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Abstract

Artificial Bee Colony (ABC) is a well-known algorithm in the class of swarm-intelligence-based

optimization algorithms. Recently, a variant of ABC, Gbest-guided ABC (GABC) was proposed.

GABC was verified to perform better than ABC, in terms of efficiency and reliability. In the posi-

tion update process of GABC, Gbest (the best individual in the swarm) individual influences the

movement of the swarm. This movement may create a cluster around the Gbest individual which

further leads to the premature convergence, particularly for constrained optimization problems.

This paper presents a modification in GABC for constrained optimization problems. GABC is

modified in both employed and onlooker bee phases by incorporating the concept of fitness prob-

ability based individual movement. The modified GABC is tested over 20 constrained benchmark

problems and applied to solve 3 engineering design problems. Optimal power flow problem has also

been solved using modified GABC to check the efficiency of the proposed algorithm.
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1. Introduction

Problems in various fields, like economics, engineering design, structural optimization are mod-

eled as constrained optimization problems. Due to the presence of constraints, usually, the problem

becomes difficult to solve. A general form of a constrained optimization problem (in minimization

case) is:

minimize
~x

f(~x),

subject to gj(~x) ≤ 0, ∀j = 1, 2, ...q

hj(~x) = 0, ∀j = 1, 2, ...r

(1)

Here, f(~x) is the objective function defined on a search space S. ~x = (x1, ...., xn) ∈ S ⊂ Rn is a

n-dimensional vector bounded by its lower and upper limits i.e. li ≤ xi ≤ ui,∀i = 1, 2, ...n. Rn is

the n-dimensional field of real numbers, g(~x) is the set of q inequality constraints and h(~x) is the

set of r equality constraints. The solution of problem (1) is a vector ~x defined in the search space

S that minimizes f(~x) such that the set of given equality and inequality constraints are satisfied.

Many traditional, mostly deterministic optimization methods are available in the literature

to solve the constrained optimization problems. For solving real world constrained optimization

problems, deterministic methods like generalized reduced gradient methods [1], sequential quadratic

programming methods [2] etc require many mathematical conditions, e.g. convexity, continuity or

differentiability to be satisfied. A real world problem rarely follows all required conditions. In this

scenario, deterministic methods become infeasible to solve a real world problem, in their original

form.

On the contrary, nature-inspired optimization algorithms have merits over deterministic meth-

ods, such as derivative free mechanism, having higher ability to avoid local optima, flexible in terms

of the applicability, and being simple for implementation.

Therefore nature-inspired optimization algorithms like, particle swarm optimization (PSO) [3],

differential evolution (DE) [4] and artificial bee colony (ABC) [5] are preferred to solve such complex

constrained optimization problems.

Several new variants of these algorithms are developed in order to make their performance more

powerful over constrained optimization problems. In this context, we observe artificial bee colony

(ABC) which was invented by Karaboga et al. [6] and is inspired by the foraging behavior of honey
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bees. Similar to other swarm based optimization algorithms, ABC possesses a swarm of candidate

solutions, which are the food sources of honey bees. The nectar amount (or quality) of food source

represents fitness. There are three categories of honey bees in the hive with respect to their work

assignments, namely employed bees, onlooker bees and scout bees. Employed and onlooker bees

collect nectar from the food sources. The bee associated to abandoned food source becomes scout

bee. The scout bee searches new food sources in different directions and creates fluctuations in the

search process. Thus the search space is exploited by the onlooker and employed bees, while the

exploration of the search space is done by scout bees.

The dominance of random components in the position update strategy of ABC tends to explore

the search space at the expense of the possibility of skipping true solution. Researchers are contin-

uously trying to establish a proper trade-off between the exploitation and exploration capabilities

to improve the performance of ABC algorithm.

To improve the exploitation property of search space, Wei-feng Gao et al. [7] proposed a new

search strategy called ABC/best/1, associated with a novel chaotic initialization technique. In

this search strategy, solution updates itself in the neighborhood of the previous best solution. To

improve the convergence characteristics of ABC, Anan Banharnsakun et al. [8] proposed a modified

search equation for onlooker bees. In this equation, onlooker bees follow the direction of the best-so-

far solution in a biased way, instead of a randomly selected neighbor one. Li et al. [9] improved the

search process of ABC by using best-so-far solution, inertia weight, and acceleration coefficients. In

this ABC model, a pool of different search equations is used to produce multiple new solutions, in

which the best one is selected by the greedy approach. Alatas [10] proposed chaotic ABC, in which

the parameter adaptation of ABC is done by chaotic maps and scout bee uses the chaotic search

to explore new regions of search space. To improve the exploitation ability of ABC, Wei-feng Gao

et al. [11] used Powell’s method as a local search tool. Karaboga and Gorkemli [12] introduced

a more accurate behavior of onlooker bees to improve the local search ability of ABC. Kiran et

al. [13] used five search strategies and counters for updating the solutions of ABC. Sharma et al.

