1.802882414 1.600671599 8.17526785 2.079444904 1.651240147 0.006765978

f15 1.491094264 2.677842386 0.713631875 1.724026176 1.543241319 0.141699548

f16 1.103292365 1.235183979 1.150497 1.274503961 0.972854891 0.001055924

f17 0.799395807 2.119442263 1.214092468 1.390114058 0.829059003 1.297712793

f18 0.876870818 2.367388289 1.605604453 1.496029843 0.909129007 0.338521467

f19 1.385907831 1.167141061 0.011243505 1.113969342 1.154486203 0.19197981

f20 0.940375041 0.773069575 14.68758804 0.378663232 0.970311414 0.046874223

f21 1.385690361 5.600967137 1.561083815 2.354624402 1.314641261 10.6606923

f22 1.011186111 1.978449279 1.610197571 1.330147733 0.998042088 0.353838465

f23 0.975476811 1.620553567 15.09187679 1.922179886 0.967180121 74.49095645

f24 2.03295319 40.29205362 2.145173611 3.70181763 1.619427954 6.37086075

f25 1.548632682 1.280864537 2.590304259 1.00000000 1.445512785 1.129499291
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Figure 3 Boxplot graph for average number of function evaluations
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x = [Pg1, Vl1....Vlnl, Qg1....Qgng, Sl1....SlNl] (21)

where ng, nc, nt, nl, Nl are the number of generators, number of shunt VAR compensators, number
of regulating transformers, number of load buses and number of transmission lines, respectively.

G(u, x) is the set of equality constraints which represents typical load flow equations as follows:

Pgi − Pdi − Vi

nb
∑

k=1

Vk (Gik cos θik +Bik sin θik) = 0 (22)

and

Qgi −Qdi − Vi

nb
∑

k=1

Vk (Gik sin θik +Bik cos θik) = 0 (23)

where Pgi and Qgi are the active and reactive powers at ith generators, Pdi and Qdi are the active
and reactive power demands at ith bus, Gik and Bik are the transfer conductance and susceptance
between buses i and k, respectively, θik is the phase angle difference between the voltages at buses i
and k and nb is the total number of bus bars.

H(u, x) is the set of system operational limiting constraints which includes following inequality
constraints:

• Generator constraints:

Pmin
gi ≤ Pgi ≤ Pmax

gi , for i = 1, 2, ...ng (24)

Qmin
gi ≤ Qgi ≤ Qmax

gi , for i = 1, 2, ...ng (25)

V min
gi ≤ Vgi ≤ V max

gi , for i = 1, 2, ...ng (26)

• Security constraints:

V min
li ≤ Vli ≤ V max

li , for i = 1, 2, ...nl (27)

Sli ≤ Smax
li , for i = 1, 2, ...Nl (28)

• Transformer constraints:

Tmin
i ≤ Ti ≤ Tmax

i , for i = 1, 2, ...nt (29)

• Shunt VAR compensator constraints:

Qmin
ci ≤ Qci ≤ Qmax

ci , for i = 1, 2, ...nc (30)

There are a variety of techniques available in the literature to tackle constraints in optimization
algorithms. In this work, penalty function method is chosen to address constraints with respect to
dependent variables, i.e., if any dependent variable violates its bound then a square of that violation
amount multiplied by a fix penalty factor is added to its corresponding fitness function so that
infeasible solutions can be rejected. On the other hand, the constraints corresponding to control
variables are handled by generating them between the given bounds in its initialization phase. In this
way, the modified objective function for OPF is of the following form:

Min Fmod = F (u, x) + λp(Pg1 − P lim
g1 )2 + λv

nl
∑

i=1

(Vli − V lim
li )2+

λq

ng
∑

i=1

(Qgi −Qlim
gi )2 + λs

Nl
∑

i=1

(Sli − Slim
li )2

(31)

where λp, λv, λq, and λs are the penalty factors (all are set to 105) and alim is the limit value (may
be min or max limit).
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8 Application of LFSMO to solve OPF problem

To see it’s robustness, the proposed LFSMO algorithm is applied to solve OPF IEEE 30 bus
problem. For this, all members of the population are first initializing each member of the
population which represents a potential solution. The configuration of all individual member is u =
(Pg2....Pgng , Vg1....Vgng, Qc1....Qcnc, T1....Tnt) where all involved variables are self-constrained i.e., all
control variables of individual member, u is initialized arbitrarily within tolerable limits given in
Table 12. If any control variable violates its limits, then that variable is adjusted to the consequently
overstepped limits. To tackle the inequality constraints of dependent variables, modified objective
function as shown in Equation 31 is considered to be optimized.

