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Abstract Artificial Bee Colony (ABC) and Differential Evolution (DE) are two very popular and ef-
ficient meta-heuristic algorithms. However, both algorithms have been applied to various science and
engineering optimization problems, extensively, the algorithms suffer from premature convergence, unbal-
anced exploration-exploitation, and sometimes slow convergence speed. Hybridization of ABC and DE
may provide a platform for developing a meta-heuristic algorithm with better convergence speed and a
better balance between exploration and exploitation capabilities. This paper proposes a hybridization of
ABC and DE algorithms to develop a more efficient meta-heuristic algorithm than ABC and DE. In the
proposed hybrid algorithm, Hybrid Artificial Bee Colony with Differential Evolution (HABCDE), the on-
looker bee phase of ABC is inspired from DE. Employed bee phase is modified by employing the concept
of the best individual while scout bee phase has also been modified for higher exploration. The proposed
HABCDE has been tested over 20 test problems and 4 real-world optimization problems. The perfor-
mance of HABCDE is compared with the basic version of ABC and DE. The results are also compared
with state-of-the-art algorithms, namely Covariance Matrix Adaptation Evolution Strategy (CMA-ES),
Particle Swarm Optimization (PSO), Biogeography Based Optimization (BBO) and Spider Monkey Op-
timization (SMO) to establish the superiority of the proposed algorithm. For further validation of the
proposed hybridization, the experimental results are also compared with other hybrid versions of ABC
and DE, namely ABC-DE, DE-BCO and HDABCA and with modified ABC algorithms, namely Best-
So-Far ABC (BSFABC), Gbest guided ABC (GABC) and Modified ABC (MABC). Results indicate that
HABCDE would be a competitive algorithm in the field of meta-heuristics.

Keywords Artificial Bee Colony ; Differential Evolution ; Optimization ; Hybridization ; Swarm
intelligence

1 Introduction

Swarm Intelligence has emerged as an effective tool for numerical optimization, which runs over the col-
laborative trial and error method. The popular techniques based on Swarm Intelligence are Particle swarm
optimization (PSO) [27], Biogeographic based optimization (BBO) [40] , Bacterial foraging optimization
(BFO) [35], Firefly algorithm [30], Ant colony optimization (ACO) [12] and Spider monkey optimization
[8]. The work proposed in the articles [12, 27, 37, 43] provides the evidence of its efficiency to find the
solution of optimization problems of typical characteristics like nonlinearity, nonconvexity, and discrete
search space. Artificial Bee Colony (ABC) [23] is well known optimization algorithm in this category.
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ABC algorithm is a simulation of a particular behavior of honey bees known as foraging behavior (a
search for food). It is easy to implement population-based optimization algorithm with very few number
of parameters. Here the population includes possible solutions as food sources for honey bees. The food
source’s fitness is proportional to the nectar amount that it contains. In ABC, each bee moves to other
food sources through position update Equation (2) in Section (2) which is a linear combination of position
of its current food source and position of a randomly selected food source with a random coefficient φ as
step size. Due to the involvement of these random quantities, ABC is found to be good at exploration
and with the lack of exploitation, i.e., incapable of applying available information to find better solution
[48]. Researchers in [25, 28] also analyzed this fact and found that it will ultimately affect the ABC
algorithm’s convergence rate. Li et al. [29] also found that ABC suffers from convergence speed when we are
dealing with some complex problems. These drawbacks may be dealt by modifying existing position update
equation and/or by hybridizing another fast optimization algorithm with ABC. The articles [7, 16, 26, 48]
worked to improve exploitation in ABC by modifying its position update equation while previous research
in [13, 29, 34, 47] have also shown that hybrid ABC with different algorithms can perform better by
integrating the respective advantages of the independent algorithms. Jadon et al. [21] modified position
update equation of basic ABC algorithm. In this modification, fitness of randomly selected solution directs
the sign of step size to be added in the current position to generate its neighborhood solution in employed
and onlooker bee phases. Li et al. [29] proposed a hybrid version of ABC and DE algorithms and applied
it to optimal reactive power flow. Amir et al. [6] hybridized DE in ABC to create new solutions for both
employed and onlooker bees for unconstrained optimization problems. Alizadegan et al. [6] proposed a
hybrid ABC and DE (ABC-DE) in which DE is incorporated in employed and onlooker phases. Ali et al.
[47] also introduced a novel hybrid optimization method (HRABC) consisting of ABC and Taguchi method
for structural design optimization. Duan et al. [13] hybridized ABC into Quantum Evolutionary Algorithm
(QEA) where ABC is adopted to enhance the local exploitation capacity and randomness of the QEA
populations. Abraham et al. [2] also incorporated DE process after each ABC iteration. In [34], Levenberq-
Marquardt (LM) strategy is also hybridized with ABC and tested to train neural networks. In DEBCO
[1], employed bee of ABC finds the neighborhood solutions through DE. Thammano et al. [42] hybridized
five distinct search techniques at various levels of the ABC to solve job shop scheduling problem. Here,
harmony search algorithm is used for initialization of the population. The iterated local search scheme, the
scatter search method, and the filter & fan techniques are applied to search neighborhood solutions. The
simulated annealing algorithm is also hybridized and applied to get a solution out of local optimum. Kang
et al. [22] hybridized basic ABC with Hooke-Jeeves based local search method [19] known as HJABC. In
HJABC, a selection pressure and solution ranking are used to calculate fitness function.

This paper proposes a hybrid version of ABC and DE, which also incorporates the modification in the
position update equation of ABC. The proposed hybrid algorithm is named as HABCDE. In HABCDE,
the employed, onlooker and scout bee phases of ABC are modified. In employed bee phase, a bee moves
to other food source not only based on a randomly selected food source but also based on the current
best food source. Gbest-guided ABC [48] has already applied the best solution information to update the
position of any bee. In onlooker bee phase, it updates the bee’s position through evolutionary operations
of differential evolution (DE/best/1/bin) algorithmic process. The number of scouts is increased in scout
phase to give a chance to re-initialize themselves to all those bees who are not being updated to a predefined
number of times.

The organization for the rest in this article is as follows: Standard ABC is explained in Section (2).
Section (3) reports classical DE algorithm. Section (4) details the proposed hybrid ABC (HABCDE). In
Section (5), the performance of the proposed scheme is examined and measured with recent variants of
ABC. Comparison is also done with some state-of-the-art algorithms and with hybrid versions of ABC.
Finally, paper is concluded in Section (6).