[14] introduced Levy flight random walk inspired search strategy as a local search to improve the

exploitation ability of ABC.

To solve constrained optimization problems, D. Karaboga and B. Akay [15] proposed a new

variant of ABC, namely Modified ABC (MABC) in which the selection scheme of ABC is replaced

by Deb's selection rules [16]. Mezura-Montes et al. [5] proposed elitist artificial bee colony. In
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the proposed approach, equality constraints are controlled by dynamic tolerance mechanism to

promote the exploration of search space. Bravejic et al. [17] presented an improved version of

ABC, in which the very first swarm of candidate solutions is initialized randomly, after that all

further swarms contain the best solution of their previous swarm. Mezura-Montes et al. [18]

presented a novel algorithm in which the exploitation of search space is done in the vicinity of

the best solution of the current swarm and constraints are handled by ε- constrained approach.

In order to improve the efficiency of ABC in constrained search space, Brajevic [19] proposed a

crossover-based ABC in which dynamic tolerance is used to handle the equality constraints and

improved boundary constraint-handling method is employed.

In 2010, Zhu and Kwong [20] proposed an improved ABC algorithm, namely Gbest-guided

ABC (GABC) in which Gbest (the best individual in the swarm) is incorporated into the position

update equation to improve the exploitation ability of the search space. Since all the solutions

which are going to be updated, move towards the Gbest solution, there is enough chance to trap

in local optima. On the other hand, the performance of GABC is not good enough to establish its

competitiveness to solve the constrained optimization problems.

To overcome this deficiency of GABC and make it efficient for constrained optimization prob-

lems, a new variant of GABC namely, Modified GABC (MGABC) is introduced.

Rest of the paper is organized as follows. Section 2 describes the standard ABC. A brief description

of MGABC is introduced in Section 3. Section 4 describes the properties of considered benchmark

functions, adopted experimental setting, constraint handling and experiment results with a com-

parative study. In section 5 optimal power flow problem with three different objective functions

has been solved by MGABC to verify its applicability for solving the real world problems. Finally,

the conclusion is given in section 6.

2. Standard ABC

Artificial bee colony algorithm is inspired from forging behavior of honey bees. In ABC, the

position of a food source corresponds to a possible solution to the optimization problem and the

quality (nectar amount) of each food source represents its fitness of the associated solution.

Initially, ABC generates a uniformly distributed initial swarm of SN food sources (potential

solutions), where the dimension of each food source xi (i = 1, 2, ...SN) is D, which is equal to the
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number of variables in the optimization problem. Each solution is initialized as follows:

xij = xminj + rand (0, 1) (xmaxj − xminj) (2)

Where xi is the ith solution in the swarm. xminj and xmaxj are the lower and upper bounds of xi

in the jth dimension and rand (0, 1) is a uniformly distributed random number in the range [0, 1].

These randomly initialized solutions are updated in employed bee phase as follows:

vij = xij + φij(xij − xkj) (3)

Where j ∈ {1, 2, ..., D} and k ∈ {1, 2, ..., SN}. k is picked randomly and different from i. φij

is a random number in the range [−1, 1]. After producing new position, bee replaces its position

with the position having better fitness between the solution xij and newly generated solution vij .

Employed bees measure the fitness (fiti) of each food source (xi) using its objective value (fi) as

follows:

fiti =


1

1+fi
, fi > 0

1 + abs(fi), fi < 0

(4)

After exploiting the food sources, the employed bees return to the hive and share the information

about the position and quality of food sources with onlooker bees through various dances at various

parts of the hive.

In onlooker bee phase, this information is evaluated by Onlooker bees and they select a food

source xi with a probability probi, based on its fitness. There can be several approaches to calculate

probi but in every approach, it should be a function of fitness. Here probi is calculated as:

probi =
0.9× fiti
maxfit

+ 0.1 (5)

Here, maxfit is the maximum fitness of the swarm. Onlooker bee selects a food source based upon

its probability and modifies its position using same position update equation (3) as the employed

bee used. The onlooker bee memorizes that position which obtained after applying the greedy

approach between previous and new solution. The number of the employed bees and onlooker bees

is same and equal to the number of food sources.

