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Abstract
Particle swarm optimization (PSO) is one of the most efficient and popular swarm intelligence-based search algorithms
for continuous optimization. PSO provides the solutions probabilistically. Therefore, finding error bound during the search
process can help in developing a better PSO. Stability analysis of an algorithm provides the information about error bounds.
Stability analysis of PSO with inertia weight and constriction coefficient is carried out by von Neumann stability criterion.
Conditions on acceleration parameters, constriction coefficient and inertia weight are obtained for stability.

Keywords Particle swarm optimization (PSO) algorithm · Stability analysis · Finite difference scheme · von Neumann
stability criterion · Inertia weight · Constriction coefficient

1 Introduction

Recently, algorithms taking inspiration fromsocial behaviour
metaphor and natural phenomena have attracted researchers.
This class of algorithms includes particle swarmoptimization
(PSO) algorithm [25], differential evolution (DE) algo-
rithm [36], artificial bee colony (ABC) algorithm [24],
gravitational search algorithm (GSA) [31], harmony search
algorithm (HSA) [16], spider monkey optimization (SMO)
algorithm [4], genetic algorithm (GA) [18], etc. These
algorithms are efficient and effective solver of complex opti-
mization problems.

PSO is a swarm intelligence-based search algorithm,
inspired by birds’ flocking or fish schooling. The social coop-
erative behaviour of birds infinding their foodor nest inspired
the PSO working mechanism. Working of PSO algorithm is
explained in Sect. 2. In very short span of time, PSO has been
modified inmanyways and applied tomany application prob-
lems.Chaotic PSO [26],multi-objective PSOalgorithm [32],
various hybrid PSO algorithms [12,17,29] and PSO for con-
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strained optimization problems [21] are few contributions in
the development of PSO. The PSO algorithm and its variants
are applied to various discrete and continuous optimization
problems from thefield of neural networks [28,42], data clus-
tering [40], optimal power flow [1], stock market prediction
[20] and assignment problem [34].

Researchers have analysed these meta-heuristic algo-
rithms experimentally and analytically, but little work has
been done in theoretical study of this class of algorithms.
Stability and convergence analysis of few algorithms have
already been carried out which include particle swarm opti-
mization (PSO) algorithm [7], artificial bee colony (ABC)
algorithm by using von Neumann stability analysis in [2,3],
differential evolution (DE) algorithm by using von Neumann
and Lyapunov stability criterion in [11,19], gravitational
search algorithm (GSA) by taking results from Lyapunov
stability criterion [13] and bacterial foraging optimization
(BFO) algorithm [5].

Theoretical analysis of stability and convergence
behaviour of PSO algorithm has been previously analysed by
using standard results from theory of dynamical system. The
analysis recommends the parameter selection in PSO [39].
Stability and convergence properties of PSO algorithm are
analysed in [10], leading to a generalized model of the
algorithm in which convergence tendency of the system was
controlled by a set of parameters. In [22], stochastic process
theory was used for deriving stochastic convergent condi-
tion of the particle swarm system. Concept of passive system
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and Lyapunov stability analysis is used in [23] for deriving
stability conditions of PSO algorithm. In [7], the concept
of convergence and stability of linear recurrence relations
is considered for deriving stability condition. The properties
of stability and convergence of standard particle swarm opti-
mizer (SPSO) 2011were analysed in [6]. Also, identification
of boundaries of parameters was done, which insures con-
vergence of particle to their equilibrium point. The concept
of upper border stability limit (USL) curve was introduced
in [15], and it was shown that performance of PSO algo-
rithm is better when parameter selection is done close to
USL curve. Based on weak stagnation assumption, order-2
stability of PSO algorithm was analysed in [27]. In [37],
convergence of a variant of PSO, namely quantum-behaved
PSO (QPSO), to its global optima was analysed on a proba-
bilistic metric space. Based on discrete-time dynamic system
theory, convergence of particle to equilibriumpointwas anal-
ysed in [9]. Stochastic stability analysis of linear continuous
and discrete PSO algorithm is done in [14]. In [30], theory
of convergence of stochastic sequence is used in analysing
convergence of PSO algorithm and parameter selection is
proposed based on the analysis. In [8], convergence anal-
ysis of multi-objective PSO was done. Also, conditions on
its parameters were proposed that guide the convergence of
algorithm to the optimal Pareto front in the objective func-
tion space. The present work verifies the parameter tuning
done for the stability of PSO algorithm with inertia weight
and proposes stability condition for PSO algorithmwith con-
striction coefficient by using von Neumann stability criterion
for finite difference scheme.