2 Artificial Bee Colony(ABC) algorithm

The ABC algorithm was developed by Karaboga which is a simulation of food foraging behavior of real
honey bees. In ABC, the food source for bees are called as solutions. ABC is composed of three types of
bees namely, the employed, the onlooker and the scout. ABC colony consists equal number of employed
and onlooker bees. Employed bees explore the food source in the surroundings of their hive and store the
related information in their memories. Onlooker bees collect the information from employed bees in the
hive to select food sources for further extraction of nectar. If the nectar quantity in food source is low or
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exhausted, then scout bee randomly finds a new food source in search space. The step by step description
of ABC algorithmic procedure is as follows:

2.1 Initialization of the swarm

The initial solutions xi(i = 1, 2, ..., SN) of swarm is generated using a uniform distribution as follows:

xid = xmind + rand[0, 1](xmaxd − xmind) (1)

here xi is the ith potential solution in the swarm, xmind and xmaxd are bounds of xi in dth dimension
and rand[0,1] is a uniformly distributed random number in the interval [0, 1].

2.2 Employed bee phase

In this phase, each bee moves to other solution (food source) is modified as follows:

vid = xid + φid(xid − xkd) (2)

here, i is current solution, k is a randomly selected solution among the SN solutions of the swarm such
that k 6= i and d is any randomly chosen dimension. φid is a random number in the interval [-1, 1]. Now,
the greedy selection is applied between the new solution and old solution to memorize better one in terms
of fitness.

2.3 Onlooker bees phase

In this phase, we try to exploit better solutions in their surroundings. So, solutions are selected based on
a probability probi for further generation of new solutions in their neighborhoods. Here probi is calculated
based on fitness:

probi(G) =
0.9 × fitnessi

maxfit
+ 0.1, (3)

here fitnessi represents the fitness of the ith solution. In case of maximization optimization problem,
the fitnessi is equal to objective function value and it is equal to negative of objective function value in
case of minimization problem. maxfit is the fitness of best solution so far. After selecting solutions, the
new neighborhood solutions are generated using the same Equation (2). Again greedy selection is applied
between the current and the old positions to memorize one of these by the onlooker bees.

2.4 Scout bees phase

If for a prefix duration or iterations, any solution is unable to update itself then it is considered as
abandoned solution and the corresponding bee becomes the scout. In ABC, the crucial control parameter
(the number of iterations) after which a particular solution is considered exhausted is known as limit.
After each iteration, only one solution which has not been updated for a maximum number of iterations
out of all exhausted solutions is selected. The bee associated with selected solution search new food source
in the search space randomly using the Equation (1). In basic ABC, at most one scout bee can reinitialize
itself.

2.5 Artificial Bee Colony algorithm

The pseudo-code of the basic ABC is taken from [24] and is shown in Algorithm 1.
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Algorithm 1 ABC Algorithm:

Initialize the control parameters;
while !Termination criteria do

Employed bee phase: generate neighborhood solutions for each solution in the swarm;
Onlooker bees phase: generate neighborhood solutions for the solutions selected based on their probabilities;
Scout bee phase: reinitialize the exhausted solutions in the search space randomly;
Memorize the best solution;

end while

Output the best solution.

3 Differential Evolution

DE is a population-based optimization algorithm, where members of the population are potential solutions
which collaboratively search solutions. DE has both the evolutionary and swarm intelligence based features
as it includes evolutionary operators like mutation, crossover, selection and swarm intelligence concept
like distance and direction of the individual solutions to guide the search process further. DE has different
formats to apply to solve the optimization problem, e.g., it has various selection methods for target vector,
the number of difference vectors used in update equation and the types of crossover operator to be used
[36]. This paper uses the DE/best/1/bin format of DE, which explains that selection of target vector will
be the best solution, exactly ’1’ number of differential vectors will be used, and ’bin’ indicates that DE will
use the binomial crossover. Each individual member of DE population is represented by a D-dimensional
vector xi(i = 1, 2, ...,D).

The whole DE process consists of three phases: generation of the trial vector, generation of the offspring
and selection between the parents and the offsprings to form next generation. Mutation, crossover, and
selection are the three operators which make phases mentioned above to be executed. In DE, Initially by
using uniform distribution, a population of fixed size is generated in the search region. Then, to generate
next population, these three mentioned phases take place. The critical and essential part of whole DE
process is the generation of offspring vector which involves two, the mutation and the crossover operators.
Finally greedy selection is made between parents and offsprings to select the best vectors for the next
generation. Following subsections briefly describe the working of DE operators .

3.1 Mutation

For each member of the population, DE mutation operator develops a trial vector. For generating the
trial vector, best solution in the current population is selected as a target vector and is mutated with a
weighted differential. The mutation process to generate a trial vector ui(g) for the parent vector xi(g) is
defined as follows:

– Choose the best vector xbest(g) in the population,
– Choose two members xi1 and xi2 randomly in the population such that i 6= i1 6= i2.
– Generate trial vector by mutating the target vector as follows:

ui(g) = xbest(g) + F × (xi1(g) − xi2(g)) (4)

where, g is the iteration count, F ∈ [0, 1] is the scale factor which indicates that how much amount of
differential variation [15] will influence on target vector.

3.2 Crossover

The trial vector ui(g) and parent xi(g) are used in crossover to generate Offspring x′i(g) as follows:

x′id(g) =

{

uid(g), if d ∈ S

xid(g), otherwise.
(5)

where S is the set of crossover points, xid(g) is the dth dimension of the vector xi(g).
Literature suggests various techniques to define the set S, exponential and binomial are the most

frequent crossover strategies amongst them [15]. Here the binomial crossover is used in the proposed
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hybridization HABCDE. In binomial crossover, the set S randomly picks the crossover points from the
set of possible crossover points. Following Algorithm 2 explains the procedure to generate crossover points
[15].

Algorithm 2 Binomial Crossover:

S = emptyset
d∗ = U(1, D);
S = S ∪ d∗;
for every d ∈ 1...D do

if U(0, 1) < CR and d 6= d∗ then

S = S ∪ d;
end if

end for

Here, D is the dimension of the problem, d∗ is a randomly selected dimension to be included in D to
ensure at least one crossover point, CR represents the probability which decides the inclusion of considered
crossover point. The higher CR reflects in the selection of more crossover points. U(1,D) is a random
integer between 1 and D and S is a set of crossover points.