The LFSMO is applied on IEEE 30 bus system to validate its usefulness. It consists of 6 generating
units at buses 1, 2, 5, 8, 11 and 13 interconnected with 41 transmission lines with a load of 283.4 MW
and 126.2 MVAR and 4 transformers with off nominal tap ratios in lines 6− 9, 6− 10, 4− 12 and
28− 27. The bus data and the branch data are taken from (Alsac & Stott, 1974). The shunt injections
are provided at buses 10, 12, 15, 17, 20, 21, 23, 24, and 29 from literature (Abido, 2002a).

Upper and lower limits of control variables are as mentioned in Table 12. The objective functions
to be minimized validate the usefulness of LFSMO are: 1. Total quadratic fuel cost. 2. Piece wise
quadratic fuel cost 3. Quadratic fuel cost with valve-point effects to confirm the robustness of proposed
LFSMO algorithm. In each case, OPF problem is executed for 100 runs.

Case 1: Quadratic fuel cost function
Objective function to be optimized is selected from Equation 31 and generator cost characteristic are
defined as quadratic cost function of generator power output. In Equation 31 the F (u, x) is designed
for this case as:

F (u, x) =

ng
∑

i=1

fi(Pgi) =

ng
∑

i=1

(ai + biPgi + ciP
2
gi) (32)

where fi and Pgi are fuel cost and active power of ith generator, respectively. The variables ai, bi and
ci represent the cost coefficients of ith generator whose values have been taken from standard IEEE
30-bus system and are given here in Table 9, ng is the total number of generators in the system.

Case 2: Piecewise quadratic fuel cost functions
The fuel cost functions of various fuels supplied in a power system such as coal, natural gas and
oil may be dissevered as piecewise quadratic fuel cost functions (Abou El Ela, Abido, & Spea,
2010). In the present case, the objective is to minimize fuel cost of each unit with satisfying the
system constraints. Since it becomes a complex problem, the application of traditional mathematical
optimization technique is not positively applicable (Dieu & Ongsakul, 2006). For generating units
connected at bus 1 and 2, the cost characteristics are represented by a piecewise quadratic cost function
to model different fuels are defined as follows:

fi(Pgi) =



















ai1 + bi1Pgi + ci1P
2
gi , Pmin

gi ≤ Pgi ≤ Pgi1

ai2 + bi2Pgi + ci2P
2
gi , Pgi1 ≤ Pgi ≤ Pgi2

.............

aik + bikPgi + cikP
2
gi , Pgik−1 ≤ Pgi ≤ Pmax

gi

(33)

where aik, bik and cik are cost coefficients of the ith generator for fuel type k. So, here Equation 31
is selected as objective function to be optimized where the F (u, x) is designed for this case as:

F (u, x) =

ng
∑

i=1

fi(Pgi) =

2
∑

i=1

fi(Pgi) +

ng
∑

i=3

(ai + biPgi + ciP
2
gi) (34)

where fi(Pgi) for generating units 1 and 2 are selected based on Equation 33 and the cost
coefficients for these units are given in Table 10 and the cost coefficients of other generators have the
same values as of case 1.

Case 3: Quadratic fuel cost function with valve-point effect
The generating units for buses 1 and 2 are assumed to have the characteristic with valve-point effects.
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Cost coefficient for generating buses 1 and 2 are adopted from (Vaisakh & Srinivas, 2011) and given
in Table 11. The cost coefficients for all other generating units are same as of case 1. The cost
characteristics of generating units 1 and 2 are defined as:

fi(Pgi) = ai + biPgi + ciP
2
gi + |di sin(ei(P

min
gi − Pgi))| , where i = 1 and 2 (35)

where ai, bi, ci, di and ei are cost coefficients of the ith generating unit. So, here Equation 31 is
selected as objective function to be optimized where the F (u, x) is designed for this case as:

F (u, x) =

ng
∑

i=1

fi(Pgi) =

2
∑

i=1

(ai + biPgi + ciP
2
gi + |di sin(ei(P

min
gi − Pgi))|) +

ng
∑

i=3

(ai + biPgi + ciP
2
gi)(36)

8.1 Experimental Settings for OPF Problem

Following experimental settings is adopted for OPF parameters:

• The cost coefficients for all cases are given in Tables 9-11,

• The upper and lower limits for control variables are taken from (Lee, Park, & Ortiz, 1985) and
are given in Table 12,

• The load data are adopted from (Alsac & Stott, 1974; Lee et al., 1985) and given in Table 13,

• The line data for 30-bus system are taken from (Alsac & Stott, 1974; Lee et al., 1985),

• The penalty factors λp, λv, λq, and λs are set to 105.

8.2 Results Analysis and Discussion

Result for all three cases i.e. case 1, 2, and 3 are shown in Table 5. A fair comparison of LFSMO with
SMO and other state-of-art algorithms has been presented in Table 6-8 regarding minimum fuel cost
and average minimum fuel cost over 100 runs. After analyzing the results of all three cases. It is clear
that LFSMO is more robust than the SMO and other considered algorithms.