In rest of the paper, Sect. 2 explains PSO algorithm, fol-
lowed by motivation and von Neumann stability criterion
in Sect. 3. Stability analysis of PSO algorithm with iner-
tia weight (w) and constriction coefficient (χ) is done in
Sect. 4. The obtained stability condition is verified by per-
forming numerical experiments in Sect. 5, and findings are
concluded in Sect. 6.

2 Particle SwarmOptimization (PSO)
Algorithm

2.1 Standard Algorithm

Particle swarm optimization (PSO) algorithmwas developed
by Kennedy and Eberhart [25] in 1995 based on the social
behaviour metaphor. The initialization of the algorithm is
done randomly with candidate solutions, referred to as par-
ticles. The particles initially move in the problem space with
randomized velocity assigned to them. The particles pre-
ferred tomove towards the locationwith best fitness achieved
by the particle itself and towards the best fitness location
gained by the whole population so far. The inertial weight

version of PSO algorithm is considered as standard parti-
cle swarm optimization. Therefore, for this study, consider
inertia weight version of PSO [35]. In PSO algorithm, the
particles update their positions based on the following two
update equations:

vd,t+1 = wvd,t + b1r1(p1 − xd,t ) + b2r2(p2 − xd,t ) (1)

xd,t+1 = xd,t + vd,t+1 (2)

Here, Eq. (1) is called velocity update equation and Eq. (2) is
called position update equation. At t th iteration, the velocity
vd,t in dimension d is updated depending upon the weighted
current velocity (wvd,t ) and on the terms attracting the par-
ticles towards their own best position (p1) along with the
best position of the whole population (p2). The coefficients
(b1) and (b2) provide strength for attraction. The position
of the particle is updated with the help of current position
(xd,t ) and the updated velocity (vd,t+1). The vector random
numbers (r1) and (r2) provide useful randomness for bet-
ter space exploration. They are generally taken as uniform
random number between [0,1], i.e. r1, r2 ∈ U [0, 1].

Wecan conclude fromEqs. (1) and (2) that the velocity and
position updation is done independently for each dimension.
Thus, without loss of generality, for analysis purpose the
algorithm can be reduced to one dimension.

In order to further simplify the system and make it more
understandable, we take p1, p2, r1 and r2 as constants for
the remaining analysis [39]. Then, Eqs. (1) and (2) can be
written as

vd,t+1 = wvd,t + c1(p1 − xd,t ) + c2(p2 − xd,t ) (3)

xd,t+1 = xd,t + vd,t+1 (4)

where c1 = b1r1 and c2 = b2r2
Making substitution in Eq. (4) from Eq. (3), we get the posi-
tion update equation

xd,t+1 − (1 + w − c1 − c2)xd,t + wxd,t−1 = c1 p1 + c2 p2

(5)

The update Eq. (5) is a difference equation which will now
be considered for stability analysis of PSO algorithm.

The next section presents the motivation for PSO’s sta-
bility analysis. This section also presents the von Neumann
stability criterion for a given finite difference scheme.