3.3 Selection

In DE, selection operator is applied at two points: First, where individual members of the population are
selected for the mutation operation to generate the trial vector. This selection may be either random or
any individual having best fitness in the current population. Second, where greedy selection (explained
below) is made between the parent and the offspring, i.e., the one who has higher fitness will move into
the next generation. If f(∗) is the fitness function then:

xi(g + 1) =

{

x′i(g), if f(x′i(g)) > f(xi(g)).

xi(g), else.
(6)

Algorithm 3 explains the Pseudo-code for DE algorithm [15]. In Algorithm 3, crossover probability CR
and scale factor F are the control parameters of the DE algorithm. P represents the population vector.

Algorithm 3 Differential Evolution Algorithm:

Initialize population P (0), control parameters F and CR;
while !Termination criteria do

for every individual xi(g) ∈ P (g) do

Evaluate f(xi(g));
Employ mutation operator to generate trial vector ui(g);
Employ crossover operator to generate offspring x′

i(g);
if f(x′

i(g)) is better than f(xi(g)) then

Include x′

i(g) to P (g + 1);
else

Include xi(g) to P (g + 1);
end if

end for

end while

output the best solution;

4 Hybrid Artificial Bee Colony with Differential Evolution Algorithm

As mentioned in Section (1), ABC algorithm may be improved by modifying its position update equation
and/or by hybridizing it with other promising optimization algorithms. In this article, both the concepts
are applied to improve basic ABC’s efficiency. The proposed algorithm is a hybridization of ABC with DE
algorithm and named as Hybrid Artificial Bee Colony with Differential Evolution (HABCDE) Algorithm.
In HABCDE, three modifications, one in each phase of ABC, are proposed as follows:
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1. Employed bee phase: From position update Equation (2), it is clear that in basic ABC, a solution is
updated using the information from a random solution xkj of the current swarm. The selection of this
random solution has a significant influence on the quality of the updated solution. The randomness
of this solution is also required to maintain the diversified search throughout the search space. This
fact motivates the authors to modify the Equation (2) of ABC so that it can manage the property
of diversity while not entirely dependent on the choice of the random solution xkj . Therefore, best
solution information is incorporated like gbest-guided ABC (GABC) [48] in HABCDE. Therefore, the
amount of change in the solution (say, step size) is supposed to balance the exploration (because of
random solution) and exploitation (because of the presence of best solution) capabilities of the ABC
algorithm. The position update equation used in proposed algorithm is:

vid = xid + φid(xid − xkd) + ψid(yd − xid) (7)

where yd is dth dimension of the best solution of the current swarm and ψ is a random number between
(0, C), C is a positive constant defined by the user.

2. Onlooker bee phase: Since the convergence speed of DE is relatively better than ABC, the position
update process of DE algorithm is implemented in onlooker bee phase of ABC. This has been done in
expectation of achieving the faster convergence by ABC. In this phase, instead of using Equation (2),
onlooker bee exploits current food position through evolutionary operations of differential evolution (as
in DE/best/1/bin, Algorithm 3). In the proposed hybridized solution search process of ABC and DE,
the new solution (offspring) is generated through mutation and crossover operations. In this process
first a trial solution is generated by mutating the best solution of the current swarm with the help of
two randomly selected solutions from the swarm as in Equation (4). Then binomial crossover operator
is applied to the trial solution and the current solution (the solution which is to be updated) using
Equation (5) to create the offspring (new solution). Now, the greedy selection is applied to the current
and offspring solution to select the better one.

3. Scout bee phase: To increase the exploration capability of the proposed algorithm, the number of
scout bees is increased. It is reminded that in ABC if the trial counter (the not updating count) is
maximum and crosses the ’limit’ for a solution, the associated bee is called scout bee. Usually, only
one scout can search new solution in the ABC. While, all the scout bees who are crossing the limit
are allowed in the proposed strategy to reinitialize corresponding solutions in the given search space.
Consequently, the bees corresponding to exhausted solutions are forced to explore the new solutions
in search space.

The HABCDE is composed of three phases. Here, Employed bee phase uses position update Equation
(7) of GABC instead of Equation (2). In onlooker bee phase, solutions are exploited through DE Algorithm
3 (DE/best/1/binomial crossover). The number of scout bees is increased in scout bee phases and rest of
this phase remains same like in basic ABC. The Algorithm 4 explains the pseudo-code for the proposed
HABCDE algorithm. DE algorithm is fast in convergence and ABC is better in exploration. Thus the
hybrid variant of ABC and DE is expected to converge towards optimal solution quickly while maintaining
the diversified search.

The search process of proposed HABCDE is also explained through Flow chart 1.

5 Experimental results and discussion

According to famous No Free Lunch Theorem (NFL) [46], designing a single algorithm which is better than
all other algorithms, is not possible provided it is tested over a sufficient number of problems. However,
the authors are not claiming that the proposed algorithm HABCDE is superior than other algorithms
for all kind of problems; the experimental results have been carried out below over a set of benchmark
optimization problems and a set of real-world optimization problems to show its wider applicability.

5.1 Benchmark optimization problems under consideration

The performance of the proposed HABCDE algorithm is tested over 20 mathematical optimization prob-
lems (f1 to f20) (listed in Table 1). Test problems f1 − f13 and f17 − f20 are taken from [5] while test
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Algorithm 4 Hybrid ABC with Differential Evolution (HABCDE):

Initialize the swarm and control parameters;
while !Termination criteria do

Employed bee phase: generate neighborhood solutions for each solution in the swarm using position update Equation
(7).
Onlooker bees phase: generate neighborhood solutions for the solutions selected based on their probabilities as follows:
for (each onlooker’s solution xi) do

if (U(0, 1) < probi) then

Apply mutation (as in Equation 4) to generate the trial solution ui;
Apply binomial crossover (as in Equation 5) to generate an offspring x′

i;
if (f(x′

i) is better than f(xi)) then

xi = x′

i;
end if

end if

end for

Scout bee phase: randomly reinitialize all the exhausted solutions in the search space.
end while

output the best solution.

problems f14 − f16 are taken from [41]. This considered set of test problems is chosen such that the
algorithm can be well tested for various challenges like separability, non-separability, unimodality and
multimodality of the problems. Further, the proposed scheme is also applied to solve 4 well-known real-
world optimization problems (f21 to f24), described as follows:

Compression Spring (f21): This problem is 3 dimensional constrained optimization problem where
the objective is to minimize the weight of a compression spring, subject to some physical, operational
and practical constraints. The mathematical form of the problem is taken from [33, 39]. The best known
fitness solution is f∗ = 2.6254214578 for solution vector (7, 1.386599591,0.292). Here, acceptable error to
consider a algorithm’s run successful is fixed to be 1.0E − 10.