Since the empirical distribution of results can efficiently be represented by boxplot (Williamson,
Parker, & Kendrick, 1989), the boxplots for a minimum fuel cost of 100 runs for LFSMO and basic
SMO algorithms have been represented in Figure 4 to analyze the algorithms output more intensively.
Figure 4 shows that LFSMO is cost effective as the interquartile range, and median are quite small for
LFSMO.

Therefore, now it may be stated that the OPF IEEE-30 bus problem is solved through LFSMO
efficiently. As the OPF problem is multi-modal and non-linear in nature, the structured swarm based
searching process and fission-fusion grouping pattern of LFSMO makes it more efficient to trace out
the solution. But, as LFSMO having more parameters as compared to the PSO, ABC, DE, GA, and
other meta-heuristics, therefore, a user should be more cautious while tuning the parameters. Further,
it can be observed from Table 3 that LFSMO performs well on the non-separable and multi-modal
functions only so it is recommended to apply it to the similar type of problems.
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Table 5 Best control variable settings achieved by LFSMO algorithms for different cases.

Case 1: Case 2: Case 3:
Control
variables

Quadratic
fuel cost
function

Piecewise
quadratic fuel
cost function

Quadratic fuel
cost function
with valve
point effects

P1 177.0576 139.982 199.5956
P2 48.6821175 54.99991003 20
P5 21.3758855 23.83664713 22.15063489
P8 21.2910636 34.42954204 24.6868717
P11 11.9982644 18.30230681 13.16136133
P13 12 18.62484262 13.490919
V1 1.0851374 1.07313073 1.08603294
V2 1.01432154 1.03749276 1.00931453
V5 1.03427706 1.0296065 1.03003395
V8 1.04842306 1.03451984 1.0663202
V11 1.08255052 1.07820535 1.07608792
V13 1.04211719 1.06426709 1.05464662
T11 1.0304135 0.99468271 1.02417779
P12 0.95404543 1.0280758 0.95513904
P15 0.95920934 1.00516395 0.97412619
P36 0.97495386 0.97340406 0.96460148
Qc10 5 5 0.96157014
Qc12 5 5 4.77382674
Qc15 4.91791195 4.80873055 0.35764546
Qc17 5 5 2.22120068
Qc20 4.28077149 4.96509578 4.94296835
Qc21 5 5 5
Qc23 3.1728881 4.16856678 1.38973559
Qc24 5 5 4.96546555
Qc29 2.55092117 2.20926233 2.59359073
Fuel cost
($/h)

800.4474 646.6704 918.9122

Table 6 Comparison of 100 runs for Case-1 among different methods for IEEE 30-bus system.

Optimization methods
Fuel cost ($/h)

Min Average
ITS (Ongsakul & Tantimaporn, 2006) 804.5560 -

EP (Yuryevich & Wong, 1999) 802.6300 803.5100
IEP (Ongsakul & Tantimaporn, 2006) 802.4650 802.5210

DE-OPF (Sayah & Zehar, 2008) 802.3940 -
MDE-OPF (Sayah & Zehar, 2008) 802.3760 802.3820

TS (Ongsakul & Tantimaporn, 2006) 802.5020 -
TS/SA (Ongsakul & Tantimaporn, 2006) 802.7880 -
SADE-ALM (Vaisakh & Srinivas, 2011) 802.4040 -
Enhanced GA (Bakirtzis et al., 2002) 802.0600 -

PSO (Abido, 2002a) 800.4890 -
ABC-OPF (Bansal, Jadon, Tiwari, Kiran, & Panigrahi, 2014) 802.9086 803.6341

SMO 800.4840253 800.684232
LFSMO 800.4474 800.4795298
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Table 7 Comparison of 100 runs for Case-2 among different methods for IEEE 30-bus system.

Optimization methods
Fuel cost ($/h)

Min Average
ITS (Ongsakul & Tantimaporn, 2006) 654.8740 -

EP (Yuryevich & Wong, 1999) 647.7900 649.7000
IEP (Ongsakul & Tantimaporn, 2006) 649.3120 650.2170

DE-OPF (Sayah & Zehar, 2008) 648.3840 -
MDE-OPF (Sayah & Zehar, 2008) 647.8460 648.3560

TS (Ongsakul & Tantimaporn, 2006) 651.2460 -
TS/SA (Ongsakul & Tantimaporn, 2006) 654.3780 -

PSO (Abido, 2002a) 647.6900 -
GSA (Duman, Güvenç, Sönmez, & Yörükeren, 2012) 646.8480 646.8962

BBO (Bhattacharya & Chattopadhyay, 2011) 647.7430 647.7645
ABC-OPF (Bansal, Jadon, et al., 2014) 648.9124 649.4393

SMO 646.820864 646.947322
LFSMO 646.6704 646.6904559

Table 8 Comparison of 100 runs for Case-3 among different methods for IEEE 30-bus system.