3 Motivation and von Neumann Stability
Criterion

3.1 Motivation

Nature-inspired optimization algorithms make use of iter-
ative procedure in order to solve real-world optimization
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problems and provide near-optimal solution corresponding
to such problems. Since near-optimal solution is obtained, it
leads to generation of error in subsequent iterations. So it is
important to find conditions under which the error remains
bounded depending upon various parameters present in the
algorithm. Hence, parameter selection based on stability
analysis plays a vital role in making algorithm efficient. Sta-
bility analysis is a deterministic analysis and nature-inspired
optimization algorithms are stochastic in naturewhichmakes
such analysis of this class of algorithms more difficult. This
motivates the authors to undergo stability analysis of PSO
algorithm and to obtain suitable values of PSO parameters.
von Neumann stability criterion is applied for the stability
analysis of PSO. Next section explains von Neumann stabil-
ity criterion.

3.2 von Neumann Stability Criterion

Consider a generalized linear partial differential equation
represented by

∂x

∂t
+ Md(x) = C

where Md(x) refers to a linear differential operator, C is
constant and x is the dependent variable depending upon
variables d and t .

Corresponding to considered linear partial differential
equation, the generalized finite difference scheme is given
by [41]

ar∑

p=−al

Apxn, j+p =
br∑

p=−bl

Bpxn+1, j+p + C (6)

where al , ar , bl and br are non-negative integers. n and j
represent number of grid points in the direction of d and t ,
respectively.

The von Neumann stability procedure consists of find-
ing amplification factor (A) by firstly discretizing each
term xn, j as xnl , jm , where l ∈ {

1, 2, 3 . . . , b1
}
and m ∈{

1, 2, 3 . . . , b2
}
. Then, each discretized term of the differ-

ence equation is replaced by kth Fourier component of a
harmonic decomposition of xnl , jm , i.e. by taking xnl , jm =
Bkeισk jm e−ιβknl = BkeισkmΔ j e−ιβklΔn , where ι =

√−1, Bk

represents the amplitude of kth component, βk is the angular
frequency and σk is the wave number of kth component [33].
The amplification factor (A) is given by A = exp(−ιβkΔn).

Definition The necessary and sufficient condition for the sta-
bility of a finite difference scheme with only one dependent
variable is that the modulus of amplification factor should
be less than or equal to unity, i.e. |A| ≤ 1. If |A| = 1, the
finite difference scheme is said to be marginally stable and
unstable when |A| > 1.

Stability is defined for a homogeneous finite difference
scheme and the non-homogeneous part will contribute in the
truncation term. Therefore, in order to discuss the stability
of non-homogeneous difference equation, we consider the
stability of associated homogeneous scheme [38].

In the next section, von Neumann criterion is applied to
the finite difference equation corresponding to the update
equation of PSO algorithm to get stability condition of PSO
algorithm.

4 Stability Analysis

Theorem 1 Particle swarmoptimizationalgorithmwith iner-
tia weightw is said to be stable iff the acceleration coefficient
c1, c2 and inertia weight w satisfies the condition, 0 ≤
(c1 + c2) ≤ 2(1 + w).

Proof For stability analysis of PSO algorithm, consider the
update Eq. (5) as finite difference scheme

xd,t+1 − (1 + w − c1 − c2)xd,t + wxd,t−1 = c1 p1 + c2 p2

Equation (5) is a non-homogeneous finite difference scheme
with A−1 = w, A0 = −(1 + w − c1 − c2), A1 = 1,
B−1 = B0 = B1 = 0 and C = c1 p1 + c2 p2. Since Eq. (5) is
non-homogeneous finite difference equation, in order to find
stability condition of PSO algorithm, for further analysis we
will consider the following associated homogeneous differ-
ence scheme which is obtained by setting c1 p1 + c2 p2 = 0
in Eq. (5):

xd,t+1 − (1 + w − c1 − c2)xd,t + wxd,t−1 = 0 (7)

By using the transformation t → t + 1 in Eq. (7), we get

xd,t+2 − (1 + w − c1 − c2)xd,t+1 + wxd,t = 0 (8)

or

xd,t+2 − λxd,t+1 + wxd,t = 0 (9)

where λ = (1+w−c1−c2). If the exact solution in d–t com-
putational domain is taken as x = x(d, t), the approximate
solution at the nodes of the grid is given by x(di , t j ), where
i ∈ {