If any individual food source is not getting exploited any more up to a predefined number of

cycles (also known as the limit), then that food source is considered to be abandoned. The bee
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involved with this abandoned food source turns into scout bee. The scout bee reinitializes the

abandoned food source inside the predefined search space using equation (2).

3. Modified Gbest based Artificial bee colony

The search strategy of ABC is determined by the position update equation (3), in which, the

solution moves towards or away from another randomly selected solution to produce a new solution.

The solution will move towards an inferior or superior solution, depending upon the quality of a

randomly selected solution. Now since the probability of this randomly selected solution xkj being

good or bad in equation (3) is equal, therefore the selection of random solution plays an important

role in the success of ABC [20]. Thus, the presence of random coefficient φij and randomly selected

solution xkj make, ABC search process more random than required. Hence a balanced random

search in ABC may improve its performance.

To overcome this weakness, Zhu and Kwong [20] proposed a new variant of ABC, namely Gbest-

guided ABC (GABC) by introducing the global best term in the position update equation (3) of

ABC which, in fact, is inspired by particle swarm optimization (PSO) [3]. The position update

equation of GABC is

vij = xij + φij(xij − xkj) + ψij(yj − xij) (6)

Here ψij is a normally distributed number in [0,K], where K is a non-negative constant. yj is

the element of the Gbest solution in jth dimension. According to equation (6), every individual

which is going to be updated, moves towards the Gbest solution found in the current swarm which

improves the exploitation ability of the search space but this ability comes at a cost, it may cause

premature convergence and thus stagnation.

In the onlooker bee phase of GABC, position is updated according to the fitness based prob-

ability. Therefore, all the individuals having better fitness converge around the Gbest solution

which may ultimately, cause premature convergence. Although GABC improves the efficiency of

ABC algorithm, significantly but fails to establish its competitiveness to deal with the constrained

optimization problems.

Therefore, to avoid the possibilities of premature convergence and to make GABC robust for

constrained optimization problems, a new variant of GABC, namely Modified GABC (MGABC) is

proposed.
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In the proposed MGABC, instead of one position update equation, two new position update

equations are introduced for employed bee phase and onlooker bee phase as follows:

1. Position update process of MGABC for employed bee phase is shown in Algorithm 1

Algorithm 1 Position update in Employed bee phase of MGABC

for i = 1, . . . , SN do

for j = 1, . . . , D do

vij = xij + σi × (xij − xkj) + ψij × (yj − xij) (7)

end for

end for

Here, σi is a uniform random number between [−2 + probi, 2− probi], ψij is same as defined

in equation (6) and rest of the symbols have their usual meaning.

2. Position update process of MGABC for onlooker bee phase, is shown in Algorithm 2:

Algorithm 2 Position update in Onlooker bee phase of MGABC

for i = 1, . . . , SN do

vij = xij + ξ × (xij − xkj) + ηi × (yj − xij) (8)

end for

Here, ξ and ηi are uniformly distributed number in [−1, 1] and [0, 2− probi], respectively.

In the first modification (Algorithm 1), the second term in the right-hand side of the equation

(7), is responsible for enhancing the exploration ability of the search process. The solution xij moves

towards or away from the randomly selected solution xkj with a step size scaled by σi. A solution

xi having less fitness will also have less fitness probability (probi). A solution having less fitness

probability will have a large interval for choosing σi, it is more probable that σi takes large values
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(either positive or negative) in the interval. This value will force the solution (less fit solution) to

move with large step size towards or away from the randomly selected solution. On the contrary,

a solution having large fitness probability will have a small interval for σi. Due to the small value

of σi, the solution will move with a small step size towards or away from the randomly selected

solution. Therefore the update equation (7) will produce large changes in less fit solutions and

small changes in more fit solutions. Therefore the search process produced by employed bee update

equation (7) will have a better exploration ability. Further, in this modification, solution updates

itself in all possible dimensions, this improves its perturbation rate and hence the exploration ability

of search process. The third term maintains the convergence speed of the algorithm as in GABC.

Thus in MGABC convergence speed with exploration capability is better maintained.

In the second modification (Algorithm 2), the third term in the right-hand side of equation

(8) improves the exploitation of the search process in which a solution moves towards the Gbest

solution with a step size scaled by ηi. A solution having less fitness probability will have a large

interval for ηi. Due to this comparatively large interval, the possibility for ηi to attain large values

is increased. Since this interval contains only non-negative real numbers, therefore, the solution

will move towards the Gbest solution with large step size. On the other hand, a solution having

large fitness probability will have a small interval for ηi, implies that it will move with a small step

size towards the Gbest solution. Therefore the improved search strategy of onlooker bee phase will

have a better exploitation ability. In short, the proposed MGABC reduces the demerits of GABC

while maintaining the merits of GABC.