Pressure Vessel design (f22): The pressure vessel design problem is a 4 dimensional constrained
optimization problem where the objective is to minimize the total cost of the material, forming, and
welding of a cylindrical vessel. The mathematical form of this problem is taken from [44]. The problem
has best known solution f(1.125,0.625,55.8592,57.7315) = 7197.729 [44]. The acceptable error is fixed to
be 1.0E − 05 for a successful run.

Frequency-Modulated (FM) sound wave (f23): Frequency-Modulated sound wave synthesis is
an important part of many modern music systems. Here, the objective is to optimize the parameters of
the sound wave. The mathematical form of the problem is taken from [10]. Acceptable error is fixed as
1.0E − 05 for this problem.

Welded beam design optimization problem (f24): The objective of Welded beam design problem
is to minimize the fabricating cost of designing a welded beam subject to some physical, operational and
practical constraints. The mathematical form of the problem is taken from [38, 31]. The best known
solution for the problem is (0.205730,3.470489,9.036624,0.205729) and corresponding function value is
1.724852. Acceptable error for this problem is set as 1.0E − 01.
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Fig. 1: Flowchart for HABCDE algorithm
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Table 1: Test functions used in experiments. d: Dimension, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable, Ae: Acceptable Error

Test Problem Objective function Search

Range

Optimum

Value

d C Ae

Sphere f1(x) =
∑d

i=1 x
2
i [-5.12 5.12] f(0) = 0 30 US 1.0e− 05

Rosenbrock f2(x) =
∑d

i=1(100(xi+1 − xi
2)2 + (xi − 1)2) [-30 30] f(1) = 0 30 UN 1.0e− 02

Ackley
f3(x) = −20 + e+ exp(− 0.2

d

√

∑d
i=1 xi

3)
[-1 1]

f(0) = 0 30 MN 1.0e− 05

−exp( 1
d

∑

d
i=1 cos (2πxi)xi)

Alpine f4(x) =
∑d

i=1 |xisin xi + 0.1xi| [-10 10] f(0) = 0 30 MS 1.0e− 05

Cosine Mixture f5(x) =
∑d

i=1 xi
2 − 0.1(

∑d
i=1 cos 5πxi) + 0.1d [-1 1] f(0) = −d ×

0.1
30 MS 1.0e− 05

Exponential f6(x) = −(exp(−0.5
∑d

i=1 xi
2)) + 1 [-1 1] f(0) = −1 30 MN 1.0e− 05

Zakharov f7(x) =
∑d

i=1 xi
2 + (

∑d
i=1

ixi

2
)
2
+ (

∑d
i=1

ix1
2

)
4

[-5.12 5.12] f(0) = 0 30 MN 1.0e− 02

Salomon Prob-
lem

f8(x) = 1 − cos(2π
√

∑

d
i=1 x2

i
) + 0.1(

√

∑

d
i=1 x2

i
) [-100 100] f(0) = 0 30 MN 1.0e− 01

Inverted cosine
wave

f9(x) = −
∑d−1

i=1

(

exp

(

−(x2
i+x2

i+1+0.5xixi+1)

8

)

× I

)

[-5 5] f(0) = −d+ 1 10 MN 1.0e− 05

where, I = cos
(

4
√

x2
i
+ x2

i+1 + 0.5xixi+1

)

Neumaier 3
Problem (NF3)

f10(x) =
∑d

i=1 (xi − 1)2 −
∑n

i=2 xixi−1 [−d2 d2] fmin =

−
(d(d+4)(d−1))

6

10 UN 1.0e− 01

Colville f11(x) = 100[x2−x2
1]

2+(1−x1)2+90(x4−x2
3)

2+(1−x3)2+10.1[(x2−

1)2 + (x4 − 1)2] + 19.8(x2 − 1)(x4 − 1)

[-10 10] f(1) = 0 4 MN 1.0e− 05

Braninss func-
tion

f12(x) = a(x2 − bx2
1 + cx1 − d)2 + e(1− f) cos x1 + e −5 ≤ x1 ≤

10, 0 ≤ x2 ≤

15

f(−π, 12.275) =
0.3979

2 MN 1.0e− 05

Kowalik f13(x) =
∑11

i=1[ai −
x1(b

2
i+bix2)

b2
i
+bix3+x4

]2 [-5 5] f(0.192833,
0.190836, 0.123117,
0.135766) =
0.000307486

4 MN 1.0e− 05

Shifted Rosen-
brock

f14(x) =
∑d−1

i=1 (100(z
2
i − zi+1)2 + (zi − 1)2) + fbias, z = x − o + 1,

x = [x1, x2, ....xd], o = [o1, o2, ...od]
[-100 100] f(o) =

fbias = 390
10 MN 1.0e− 01

Shifted Sphere f15(x) =
∑d

i=1 z
2
i + fbias, z = x − o ,x = [x1, x2, ....xd], o =

[o1, o2, ...od]
[-100 100] f(o) =

fbias = −450
10 US 1.0e− 05

Shifted Ackley f16(x) = −20 exp(−0.2
√

1
d

∑D
i=1 z

2
i )− exp( 1

d

∑d
i=1 cos(2πzi)) + 20+

e+ fbias, z = (x− o), x = (x1, x2, ........xd), o = (o1, o2, ........od)

[-32 32] f(o) =
fbias = −140

10 MN 1.0e− 05

Goldstein-Price f17(x) = (1+(x1 +x2+1)2 · (19−14x1 +3x2
1−14x2 +6x1x2+3x2

2)) ·

(30 + (2x1 − 3x2)2 · (18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2))

[-2 2] f(0,−1) = 3 2 MN 1.0e− 14

Six-hump camel
back

f18(x) = (4− 2.1x2
1 + x4

1/3)x
2
1 + x1x2 + (−4 + 4x2

2)x
2
2 [-5 5] f(−0.0898,

0.7126)=
−1.0316

2 MN 1.0e− 05

Easom’s func-
tion

f19(x) = −cosx1cosx2e((−(x1−π)2−(x2−π)2)) [-10 10] f(π, π) = −1 2 UN 1.0e− 13

Hosaki Problem f20 = (1− 8x1 + 7x2
1 − 7/3x3

1 + 1/4x4
1)x

2
2 exp(−x2) x1 ∈ [0, 5],

x2 ∈ [0, 6]
-2.3458 2 MN 1.0e− 6
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5.2 Experimental setting