1, 2, 3 . . . , b1
}
and j ∈ {

1, 2, 3 . . . , b2
}
as shown in

Fig. 1. Therefore, for stability analysis of PSO algorithm we
consider finite difference scheme given by Eq. (9) instead of
Eq. (5). The von Neumann stability criterion for finite differ-
ence scheme is used for deriving the stability condition for
the update Eqs. (3) and (4) of PSO algorithm.
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Fig. 1 Grid point representation of approximate solutions

Let the nth component of the complex Fourier series solu-
tion to the given equation is given by:

x(di , t j ) = Bne
ι(σndi−βn t j ) (10)

or

xdi ,t j = Bne
ι(σniΔd−βn jΔt) (11)

where ι = √−1, di = iΔd, t j = jΔt, Bn represents the
amplitude of nth component, βn is the angular frequency
and σn is the wave number of nth component [19].

In terms of grid point (di , t j ), Eq. (9) can be written as

xdi ,t j+2 − λxdi ,t j+1 + wxdi ,t j = 0 (12)

Substituting the value of xdi ,t j from Eq. (11) to Eq. (12), we
get

Bne
ι(σniΔd−βn jΔt)(e−ιβn2Δt − λe−ιβnΔt + w) = 0 (13)

Since Bn �= 0 until the algorithm terminates,

e−ιβn2Δt − λe−ιβnΔt + w = 0 (14)

or

A2 − λA + w = 0 (15)

where A = exp(−ιβnΔt) = amplification factor
Solving the quadratic Eq. (15), the amplification factor is
obtained as

A = λ ± √
λ2 − 4w

2

Now according to von Neumann stability criterion, the finite
difference scheme (9) is stable iff for the amplification factor
(A), |A| ≤ 1 [41]. Therefore, we consider the finite differ-
ence scheme given by Eq. (9) and so the finite difference
scheme given by Eq. (5), and hence, the PSO algorithm is
stable iff |A| ≤ 1.

i .e. | λ ± √
λ2 − 4w

2
|≤ 1

⇒ −1 ≤ λ ± √
λ2 − 4w

2
≤ 1,

where λ = (1 + w − c1 − c2)

Now the following two cases arise
Case 1:

λ ± √
λ2 − 4w

2
≤ 1 (16)

or

±
√

λ2 − 4w ≤ 2 − λ

⇒ |
√

λ2 − 4w| ≤ 2 − λ (17)

By squaring both the sides, we get

λ2 − 4w ≤ (2 − λ)2 (18)

Replacing λ by (1+ w − c1 − c2) in the inequality given by
Eq. (18), we get a stability condition

(c1 + c2) ≥ 0 (19)

Case 2:

− 1 ≤ λ ± √
λ2 − 4w

2
(20)

or

−(2 + λ) ≤ ±
√

λ2 − 4w

⇒ (2 + λ) ≥ ±
√

λ2 − 4w

⇒ (2 + λ) ≥|
√

λ2 − 4w | (21)

By squaring both the sides, we get

(2 + λ)2 ≥ (λ2 − 4w) (22)

Replacing λ by (1+ w − c1 − c2) in the inequality given by
Eq. (22), we get another stability condition

(c1 + c2) ≤ 2(1 + w) (23)
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From Eqs. (19) and (23), we get the condition for stability as

0 ≤ (c1 + c2) ≤ 2(1 + w) (24)

Thus, the PSO algorithm is stable iff the acceleration coeffi-
cients and the inertial weight satisfy the inequality given by
Eq. (24).

Theorem 2 Particle swarm optimization algorithmwith con-
striction coefficient χ is said to be stable iff the acceleration
coefficients c1, c2 and constriction coefficient χ satisfy the
condition, 0 ≤ (c1 + c2) ≤ 2(1 + 1/χ).