4. Experimental results and discussion

4.1. Benchmark Problems under consideration

To verify the performance of proposed algorithm MGABC, it is tested over 3 engineering design

problems and 19 test constrained problems of CEC-2006 [21] along with one constrained optimiza-

tion problem [22]. The properties and characteristics of considered engineering design problems

(Φ1-Φ3) and CEC-2006 test bed (g1-g19) including one constrained optimization problem (g20) are

given in Tables 1 and 2, respectively.
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Table 1

Engineering design problems (f∗ denotes optimal value and AE denotes Acceptable Error)

Test Problem Decision
Variable

f ∗ AE

Coil Compression Spring (Φ1) [14] 3 2.6254 1.0E-04

Pressure Vessel (Φ2) [14] 4 7197.729 1.0E-05

Welded Beam (Φ3) [14] 4 1.724852 1.0E-01

4.2. Experimental setting

To prove the efficiency of MGABC, it is compared with basic ABC and recent variants of ABC,

named Best-So-Far ABC (BSFABC) [8], Gbest-guided ABC (GABC) [20], Modified ABC (MABC)

[23] and Levy flight ABC (LFABC) [14] over the benchmark problems given in section 4.1, with the

following parameter setting:

4.2.1. Parameters setting for engineering design problems (Φ1-Φ3)

• Swarm size NP =50,

• Number of food sources SN = NP/2,

• limit=Dimension×Number of food sources=D×SN [14, 23],

• The number of simulations/run =100,

• Maximum number of function evaluations =200000,

• The stopping criteria is either maximum number of function evaluations is reached or |f−f∗| ≤

Acceptable Error, where f is the obtained value of an algorithm for any given problem and

f∗ is given in Table 1.

• Other than these parameters, other parameters are set as per their original papers.
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Table 2

CEC-2006 constrained benchmark functions (g1-g19) [21] and constrained optimization problem (g20) [22]

(Neq denotes the number of equality constraints, Nieq denotes the number of inequality constraints and

Na is the number of active constraints)

Test problem Dim Type of function Neq Nieq Optimal functional value Na

g1 13 Quadratic 0 9 -15.000000 6

g2 20 Nonlinear 0 2 -0.8036191042 1

g3 10 Polynomial 1 0 -1.000500100 1

g4 5 Quadratic 0 6 -30665.53867178 2

g5 4 Cubic 3 2 5126.4967140071 3

g6 2 Cubic 0 2 -6961.81387558 2

g7 10 Quadratic 0 8 24.3062090681 6

g8 2 Nonlinear 0 2 -0.0958250415 0

g9 7 Polynomial 0 4 680.6300573745 2

g10 8 Linear 0 6 7049.2480205286 6

g11 2 Quadratic 1 0 0.749900000 1

g12 3 Quadratic 0 1 -1.000000 0

g13 5 Nonlinear 3 0 0.0539415140 3

g14 10 Nonlinear 3 0 -47.7648884595 3

g15 3 Quadratic 2 0 961.7150222899 2

g16 5 Nonlinear 0 38 -1.905155258 4

g17 6 Nonlinear 4 0 8853.539675 4

g18 9 Quadratic 0 13 -0.866025 6

g19 2 linear 0 2 -5.508013 2

g20 2 Quadratic 1 1 1.3935 2
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4.2.2. Parameters setting for constrained problems (g1-g20)

• Swarm size NP =100

• Number of food sources SN = NP/2,

• The number of simulations/run =30 [21],

• Maximum number of function evaluations =240000 [21].

• All the other setting of considered algorithms are same as for engineering design problems.

4.2.3. Constraint handling

To solve constrained optimization problems, constraint (either equality or inequality) handling

plays a vital role to obtain the feasible solution. In this paper, adaptive penalty function approach

of constraint handling is used for all experiments.

If S is the feasible search space and ~x is the solution vector obtained by the proposed approach

then the objective function F in the constrained optimization problem (1) is written as:

F (~x) =

f (~x) , if ~x ∈ S

f (~x) + c (gj (~x) or hj (~x)) , if ~x /∈ S
(9)

Here, c is a penalty value which is multiplied by the violated constraint j. Usually, c is assigned a

very large value, in the case of minimizing the objective function.