The proposed HABCDE algorithm is implemented in C++. All the experiments (HABCDE and other
considered algorithms) are implemented on an Intel Core i5-2410M PC with 2.30 (GHz) processor speed,
4 (GB) RAM and window 7 operating system. The performance of the HABCDE are compared based
on four factors, namely: success rate (SR), average number of function evaluations (AFE) and mean er-
ror (ME). Proposed algorithm HABCDE is compared with the basic ABC and some promising ABC
variants: Gbest-guided ABC (GABC) [48], Modified ABC (MABC) [4], Best-So-Far ABC (BSFABC) [7].
HABCDE is also compared with some state-of-the-art algorithms like CMA-ES [18, 17], DE, PSO, BBO
and SMO and other hybrid versions of ABC and DE namely, ABC-DE [6], DEBCO [1] and HDABCA
[3]. We have divided these considered algorithms in three sets namely, modified ABC algorithms S1 =
{ABC,BSFABC,GABC,MABC}, The state-of-the-art algorithmsS2 = {CMA−ES,DE,PSO,BBO, SMO}
and hybrid ABC-DE algorithms S3 = {ABC-DE,DEBCO,HDABCA} for the comparison purpose.

Parameter settings:

– The maximum number of runs =100,
– Population size SN = 25 [11, 14],
– limit= d× SN [26, 4], where d is the dimension of the problem,
– C = 1.5 in GABC update equation [48],
– The algorithm is terminated if either function evaluations reaches 200000 or acceptable error (Table

1) is found for the test problem,
– To set the DE parameters F and CR, sensitive analysis (see Figure 2) is carried out in the range

[0.1,1]. The horizontal axis in Figure 2 shows a values of F , CR and the vertical axis shows the sum
of successful runs for all the test problems under consideration. We can observe from this figure that
a combination of F = 0.7 and CR = 0.6 clearly provides the highest success rate.

– The settings for the parameters of the algorithms in the sets S1, S2 and S3 are selected as they are in
respective original articles.
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Fig. 2: Effect of parameters F and CR of DE on success rate

5.3 Analysis of Results

Tables 2, 3 and 4 present numerical comparison of all the considered algorithms of set S1 for test problems
f1−f20 and real-world optimization problems f21−f24 while Tables 5, 6 and 7 present the comparison for
state-of-the-art algorithms of set S2 and Tables 8, 9 and 10 present the comparison for hybrid algorithms
of set S3 for benchmark problems f1 − f20. Tables 2 to 10 numerically compare the SR, AFE and ME
achieved by the algorithms. Here SR is the count of successful runs i.e., how many times the algorithm
succeed to find function optima with acceptable error in 100 trials. AFE is the average count of function
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calls to reach at the termination criteria in 100 trials and ME is the mean error in solution in 100 trials. It
can be observed from Tables 2, 5 and 8 that reliability for proposed HABCDE algorithm is higher as it has
achieved higher or equal success rate than on all functions except f9 and f13. Here, it is to be noticed that
the algorithm CMA-ES gave tough competition to proposed HABCDE algorithm as it achieved equivalent
highest success rate on 14 out of 20 considered benchmark test functions. It can be verified from Tables
3, 6 and 9 that HABCDE took lesser function calls on 96%, 65% and 90% test problems than that of
algorithms of set S1, S2 and S3 respectively, so it is considered more efficient. The algorithm CMA-ES
placed on second position with respect to AFE and took less AFEs than the proposed and other considered
algorithms on 25% test functions. Tables 4, 7 and 10 shows the clear superiority of HABCDE over other
algorithms of sets S1, S2 and S3 in terms of accuracy as mean error obtained by HABCDE’s is lesser
than that of algorithms of set S1 on 21 out of 24 functions, lesser than algorithms of set S2 on 12 out
of 20 test problems and lesser than algorithms of set S3 on 19 out of 20 test problems. Here, also the
CMA-ES algorithm is promising as it got less mean error than the proposed and other algorithms in set
S2 on 6 out of 20 test functions. Further, we compared HABCDE and other algorithms in the order: SR
- AFE - ME i.e., first compare the SR and if the two algorithms are achieving the same SR then compare
the AFE. Still, if there is a tie then ME is used for comparison. As a result available in Tables 2 to 10,
HABCDE performs better than all algorithms of set S1 on all test problems except f9 and it costs less
than the algorithms of set S3 on all test functions except f8 and f9. The algorithms of set S2, particularly
CMA-ES which costs less on 20% test functions, gave good competition to proposed HABCDE. It can
also be observed from results that no algorithm of set S1 and S3 has beaten HABCDE on any real-world
optimization problem. As these functions are of different complexities, it can be stated that HABCDE
is able to balance the exploration and exploitation capabilities efficiently. MABC algorithm performed
well on single test function f9. Each of the hybrid algorithms (ABC-DE, DEBCO and HDABCA) is cost
effective than HABCDE only on two functions f8 and f9. Among the state-of-the-art algorithms, BBO
and DE performed better than HABCDE on single function f4 and f7 respectively, PSO and SMO on two
functions (f8, f9) and (f9, f13) respectively. The CMA-ES algorithm performed better than HABCDE on
four test functions (f7, f10, f14) and (f19). This should be noticed that HABCDE performed worst than all
modified, state-of-the-art algorithms and hybrid ABC algorithms except ABC, DE, BBO and BSFABC on
multimodel nonseparable test function f9. On the other hand, popular modified ABC strategy BSFABC
has not defeated HABCDE in any sense. So, if we conclude the results of all considered test functions, the
HABCDE algorithm is the cost effective algorithm on most of the considered test functions but not for
all considered functions. This behavior is not an exception but actually verifies the statement of NFL.

The proposed algorithm HABCDE is analyzed more intensively in next subsection through some
statistical test like Mann-Whitney U rank sum test, boxplot etc.,

5.4 Statistical Analysis

Since the empirical distribution of results can efficiently be represented by boxplot [45], the boxplots for
SR, AFE and ME for HABCDE and all other considered algorithms of sets S1, S2 and S3, are represented
in Figures 3, 4 and 5 respectively. Figures 3, 4 and 5 show that HABCDE is better in terms of all SR,
AFE and ME evaluations as in AFE and ME cases, the interquartile range and median in each figure are
very low and in SR case the median is very high for HABCDE. These figures reflect that the algorithm
CMA-ES is also promising in terms SR, AFE and ME. It can be observed from Figures 3(a), 4(a) and 5(a)
for SR the boxes for proposed HABCDE are not being seen in almost all cases because of the negligible
variation.