Proof In PSO algorithm, the velocity and position update
equation with constriction coefficient χ is given by

vd,t+1 = χ(vd,t + b1r1(p1 − xd,t ) + b2r2(p2 − xd,t )) (25)

xd,t+1 = xd,t + vd,t+1 (26)

or

vd,t+1 = χ(vd,t + c1(p1 − xd,t ) + c2(p2 − xd,t )) (27)

xd,t+1 = xd,t + vd,t+1 (28)

where c1 = b1r1, c2 = b2r2, χ is the constriction coefficient
and other variables are same as explained in Sect. 2. 	


Making substitution in Eq. (28) from Eq. (27), we get the
position update equation

xd,t+1 − (1 + χ − χ(c1 + c2))xd,t + χxd,t−1

= χ(c1 p1 + c2 p2) (29)

The update Eq. (29) is a difference equation which will now
be considered for stability analysis of PSO algorithm with
constriction coefficient. Equation (29) is a non-homogeneous
finite difference scheme with A−1 = χ , A0 = −(1 +
χ − χ(c1 + c2)), A1 = 1, B−1 = B0 = B1 = 0 and
C = χ(c1 p1 + c2 p2). Since Eq. (29) is non-homogeneous
finite difference equation, in order to find stability condition
of PSO algorithm, for further analysis we will consider the
following associated homogeneous difference schemewhich
is obtained by setting χ(c1 p1 + c2 p2) = 0 in Eq. (29):

xd,t+1 − (1 + χ − χ(c1 + c2))xd,t + χxd,t−1 = 0 (30)

By using the transformation t → t + 1 in Eq. (7), we get

xd,t+2 − (1 + χ − χ(c1 + c2))xd,t+1 + χxd,t = 0 (31)

or

xd,t+2 − μxd,t+1 + χxd,t = 0 (32)

where μ = (1+ χ − χ(c1 + c2)). If the exact solution in d-t
computational domain is taken as x = x(d, t), the approxi-
mate solution at the nodes of the grid is given by x(di , t j ),
where i ∈ {

1, 2, 3 . . . , b1
}
and j ∈ {

1, 2, 3 . . . , b2
}
as

shown in Fig. 1. Therefore, for stability analysis of PSO algo-
rithm we consider finite difference scheme given by Eq. (32)
instead of Eq. (29). The von Neumann stability criterion for
finite difference scheme is used for deriving the stability con-
dition for the update Eqs. (27) and (28) of PSO algorithm.

The nth component of the complex Fourier series solution
to the given equation is given by:

x(di , t j ) = Bne
ι(σndi−βn t j ) (33)

or

xdi ,t j = Bne
ι(σniΔd−βn jΔt) (34)

where ι =
√−1, di = iΔd, t j = jΔt , Bn represents the

amplitude of nth component, βn is the angular frequency
and σn is the wave number of nth component [19].

In terms of grid point (di , t j ), Eq. (32) can be written as

xdi ,t j+2 − μxdi ,t j+1 + χxdi ,t j = 0 (35)

Substituting the value of xdi ,t j from Eq. (34) to Eq. (35), we
get

Bne
ι(σniΔd−βn jΔt)(e−ιβn2Δt − μe−ιβnΔt + χ) = 0 (36)

Since Bn �= 0 until the algorithm terminates,

e−ιβn2Δt − μe−ιβnΔt + χ = 0 (37)

or

D2
1 − μD1 + χ = 0 (38)

where D1 = exp(−ιβnΔt) = amplification factor
Solving the quadratic Eq. (38), the amplification factor is
obtained as

D1 = μ ± √
μ2 − 4χ

2

Now according to von Neumann stability criterion, the finite
difference scheme (32) is stable iff for the amplification fac-
tor (D1), |D1| ≤ 1 [41]. Therefore, we consider the finite
difference scheme given by Eq. (32) and so the finite differ-
ence scheme given byEq. (29), and hence, the PSO algorithm
is stable iff |D1| ≤ 1.