4.3. Results and statistical Analyses of Experiments

4.3.1. Engineering design problems (Φ1-Φ3)

Table 3 presents the experimental results of proposed and considered algorithms over the en-

gineering design problems. In this table, a comparative analysis is made in terms of standard

deviation (SD), mean error (ME ), average number of function evaluations (AFEs) and success rate

(SR). ME, SR and AFEs exhibit the accuracy, reliability and efficiency of an algorithm, respec-

tively. The superiority of an algorithm over others based on a particular criterion is presented by

the bold entry. It is clear that out of 3 problems, in 2 problems MGABC is better than any other

algorithm on all criteria. While in one problem it is more reliable and efficient than any other

algorithm. Statistical visualization through boxplots has also been carried out.
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Table 3

Results: Engineering Design Problems (TP denotes Test Problem under consideration)

TP Algorithm SD ME AFEs SR

Φ1

MGABC 2.68E-03 1.96E-03 105926.96 75

ABC 1.04E-02 1.31E-02 194782.77 7

BSFABC 5.14E-03 3.06E-02 198120.28 1

GABC 6.03E-03 5.52E-03 173978.67 31

MABC 4.71E-03 4.24E-03 171571.53 30

LFABC 1.92E-02 1.84E-02 164327.6 22

Φ2

MGABC 3.69E-05 3.20E-05 89659.43 60

ABC 9.28E+00 1.59E+01 200025.31 0

BSFABC 2.69E+01 3.07E+01 200036.44 0

GABC 4.13E+00 6.89E+00 200027.81 0

MABC 9.32E+00 1.52E+01 200021.94 0

LFABC 6.05E-02 3.25E-02 198352.4 3

Φ3

MGABC 4.32E-03 9.50E-02 2895.67 100

ABC 6.89E-02 1.93E-01 195217.6 5

BSFABC 4.99E-03 9.46E-02 48955.61 100

GABC 8.63E-03 9.64E-02 99808.18 83

MABC 4.17E-03 9.53E-02 34054.72 99

LFABC 6.04E-03 9.87E-02 39570.51 99
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Fig. 1. Boxplots (Success Rate (SR))
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Fig. 2. Boxplots (Average Number of Function Evaluations (AFEs))

Boxplot analyses [14] has been done for SR, AFEs and ME. The boxplots for MGABC, ABC,

BSFABC, GABC, MABC and LFABC are shown in Fig. 1, Fig. 2 and Fig. 3 with respect to

SR, AFEs and ME, respectively. High interquartile range and median in boxplot analysis of SR

(Fig. 1) and low interquartile range and median in boxplot analysis of AFEs and ME (Fig. 2 and

3) verify that the proposed algorithm is more reliable, cost-effective and accurate as compared to

other considered algorithms.

It is clear from the boxplots graphs ( Fig. 1, Fig. 2 and Fig. 3 ) that the data corresponding

to considered algorithms are not normally distributed. Therefore, a non-parametric statistical test

Mann-Whitney U rank sum [14] is applied to evaluate the significant difference among these data.

In this study, this test is performed on the data of AFEs at 5% level of significance (α = 0.05)
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Fig. 3. Boxplots (Mean Error (ME))

with the null hypothesis, ‘There is no significant difference in the data’, between MGABC-ABC,

MGABC-BSFABC, MGABC-GABC, MGABC-MABC, and MGABC-LFABC.

Table 4 presents the results of Mann-Whitney U rank sum test for AFEs of 100 runs. In Table

4, ‘-’ or ‘+’ sign shows that MGABC has more (worse performance) or less (better performance)

AFEs than considered algorithms, while ‘=’ sign shows that there is no significant difference between

compared algorithms. In Table 4, 15 ‘+’ sign out of 15 comparisons assure that MGABC is better

than other considered algorithms.

As far as the convergence speed is concerned, the proposed algorithm is compared with the

considered algorithms using Acceleration Rate (AR) criterion [14]. In AR, the comparison is made

by the ratio between the AFEs of proposed (MGABC) and considered algorithm (ALGO), and

defined as:

AR =
AFEsALGO

AFEsMGABC
, (10)

Here, ALGO ∈ {ABC, BSFABC, GABC, MABC, LFABC} and AR > 1 means MGABC is faster

than the compared algorithm (ALGO). Table 5 presents a comparison between MGABC and ABC,

MGABC and BSFABC, MGABC and GABC, MGABC and MABC, and MGABC and LFABC in

terms of AR. These results confirm that MGABC has better convergence speed as compared to

other considered algorithms.
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Table 4

Comparison based on AFEs of 100 runs using Mann-Whitney U rank sum test at α = 0.05 significance

level, TP: Test Problem.