Now, the Mann-Whitney U rank sum test [32] is applied on AFE to check the significant difference
between outputs of considered algorithms. We applied this test at 5% level of significance. Since AFE
called by the algorithms are not normally distributed, the nonparametric Mann-Whitney test is used. The
results output of this test for the AFEs of 100 runs is presented in Tables 11, 12 and 13 for sets S1, S2

and S3, respectively. If the test observes the significant difference then the signs ‘+’ and ‘-’ are used as
output for the cases where HABCDE takes less or more AFEs than the other algorithms, respectively. If
considered test does not observe any significant difference then output is ‘=’ sign. Since Table 11 for set
S1 contains 94 ‘+’ signs out of 96 comparisons, Table 12 for set S2 contains 77 ‘+’ signs out of
100 comparisons and Table 13 for set S3 contains 54 ‘+’ signs out of 60 comparisons, it can be
stated that HABCDE performance is significantly better than other considered algorithms over the set of
test problems of Table 1 and considered 4 real-world optimization problems.
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Table 2: Success Rate (SR) for the algorithms of set S1

TP ABC BSFABC GABC MABC HABCDE

f1 100 100 100 100 100

f2 20 21 24 10 100

f3 100 100 100 100 100

f4 100 99 99 12 100

f5 100 100 100 100 100

f6 100 100 100 100 100

f7 0 0 0 0 100

f8 54 66 97 98 100

f9 86 90 99 100 97
f10 3 8 21 36 100

f11 0 33 30 34 100

f12 100 91 90 92 100

f13 18 51 86 26 91

f14 19 22 57 29 99

f15 100 100 100 100 100

f16 100 100 100 100 100

f17 50 54 51 54 100

f18 100 47 37 49 100

f19 6 100 100 14 100

f20 68 35 37 24 100

f21 10 12 18 31 96

f22 0 0 0 0 100

f23 0 1 22 2 26

f24 2 99 63 100 100

Table 3: Average number of function evolutions (AFE) called by the algorithms of set S1

TP ABC BSFABC GABC MABC HABCDE

f1 20409 30063 26735 22359 9301

f2 186025 180325 177340 188136 154936

f3 48727 42833 47957 43333 17243

f4 98099 118190 59545 179705 23572

f5 23016 30029 28709 22764 9175

f6 16974 16707 22384 16648 6902

f7 200000 200000 200000 200000 100890

f8 186384 159415 122009 28910 38009
f9 88543 87966 66979 63835 37979

f10 198915 192527 186003 141729 24389

f11 200000 152315 161103 143857 6188

f12 2003 19603 21847 18969 917

f13 182977 145154 96051 173568 30506

f14 182883 168436 120690 163511 43462

f15 9128 12045 9006 8675 5676

f16 17744 31057 16654 14246 7916

f17 125378 96395 97945 97907 2506

f18 1014 97423 126874 102629 660

f19 192327 24354 39735 172911 5118

f20 76689 120126 111954 142171 461

f21 187602 177523 173445 156234 47961

f22 200000 200000 200000 200000 9205

f23 200000 199693 188003 194993 156593

f24 196985 52711 133956 35375 3547

Further, performance indices (PIs) [9] are calculated to compare the considered algorithms by giving
weighted importance to SR, AFE and ME. The values of PI for the HABCDE and other considered
algorithms, are calculated as:

PI =
1

Np

Np
∑

i=1

(k1α
i
1 + k2α

i
2 + k3α

i
3)
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Table 4: Mean Error (ME) for the algorithms of set S1

TP ABC BSFABC GABC MABC HABCDE

f1 8.17E-06 7.49E-06 8.26E-06 8.95E-06 7.34E-06

f2 1.34E+00 1.68E+00 3.00E+00 3.60E+01 9.58E-03

f3 8.63E-06 8.71E-06 8.74E-06 9.51E-06 8.35E-06

f4 8.10E-06 7.68E-06 1.02E-05 1.01E-03 7.35E-06

f5 7.47E-06 7.05E-06 8.09E-06 9.23E-06 6.30E-06

f6 7.12E-06 7.36E-06 8.15E-06 9.11E-06 7.02E-06

f7 9.75E+01 8.50E+01 1.07E+02 1.47E+00 8.73E-03

f8 9.82E-01 9.79E-01 9.34E-01 9.31E-01 9.99E-02

f9 2.57E-02 6.05E-02 7.38E-06 8.45E-06 7.61E-06
f10 8.88E+00 4.39E+00 5.55E+00 2.03E+00 8.66E-06

f11 1.64E-01 2.41E-02 2.25E-02 1.14E-02 6.79E-04

f12 5.12E-06 5.70E-06 5.68E-06 6.05E-06 4.90E-06

f13 1.75E-04 1.39E-04 9.92E-05 1.92E-04 1.54E-05

f14 8.03E+00 2.63E+00 3.71E-01 6.71E-01 6.04E-02

f15 6.60E-06 7.23E-06 7.04E-06 7.97E-06 6.38E-06

f16 7.76E-06 7.87E-06 8.26E-06 8.93E-06 8.60E-06
f17 2.60E-07 4.67E-07 6.06E-07 5.19E-07 1.09E-14

f18 1.28E-05 1.75E-04 2.01E-04 1.84E-04 1.34E-05
f19 4.89E-05 4.97E-14 5.27E-14 8.04E-06 4.44E-14

f20 5.65E-04 9.94E-03 1.08E-03 2.00E-03 4.91E-06

f21 1.36E-02 2.92E-02 1.51E-02 3.87E-03 5.55E-04

f22 1.65E+01 2.30E+01 5.40E+00 1.61E+01 1.79E-05

f23 9.98E+00 9.76E+00 5.14E+00 9.65E+00 4.47E+00

f24 2.47E+00 9.52E-02 1.04E-01 9.50E-02 9.35E-02

Table 5: Success Rate (SR) for the algorithms of set S2

TP CMA-ES DE PSO BBO SMO HABCDE

f1 100 100 100 100 100 100

f2 0 0 15 0 0 100

f3 100 100 99 100 99 100

f4 98 100 100 100 97 100

f5 100 96 0 0 87 100

f6 100 100 100 0 100 100

f7 100 100 100 48 100 100

f8 100 99 100 12 15 100

f9 0 17 0 0 99 97
f10 100 100 100 30 91 100

f11 100 91 100 96 100 100

f12 100 100 80 0 86 100

f13 88 70 82 21 96 91
f14 99 3 83 19 47 99

f15 100 100 100 74 100 100

f16 100 100 100 39 100 100

f17 89 100 100 0 100 100

f18 100 55 44 88 45 100

f19 100 100 100 7 100 100

f20 98 86 94 27 9 100

Where αi
1 = Sri

Tri ; αi
2 =

{

Mfi

Afi , if Sri > 0.