i .e. | μ ± √
μ2 − 4χ

2
|≤ 1

123



2390 Arabian Journal for Science and Engineering (2020) 45:2385–2394

⇒ −1 ≤ μ ± √
μ2 − 4χ

2
≤ 1,

where μ = (1 + χ − χ(c1 + c2))

Now the following two cases arise
Case 1:

μ ± √
μ2 − 4χ

2
≤ 1 (39)

or

±
√

μ2 − 4χ ≤ 2 − λ

⇒ |
√

μ2 − 4χ | ≤ 2 − λ (40)

By squaring both the sides, we get

μ2 − 4χ ≤ (2 − μ)2 (41)

Replacing μ by (1+χ −χ(c1 + c2)) in the inequality given
by Eq. (41), we get a stability condition

χ(c1 + c2) ≥ 0 (42)

Case 2:

− 1 ≤ μ ± √
μ2 − 4χ

2
(43)

or

−(2 + μ) ≤ ±
√

μ2 − 4χ

⇒ (2 + μ) ≥ ±
√

μ2 − 4χ

⇒ (2 + μ) ≥|
√

μ2 − 4χ | (44)

By squaring both the sides, we get

(2 + μ)2 ≥ (μ2 − 4χ) (45)

Replacing μ by (1+χ −χ(c1 + c2)) in the inequality given
by Eq. (45), we get another stability condition

χ(c1 + c2) ≤ 2(1 + χ) (46)

From Eqs. (42) and (46), we get the condition for stability as

0 ≤ χ(c1 + c2) ≤ 2(1 + χ) (47)

or

0 ≤ (c1 + c2) ≤ 2(1 + 1/χ); χ �= 0 (48)

Thus, the PSO algorithm is stable iff the acceleration coef-
ficients and the constriction coefficient satisfy the inequality
given by Eq. (48). The range of values of parameters c1, c2
andχ so that the inequality (47) is satisfied is termed as stable
range. We denote the stable range by AS . The compliment of
this range AS is termed as outside stable range and defined
by AUS .

The first theorem verifies the stability condition obtained
by various researchers, and second theorem proposes stabil-
ity condition for PSO algorithm with constriction coefficient
χ . In this study, von Neumann stability criterion for finite
difference scheme is used to find stability condition of PSO
algorithm with inertia weight w and constriction coeffi-
cient χ . The advantage of applying von Neumann stability
criterion is that there is no need to find eigenvalues and
matrix norm, so it is easy to implement. Hence, this crite-
rion can further be used to find stability conditions of other
population-based meta-heuristic search algorithms. In next
section, the obtained stability condition is tested over bench-
mark test problems.

5 Numerical Experiments

In order to justify theoretical findings of stability analysis
of PSO algorithm with constriction coefficient χ , numerical
experiments are performed on ten benchmark test problems.
The set of considered test problems contains uni-modal,
multi-modal and separable and non-separable problems. The
test problems are listed in Table 1.

To check the accuracy of PSO algorithm, numerical exper-
iments have been carried out for cases when parameters c1,
c2 and χ lie within stable range AS and when they lie outside
stable range AUSi .

Following eight cases of parameter settings are considered
while doing numerical experiment, and the results are given
in Tables 2 and 3.

Case 1: When acceleration coefficients c1, c2 and con-
striction coefficient χ are in stable range AS ,

1. Swarm size: 50.
2. Maximum number of runs: 100.
3. Maximum number of iterations: 1000.
4. Acceptable error: given in Table 1.
5. c1 = U (0, 2), i.e. c1 ∈ AS . Here, U (a, b) is a uniformly

distributed random number in the interval (a, b).
6. c2 = U (0, 2), i.e. c2 ∈ AS .
7. χ = 0.72, i.e. χ ∈ AS .