TP U rank sum test with MGABC Vs

ABC BSFABC GABC MABC LFABC

Φ1 + + + + +

Φ2 + + + + +

Φ3 + + + + +

Table 5

Acceleration Rate (AR) of MGABC as compared to ABC, BSFABC, GABC, MABC and LFABC, TP:

Test Problems

TP ABC BSFABC GABC MABC LFABC

Φ1 1.84 1.87 1.64 1.62 1.55

Φ2 2.23 2.23 2.23 2.23 2.21

Φ3 67.42 16.90 34.47 11.76 13.67
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4.3.2. Constrained problems (g1-g20):

Table 6

Minimization results for constrained problems (g1-g20) (TP denotes Test Problem under consideration

and SD symbolizes Standard Deviation )

TP Algorithm Mean Value Best Value Worst Value SD

g1

MGABC -13.55354 -15 -9 1.636944

ABC -15.000000 -15.000000 -15.000000 0.000000

BSFABC -15.000000 -15.000000 -15.000000 0.000000

GABC -15.000000 -15.000000 -15.000000 0.000000

MABC -15.000000 -15.000000 -15.000000 0.000000

LFABC -15.000000 -15.000000 -15.000000 0.000000

g2

MGABC -0.7890629 -0.8036108 -0.7604863 0.01196791

ABC -0.635357 -0.673116 -0.589790 0.022018

BSFABC -0.629568 -0.665515 -0.589329 0.017605

GABC -0.661051 -0.721057 -0.629680 0.024026

MABC -0.802104 -0.803250 -0.797467 0.001217

LFABC -0.654621 -0.702064 -0.602961 0.018694

g3

MGABC -1.000383 -1.0004 -1.000258 4.10816E-05

ABC -0.171238 -0.413404 -0.039678 0.079140

BSFABC -0.082431 -0.258418 -0.002342 0.070550

GABC -0.291008 -0.660630 -0.130695 0.110260

MABC -0.899948 -0.966073 -0.758138 0.049395

LFABC -0.478242 -0.778276 -0.243808 0.134006

g4

MGABC -30665.54 -30665.54 -30665.54 1.04809E-11

ABC -30465.140000 -30611.570000 -30255.230000 100.883800

BSFABC -30603.010000 -30660.500000 -30496.130000 38.142130

GABC -30591.390000 -30655.920000 -30511.290000 37.555720

MABC -30665.010000 -30665.450000 -30662.530000 0.520758

LFABC -30621.73 -30665.53 -30529.16 36.556420

g5

MGABC 5467.756 5126.497 6112.169 330.8681

ABC 5159.486000 5133.072000 5232.318000 22.938990

BSFABC 5145.052000 5127.879000 5198.292000 19.156530
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Table 6 Continued:

TP Algorithm Mean Value Best Value Worst Value SD

GABC 5159.314000 5130.135000 5250.816000 30.480630

MABC 5151.738000 5128.447000 5220.837000 22.838680

LFABC 5129.588 5126.499 5148.278 6.224214

g6

MGABC -6959.489 -6961.803 -6957.123 1.176998

ABC -6910.779000 -6959.298000 -6546.435000 89.944270

BSFABC -6871.868000 -6955.590000 -6737.955000 46.218550

GABC -6955.523000 -6960.822000 -6938.135000 4.362150

MABC -6945.104000 -6955.760000 -6925.760000 7.988857

LFABC -6961.11800 -6961.799 -6958.094 0.986294

g7

MGABC 24.78064 24.32653 25.09927 0.3122748

ABC 27.613380 25.266610 29.614430 1.013112

BSFABC 29.826280 26.545150 36.323910 2.480659

GABC 26.278930 24.887590 28.239230 0.670455

MABC 24.663930 24.405660 25.029870 0.125392

LFABC 26.524650 24.906590 28.673970 0.983646

g8

MGABC -0.095825 -0.095825 -0.095825 0.000000

ABC -0.095825 -0.095825 -0.095825 0.000000

BSFABC -0.095825 -0.095825 -0.095825 0.000000

GABC -0.095825 -0.095825 -0.095825 0.000000

MABC -0.095825 -0.095825 -0.095825 0.000000

LFABC -0.095825 -0.095825 -0.095825 0.000000

g9

MGABC 680.6309 680.6302 680.6322 0.000512664

ABC 684.069300 681.980200 684.949000 0.767071

BSFABC 684.343100 682.668500 685.263000 0.522194

GABC 683.142200 681.626500 684.641400 0.954408

MABC 680.752200 680.652300 680.822400 0.047177

LFABC 682.503700 681.118100 684.404900 0.918807
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Table 6 Continued:

TP Algorithm Mean Value Best Value Worst Value SD

g10

MGABC 7357.461 7104.006 7504.944 121.9031

ABC 10546590.000000 7194.580000 316161000.000000 56751180.000000

BSFABC 44148.990000 7380.079000 1075328.000000 191487.200000

GABC 7669.448000 7167.390000 8264.672000 320.780000

MABC 7461.740000 7199.169000 8264.599000 214.768100

LFABC 7761.153 7237.139 7364.458 557.801600

g11

MGABC 0.750025 0.749995 0.750127 0.000034

ABC 0.750551 0.750002 0.752860 0.000767

BSFABC 0.750630 0.750015 0.754634 0.000971

GABC 0.750031 0.749995 0.750194 0.000050

MABC 0.750587 0.750026 0.751924 0.000512

LFABC 0.750027 0.749995 0.750062 0.000013

g12

MGABC -1.000000 -1.000000 -1.000000 0.000000

ABC -1.000000 -1.000000 -1.000000 0.000000

BSFABC -1.000000 -1.000000 -1.000000 0.000000

GABC -1.000000 -1.000000 -1.000000 0.000000

MABC -1.000000 -1.000000 -1.000000 0.000000

LFABC -1.000000 -1.000000 -1.000000 0.000000

g13

MGABC 0.171074 0.05394861 0.4377867 0.1746232

ABC 0.075318 0.058870 0.105832 0.012775

BSFABC 0.085440 0.056302 0.158985 0.028497

GABC 0.060251 0.054121 0.080656 0.006275

MABC 0.162756 0.066506 0.307423 0.063837

LFABC 0.060283 0.055041 0.072824 0.005037

g14

MGABC -47.246220 -47.675860 -46.465260 0.285642

ABC -47.023740 -47.704730 -46.084640 0.400683

BSFABC -46.839350 -47.597790 -45.654510 0.500343

GABC -47.506650 -47.740360 -47.201370 0.140430

MABC -46.112750 -47.286820 -45.202270 0.487249
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Table 6 Continued:

TP Algorithm Mean Value Best Value Worst Value SD

LFABC -47.314140 -47.625000 -46.499870 0.297742

g15

MGABC 962.173700 961.715100 965.208600 0.777151

ABC 963.296200 961.881200 967.319000 1.043270

BSFABC 962.261100 961.740500 963.848500 0.569401

GABC 961.903400 961.724900 962.899900 0.266831

MABC 963.834800 961.752800 967.112100 1.615972

LFABC 961.788800 961.715500 962.1733300 0.113430

g16

MGABC -1.905155 -1.905155 -1.905155 0.000000

ABC -1.629697 -1.864421 -1.483864 0.087453

BSFABC -1.680447 -1.852251 -1.481733 0.106812

GABC -1.864507 -1.896252 -1.828660 0.018879

MABC -1.889544 -1.902206 -1.856813 0.010544

LFABC -1.829377 -1.904851 -1.607071 0.064475

g17

MGABC 8915.998 8853.53 9241.82 70.82186

ABC 8905.314 8861.847 8944.38 20.33432

BSFABC 8913.008 8859.945 8952.708 24.43911

GABC 8872.048 8853.679 8930.157 17.45531

MABC 8940.914 8885.975 8987.502 25.58631

LFABC 8873.469000 8853.89700 8943.6800 23.110250

g18

MGABC -0.8657735 -0.8660253 -0.8648695 0.000299329

ABC -0.8417745 -0.855895 -0.7976417 0.01479391

BSFABC -0.8367012 -0.8626372 -0.7439228 0.02714512

GABC -0.8610056 -0.8653894 -0.8519819 0.003983532

MABC -0.8576567 -0.8646378 -0.826246 0.007096925

LFABC -0.860475 -0.865095 -0.846507 0.003888

g19

MGABC -5.508013 -5.508013 -5.508013 1.77636E-15

ABC -5.504064 -5.507353 -5.497827 0.002439545

BSFABC -5.493959 -5.506947 -5.466542 0.009757688

GABC -5.505612 -5.507465 -5.502027 0.001440591
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Table 6 Continued:

TP Algorithm Mean Value Best Value Worst Value SD

MABC -5.507967 -5.508011 -5.507868 3.32596E-05

LFABC -5.507860 -5.508007 -5.506985 0.000238

g20

MGABC 1.394359 1.393571 1.399163 1.19E-03

ABC 1.419499 1.398581 1.449173 1.46E-02

BSFABC 1.467479 1.395309 1.662487 6.64E-02

GABC 1.407121 1.394780 1.442717 9.76E-03

MABC 1.495488 1.425206 1.661920 5.25E-02

LFABC 1.404975 1.393600 1.426981 1.02E-02

The proposed algorithm MGABC is re-evaluated over these problems based on CEC 2006 criteria

of comparison. The algorithms are compared based on the mean, best, worst and SD of the objective

function values. Table 6 presents the experimental results. Bold entries represent the superiority

of the algorithm.