0, if Sri = 0.
; and αi

3 = Moi

Aoi

i = 1, 2, ...,Np

Here, the symbols have their usual meanings and more details about these can be found in article [20].
Actually, there are three cases. In one case, weight of the single variable out of SR, AFE and ME, varies
from 0 to 1 and remaining weight is equally distributed to other two variables as suggested in [9].

The PI graphs corresponding to these three cases for the algorithms of sets S1, S2 and S3 are shown
in Figures 6(a),(b),(c), 7(a),(b),(c) and 8(a),(b),(c) respectively. In PI Figures 6, 7, 8, horizontal axis
represents the weights k1, k2 and k3 and PI is represented by vertical axis. The weight to SR, AFE and
ME varies in the range (0, 1) in case (1), case (2) and case (3) respectively. It can be observed from Figures
6, 7 and 8 that PI of HABCDE is much higher than all the considered algorithms of sets S1, S2 and S3 for
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Table 6: Average number of function evolutions (AFE) called by the algorithms of set S2

TP CMA-ES DE PSO BBO SMO HABCDE

f1 10873 22444 13977 10119 12694 9301

f2 200000 200000 194000 200000 200000 154936

f3 24486 42699 47663 23150 29744 17243

f4 61987 60983 42537 14293 80728 23572
f5 14606 30339 200000 200000 47354 9174

f6 16004 17018 10169 200000 9696 6902

f7 48486 68154 48528 106436 133128 100890
f8 45564 58843 12514 186636 191535 38009
f9 200000 176111 200000 200000 79381 37979

f10 11903 17251 11905 180790 168642 24389
f11 6286 22950 15985 21348 52228 6188

f12 1012 1791 41554 200000 30221 917

f13 13434 63953 49678 127142 44133 30506
f14 32584 196183 93129 187111 156484 43462
f15 9362 10325 8053 31015 5898 5676

f16 17365 15537 12337 89123 9069 7916

f17 4052 3829 8844 200000 3402 2506

f18 1214 90867 112880 17752 114990 660

f19 2385 4837 8881 192714 11790 5118
f20 497 28804 13267 120001 189691 461

Table 7: Mean Error (ME) for the algorithms of set S2

TP CMA-ES DE PSO BBO SMO HABCDE

f1 8.59E-06 9.06E-06 9.11E-06 5.18E-06 8.89E-06 7.34E-06
f2 1.24E+01 4.24E+01 9.30E+00 4.45E+01 3.46E+01 9.58E-03

f3 9.29E-06 9.46E-06 2.50E-02 9.31E-06 9.32E-03 8.35E-06

f4 9.47E-06 9.43E-06 7.38E-06 8.91E-06 1.08E-05 7.35E-06

f5 7.25E-06 5.92E-03 6.46E-01 2.84E-04 2.07E-02 6.30E-06

f6 8.61E-06 8.99E-06 9.12E-06 1.00E+00 8.97E-06 7.02E-06

f7 7.48E-03 9.47E-03 9.48E-03 5.19E-01 9.12E-03 8.73E-03
f8 1.91E-01 2.01E-01 9.28E-01 1.06E+00 1.85E+00 9.99E-02

f9 9.12E-01 8.93E-01 2.21E+00 7.98E-02 8.95E-06 7.61E-06

f10 7.08E-06 8.25E-06 9.20E-06 6.89E-04 1.19E-05 8.66E-06
f11 5.68E-04 4.61E-02 9.64E-03 3.98E-03 7.71E-04 6.79E-04

f12 3.26E-05 5.11E-06 6.62E-06 3.98E-01 5.84E-06 4.90E-06

f13 2.35E-05 2.81E-04 1.01E-04 9.72E-04 1.51E-05 1.54E-05
f14 2.48E-03 1.11E+02 7.59E-01 4.14E+02 1.30E+00 6.04E-02
f15 6.69E-06 7.67E-06 7.96E-06 9.70E-06 7.65E-06 6.38E-06

f16 5.38E-06 9.03E-06 8.85E-06 1.30E-01 8.66E-06 8.60E-06
f17 1.44E-12 4.20E-15 5.13E-15 3.00E+00 4.20E-15 1.09E-14
f18 1.37E-05 1.65E-05 1.79E-05 2.04E-05 1.76E-05 1.34E-05

f19 2.72E-14 4.28E-14 4.96E-14 7.00E-02 4.71E-14 4.44E-14
f20 5.42E-06 5.60E-06 4.96E-06 2.35E-04 1.06E-05 4.91E-06

all three cases. Here, it can be seen that PI for the algorithm CMA-ES is slightly less than the proposed
HABCDE, but better than the other considered state-of-the-art optimization algorithms.

The convergence speed comparison of proposed HABCDE and other considered algorithm can be
judged through convergence Figures 9(a)-(f). In these figures, one can seen that proposed HABCDE algo-
rithm is moving faster to minima through the iterations in a single run for selective functions f3, f4, f5, f6, f7
and f8, respectively. It can be observed easily from Figure 9(a) that as compare to other algorithms,
HABCDE converges fast because of modified onlooker bee phase and employed bee phase. After about 60
iterations, the rate of convergence of HABCDE is highest. The same behavior can be observed in other
convergence graphs. DE algorithm is fast in convergence and ABC is better in exploration. Thus the hy-
brid variant of ABC and DE is expected to converge towards optimal solution quickly while maintaining
the diversified search.