Case 2:When acceleration coefficients c1, c2 are in unstable
range AUS and constriction coefficient χ is in stable range
AS ,
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Table 2 Mean error (ME) for
region AS and AUS and their
comparison using Wilcoxon
signed rank (WSR) test (TP test
problem, AS : parameters within
stable range, AUS : parameters
within unstable range)

TP ME for Case 1 ME for Case 2
(WSR of Case 2
Vs Case 1)

ME for Case 3
(WSR of Case 3
Vs Case 1)

ME for Case 4
(WSR of Case 4
Vs Case 1)

f1 1.94E–26 5.52E–01 (+) 7.01 (+) 3.78 (+)

f2 37.54 101.16 (+) 190.36 (+) 185.88 (+)

f3 1.45E–16 2.06 (+) 25.05 (+) 13.51 (+)

f4 9.96E–14 2.63 (+) 15.36 (+) 12.45 (+)

f5 5.45E–02 4.44 (+) 10.31 (+) 8.44 (+)

f6 5.15E–05 2.09 (+) 11.93 (+) 6.80 (+)

f7 5.00E–25 7.69 (+) 97.88 (+) 53.40 (+)

f8 1.39E–41 2.98E–07 (+) 1.1E–03 (+) 2.93E–04 (+)

f9 38.98 6.11E05 (+) 5.13E07 (+) 1.64E07 (+)

f10 20.00003 20.20027 (=) 20.34508 (=) 20.31818 (=)

Number of + signs 9 9 9

Table 3 Mean error (ME) for
region AS and AUS and their
comparison using Wilcoxon
signed rank (WSR) test (TP: test
problem, AS : parameters within
stable range, AUS : parameters
within unstable range)

TP ME for Case 5 ME for Case 6
(WSR of Case 6
Vs Case 5)

ME for Case 7
(WSR of Case 7
Vs Case 5)

ME for Case 8
(WSR of Case 8
Vs Case 5)

f1 6.59E–05 1.86 (+) 7.97 (+) 3.86 (+)

f2 31.87 170.83 (+) 210.70 (+) 168.72 (+)

f3 7.77e–03 6.93 (+) 35.06 (+) 13.59 (+)

f4 1.94E–01 8.22 (+) 17.38 (+) 11.46 (+)

f5 3.81 6.78 (+) 11.59 (+) 8.51 (+)

f6 2.24 3.38 (+) 17.35 (+) 8.27 (+)

f7 3.55E–03 2.60E01 (+) 1.40E02 (+) 5.27E01 (+)

f8 2.21E–16 6.80E–05 (+) 2.35E–03 (+) 3.1E–04 (+)

f9 129.81 4.19E06 (+) 1.09E08 (+) 1.95E07 (+)

f10 20 20.35 (=) 20.3382 (=) 20.3149 (=)

Number of + signs 9 9 9

1. Swarm size: 50.
2. Maximum number of runs: 100.
3. Maximum number of iterations: 1000.
4. Acceptable error: given in Table 1.
5. c1 = U (0, 4.50), i.e. c1 ∈ AUS .
6. c2 = U (0, 3.85), i.e. c2 ∈ AUS .
7. χ = 0.50, i.e. χ ∈ AS .

Case 3: When acceleration coefficients c1, c2 are in stable
range AS and constriction coefficient χ is in unstable range
AUS ,

1. Swarm size: 50.
2. Maximum number of runs: 100.
3. Maximum number of iterations: 1000.
4. Acceptable error: given in Table 1.
5. c1 = U (0, 1.62), i.e. c1 ∈ AS .
6. c2 = U (0, 1.45), i.e. c2 ∈ AS .
7. χ = 1.50, i.e. χ ∈ AUS .

Case 4: When acceleration coefficients c1, c2 are in stable
range AUS3 and constriction coefficientχ is in unstable range
AUS ,

1. Swarm size: 50.
2. Maximum number of runs: 100.
3. Maximum number of iterations: 1000.
4. Acceptable error: given in Table 1.
5. c1 = U (0, 4.62), i.e. c1 ∈ AUS .
6. c2 = U (0, 5.45), i.e. c2 ∈ AUS .
7. χ = 1.50, i.e. χ ∈ AUS .