Optimization methods
Fuel cost ($/h)

Min Average

ITS (Ongsakul & Tantimaporn, 2006) 969.1090 -
EP (Vaisakh & Srinivas, 2011) 955.5090 959.3630

IEP (Ongsakul & Tantimaporn, 2006) 953.5730 956.4600
DE-OPF (Sayah & Zehar, 2008) 931.0850 -
MDE-OPF (Sayah & Zehar, 2008) 930.793 942.5010

TS (Ongsakul & Tantimaporn, 2006) 956.0000 -
TS/SA (Ongsakul & Tantimaporn, 2006) 959.5630 -

EADDE (Vaisakh & Srinivas, 2011) 930.745 -
SADE-ALM (Vaisakh & Srinivas, 2011) 944.031 -

BBO (Bhattacharya & Chattopadhyay, 2011) 919.7647 919.8389
GSA (Duman et al., 2012) 929.7260 930.9240

ABC-OPF (Bansal, Jadon, et al., 2014) 930.4153 931.2629
SMO 918.9173232 919.5698616

LFSMO 918.9122079 918.9829993

Table 9 Generator Cost Coefficients for Case 1.

Cost coefficients
Bus No.

1 2 5 8 11 13

a 0.00 0.00 0.00 0.00 0.00 0.00

b 2.00 1.75 1.00 3.25 3.00 3.00

c 0.00375 0.01750 0.06250 0.00834 0.02500 0.02500

Table 10 Generator Cost Coefficients for Case 2.

Bus No. From MW To MW
Cost coefficients

a b c

1
50 140 55.00 0.70 0.0050

140 200 82.50 1.05 0.0075

2
20 55 40.00 0.30 0.0100

55 80 80.00 0.60 0.0200
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Table 11 Generator Cost Coefficients for Case 3.

Bus No. Pmin
gi

Cost coefficients
a b c d e

1 50 150.00 2.00 0.0016 50.00 0.0630
2 20 25.00 2.50 0.0100 40.00 0.0980

Table 12 The Upper and Lower Limits of Control Variables.

Control variables Min Max Control variables Min Max
P1 50 200 T11 0.9 1.1
P2 20 80 T12 0.9 1.1
P5 15 50 T15 0.9 1.1
P8 10 35 T36 0.9 1.1
P11 10 30 Qc10 0 5
P13 12 40 Qc12 0 5
V1 0.95 1.1 Qc15 0 5
V2 0.95 1.1 Qc17 0 5
V5 0.95 1.1 Qc20 0 5
V8 0.95 1.1 Qc21 0 5
V11 0.95 1.1 Qc23 0 5
V13 0.95 1.1 Qc24 0 5

Qc29 0 5

Table 13 Load Data.

Bus No.
Load

Bus No.
Load

Bus No.
Load

P Q P Q P Q
1 0.000 0.000 11 0.000 0.000 21 0.175 0.112
2 0.217 0.127 12 0.112 0.075 22 0.000 0.000
3 0.024 0.012 13 0.000 0.000 23 0.032 0.016
4 0.076 0.016 14 0.062 0.016 24 0.087 0.067
5 0.942 0.190 15 0.082 0.025 25 0.000 0.000
6 0.000 0.000 16 0.035 0.018 26 0.035 0.023
7 0.228 0.109 17 0.090 0.058 27 0.000 0.000
8 0.300 0.300 18 0.032 0.009 28 0.000 0.000
9 0.000 0.000 19 0.095 0.034 29 0.024 0.009
10 0.058 0.020 20 0.022 0.007 30 0.106 0.019
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Figure 4 Boxplots for LFSMO and SMO for minimum fuel cost for 100 runs.

9 Conclusion

In this paper, a solution to the OPF problem, which is a non-convex, highly constrained, nonlinear,
and multimodular optimization problem, is considered. After describing the limitations of the available
deterministic mathematical methods, the OPF problem is solved using a modified version of spider
monkey optimization (SMO) algorithm, lévy flight SMO (LFSMO). Initially, the efficiency of LFSMO is
established through experiments over 25 well known benchmark functions. Then the proposed LFSMO
is applied to solve the IEEE 30-bus OPF problem for three different cases namely, total quadratic fuel
cost, piecewise quadratic fuel cost, and quadratic fuel cost with valve-point effects.

The reported results are compared with SMO, PSO, DE, GA, and other state-of-art algorithms
presented in the literature. It is shown that LFSMO is a competitive algorithm in the field of swarm
intelligence based algorithms to solve the OPF problem. Therefore, in future, this strategy may be
applied to solve other problems having same as OPF problem.
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