The motivation of this paper was to develop an algorithm which can come out of local optima in
the case of premature convergence while maintaining the convergence speed. With these experiments
and associated statistical analyzes, it can be established that however the proposed algorithm HABCDE
is not superior to all other considered algorithms over all problems under consideration, it fulfills our
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Table 8: Success Rate (SR) for the algorithms of set S3

TP ABC-DE DEBCO HDABCA HABCDE

f1 100 100 100 100

f2 0 1 0 100

f3 100 100 100 100

f4 100 77 35 100

f5 100 100 100 100

f6 100 100 100 100

f7 100 0 0 100

f8 100 100 100 100

f9 100 100 98 97
f10 86 16 100 100

f11 37 7 92 100

f12 100 94 80 100

f13 1 10 4 91

f14 20 48 21 99

f15 100 100 100 100

f16 100 100 100 100

f17 100 1 57 100

f18 100 55 55 100

f19 91 0 6 100

f20 100 85 95 100

Table 9: Average number of function evolutions (AFE) called by the algorithms of set S3

TP ABC-DE DEBCO HDABCA HABCDE

f1 10119 20269 26376 9301

f2 200000 199806 200000 154936

f3 18672 40210 51250 17243

f4 34569 178306 192466 23572

f5 9584 20443 27137 9175

f6 7671 15213 19743 6902

f7 148546 200000 200000 100890

f8 11707 31473 30285 38009
f9 27047 71622 105196 37979
f10 151418 197224 83330 24389

f11 147268 193804 113683 6188

f12 6511 30170 41794 917

f13 198492 187817 195783 30506

f14 180001 154473 181881 43462

f15 6849 10402 8350 5676

f16 10118 17426 13475 7916

f17 17590 199353 109085 2506

f18 2701 91578 90704 660

f19 75818 200000 194872 5118

f20 1387 31472 10765 461

requirements and is one of the most performing algorithms. The outcome of the experiments coincides
with the statement of NFL which states that ”regardless of the performance measure, the performance of
all optimization algorithms averaged uniformly over any finite set F of functions is equal if and only if F is
closed under permutation”. Overall, we can say that HABCDE is relatively a better choice for multimodal
and nonseparable problems.

6 Conclusion

Artificial Bee Colony algorithm is simple swarm intelligence based algorithm with few parameters but
with drawbacks, like slow convergence and poor balance between exploration and exploitation. Differen-
tial Evolution, on the other hand, exhibits relatively faster convergence. Therefore, in this paper, ABC
and DE have hybridized and a new hybrid algorithm, HABCDE is proposed. In this HABCDE, all three
phases of ABC have been modified. Employed bee phase is modified by incorporating the gbest con-
cept into it for better exploitation; Onlooker bee phase is improved by including evolutionary operators
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Table 10: Mean Error (ME) for the algorithms of set S3

TP ABC-DE DEBCO HDABCA HABCDE

f1 9.00E-06 9.23E-06 9.05E-06 7.34E-06

f2 2.67E+01 2.32E+01 4.65E+01 9.58E-03

f3 9.48E-06 9.60E-06 9.46E-06 8.35E-06

f4 9.43E-06 1.38E-05 5.93E-04 7.35E-06

f5 8.90E-06 9.22E-06 8.94E-06 6.30E-06

f6 9.08E-06 9.28E-06 8.97E-06 7.02E-06

f7 9.18E-03 6.55E-02 4.59E+00 8.73E-03

f8 9.20E-01 9.30E-01 9.26E-01 9.99E-02

f9 7.85E-06 7.84E-06 6.00E-02 7.61E-06

f10 4.62E-01 1.30E+00 9.80E-02 8.66E-06

f11 2.63E-02 5.43E-02 8.86E-03 6.79E-04

f12 5.67E-06 5.62E-06 6.73E-06 4.90E-06

f13 3.58E-04 2.09E-04 2.73E-04 1.54E-05

f14 5.19E+00 3.07E-01 1.23E+00 6.04E-02

f15 7.80E-06 7.73E-06 7.85E-06 6.38E-06

f16 8.91E-06 9.02E-06 9.08E-06 8.60E-06

f17 1.84E-14 7.36E-05 5.34E-14 1.09E-14

f18 1.12E-05 1.58E-05 1.49E-05 1.34E-05
f19 4.39E-12 4.82E-02 3.75E-04 4.44E-14

f20 5.54E-06 5.83E-06 5.51E-06 4.91E-06

Table 11: Performance comparison of S1 algorithms based on the Mann-Whitney U rank sum test at a α = 0.05
significance level and average number of function evaluations, TP: Test Problem.

TP
Mann-Whitney U rank sum test with HABCDE

TP
Mann-Whitney U rank sum test with HABCDE

ABC BSFABC GABC MABC ABC BSFABC GABC MABC
f1 + + + + f13 + + + +
f2 + + + + f14 + + + +
f3 + + + + f15 + + + +
f4 + + + + f16 + + + +
f5 + + + + f17 + + + +
f6 + + + + f18 = + + +
f7 + + + + f19 + + + +
f8 + + + - f20 + + + +
f9 + + + + f21 + + + +
f10 + + + + f22 + + + +
f11 + + + + f23 + + + +
f12 + + + + f24 + + + +

Table 12: Comparison of S2 algorithms based on AFEs and the Mann-Whitney test, TP: Test Problem.

TP
Mann-Whitney U rank sum test with HABCDE

TP
Mann-Whitney U rank sum test with HABCDE

CMA-ES DE PSO BBO SMO CMA-ES DE PSO BBO SMO
f1 = + + = + f11 = + + + +
f2 + + + + + f12 = = + + +
f3 + + + + + f13 - + + + +
f4 + + + - + f14 - + + + +
f5 + + + + + f15 + + + + =
f6 + + + + + f16 + = + + =
f7 - - - + + f17 + + + + =
f8 + + - + + f18 = + + + +
f9 + + + + + f19 - = + + +
f10 - - - + + f20 = + + + +
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Fig. 3: Boxplots for algorithms of set S1 on test and real-world problems f1 − f24

(mutation, crossover, and selection) of basic DE process for faster convergence. Further, the number of
scout bees in Scout bee phase is increased to achieve better exploration. The proposed algorithm has
been compared with other hybrid algorithms of ABC and DE namely, ABC-DE, DEBCO, and HDABCA.
HABCDE has also been compared with recent variants of ABC namely, BSFABC, GABC and MABC and
state-of-the-art algorithms namely, CMA-ES, DE, PSO, BBO, SMO, ABC on benchmark and real-world
optimization problems. Through the extensive statistical analyzes, it can be stated that the proposed
algorithm HABCDE is an excellent choice from reliability, efficiency and accuracy point of views.

One can extend the proposed work in several directions. It would be interesting to hybridize the basic
ABC algorithm with another state-of-the-art algorithms, like CMA-ES, SMO, PSO and other improved
versions of DE. Combinatorial and multi-objective optimization problems may also be handled by modify-
ing proposed HABCDE. A new phase in ABC may be introduced using operators of DE. Other variations
of crossover, mutation and selection may also be investigated in the proposed hybridization. The abil-
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Fig. 4: Boxplots for algorithms of set S2 on test problems f1 − f20

ity of the proposed algorithm can also be tested on higher dimensional problems like problems in IEEE
competition for 300 and 1000 dimensions.
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