Case 5: When acceleration coefficients c1, c2 and constric-
tion coefficient χ are in stable range AS ,

1. Swarm size: 50.
2. Maximum number of runs: 100.
3. Maximum number of iterations: 1000.
4. Acceptable error: given in Table 1.
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5. c1 = U (0, 1.52), i.e. c1 ∈ AS .
6. c2 = U (0, 1.55), i.e. c2 ∈ AS .
7. χ = 0.50, i.e. χ ∈ AS .

Case 6:When acceleration coefficients c1, c2 are in unstable
range AUS and constriction coefficient χ is in stable range
AS ,

1. Swarm size: 50.
2. Maximum number of runs: 100.
3. Maximum number of iterations: 1000.
4. Acceptable error: given in Table 1.
5. c1 = U (0, 6.52), i.e. c1 ∈ AUS .
6. c2 = U (0, 5.55), i.e. c2 ∈ AUS .
7. χ = 0.50, i.e. χ ∈ AS .

Case 7: When acceleration coefficients c1, c2 are in stable
range AS and constriction coefficient χ is in unstable range
AUS ,

1. Swarm size: 50.
2. Maximum number of runs: 100.
3. Maximum number of iterations: 1000.
4. Acceptable error: given in Table 1.
5. c1 = U (0, 1.12), i.e. c1 ∈ AS .
6. c2 = U (0, 1.23), i.e. c2 ∈ AS .
7. χ = 2.30, i.e. χ ∈ AUS .

Case 8: When acceleration coefficients c1, c2 are in stable
range AUS and constriction coefficient χ is in unstable range
AUS ,

1. Swarm size: 50.
2. Maximum number of runs: 100.
3. Maximum number of iterations: 1000.
4. Acceptable error: given in Table 1.
5. c1 = U (0, 5.62), i.e. c1 ∈ AUS .
6. c2 = U (0, 4.65), i.e. c2 ∈ AUS .
7. χ = 2.50, i.e. χ ∈ AUS .

Mean error (ME) is calculated for considered test problems,
and numerical results are presented in Table 2 and Table 3.
Numerical results are again verified by performing nonpara-
metric test, namely Wilcoxon signed rank test, and given
in Table 2 and Table 3. If the data set obtained by numeri-
cal experiments has significant difference, then it results in
rejection of null hypothesis and ‘+’ sign appears; otherwise,
null hypothesis is accepted and ‘=’ sign appears. In Table 2
and Table 3, ‘+’ sign appears nine times out of ten. Thus,
PSO algorithm performs better in terms of accuracy when
parameters c1, c2 and χ lie within stable range AS .

The above numerical verification of theoretical analyses
explains that in order to bound generation of error in sub-

sequent iterations, sum of acceleration coefficients must lie
within the range as given in Eqs. (24) and (48).

6 Conclusion

Mathematical validation of parameter selection for stochas-
tic algorithms has always been a challenging task. In order
to bound the error generated during the iterative process of
PSO algorithm, stability analysis has been carried out using
von Neumann stability criterion. The condition for the sta-
bility of PSO algorithm with parameters c1, c2 and inertia
weight (w) is obtained. It is found that the findings are same
as represented in the literature using other methods. Stabil-
ity condition for PSO algorithm with constriction coefficient
(χ) is also obtained depending upon parameters c1, c2 and
χ . Based on the condition, stable and unstable ranges are
defined. The findings are verified by performing numerical
experiments on benchmark test problems, and it is found that
PSO algorithm performs better in terms of accuracy when
parameters lie within stable range. Due to easy implementa-
tion of von Neumann stability criterion, it can be further used
to find stability condition for various other population-based
meta-heuristic algorithms.
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