As shown in Table 6, for 9 problems (g3, g4, g9, g10, g11, g16, g18, g19 and g20 ) MGABC outperforms

others in terms of mean value. According to best value criteria, MGABC has superior results than

others in 15 problems (g2, g3, g4, g5, g6, g7, g9, g10, g13, g15, g16, g17, g18, g19 and g20). Among all

the criterion of comparison, MGABC proves its supremacy on 8 problems (g3, g4, g9, g10, g16, g18,

g19 and g20). While for g8 and g12, MGABC obtains the same results as others.

Furthermore, To find the significant difference in these results, Mann-Whitney rank sum test is

carried out with the same setting as section 4.3.1. The data sets are the best value of each run.

Table 7 shows the results of the aforesaid test for the best value of 30 runs. Out of 100 comparisons,

63 ‘+’ signs confirm that MGABC is significantly better than other considered algorithms.

5. Application of MGABC in solving Optimal Power Flow Optimization Problem

5.1. Optimal Power Flow (OPF) optimization problem

OPF problem is a well-known constrained optimization problem in the field of electrical engi-

neering, in which the control variables of a power system are required to be optimized while all

physical and operational restrictions are satisfied such that the fuel cost of the system is minimized
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Table 7

Comparison based on best value of 30 runs for constrained problems (g1-g20) using Mann-Whitney U rank

sum test at α = 0.05 significance level, TP: Test Problem.

TP U rank sum test with MGABC Vs

ABC BSFABC GABC MABC LFABC

g1 - - - - -

g2 + + + - +

g3 + + + + +

g4 + + + + +

g5 - - - - -

g6 + + + + -

g7 + + + = +

g8 = = = = =

g9 + + + + +

g10 + + + + +

g11 + + = + =

g12 = = = = =

g13 - - = - -

g14 + + - + -

g15 + + = + +

g16 + + + + +

g17 = = - + +

g18 + + + + +

g19 + + + + =

g20 + + + + +
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[24].

Mathematically, the general OPF problem can be defined as:

MinJ(α, β) (11)

subject to:

D(α, β) = 0 (12)

Umin ≤ U(α, β) ≤ Umax (13)

Here, J is the objective function of two variables α and β. α is the vector for control variables

(independent variables) defined as:

α = [Mg2....Mgng, Ng1....Ngng,Wc1....Wcnc, P1....Pnt] (14)

Where,

• (Mg) is the generator real powers except at slack bus,

• (Ng) is the generator bus voltages,

• (Wc) is the shunt VAR compensation,

• (P ) is the transformer tap settings,

• nc is the number of shunt VAR compensators,

• nt is the number of regulating transformers.

β is the vector of state variables (dependent variables) defined as:

β = [Mg1, Nl1....Nlnl,Wg1....Wgng, Rl1....RlNl] (15)

Where,

• (Mg1) is the generator active power at slack bus,

• (Nl) is the load bus voltages,
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• (Wg) is the generator reactive powers,

• (Rl) is the transmission line loading (line flow),

• nl is the number of load buses,

• Nl is the number of transmission lines.

ng denotes the number of generators in both variables α and β.

D(α, β) is the set of equality constraints representing load flow equations as follows [24]:

Mgi −Mdi −Ni

nb∑
k=1

Nk (Dik cos θik +Bik sin θik) = 0 (16)

and

Wgi −Wdi −Ni

nb∑
k=1

Nk (Dik sin θik +Bik cos θik) = 0 (17)

Where,

• Mgi is the active power of ith generator,

• Wgi is the reactive power of ith generator,

• Mdi is the active power demand of ith bus,

• Wdi is the reactive power demand of ith bus,

• Dik is the transfer conductance between buses i and k,

• Bik is the transfer susceptance between buses i and k,

• θik is the phase angle difference between the voltages at buses i and k,

• nb is the maximum number of bus bars.

U(α, β) is the set of system operational limiting constraints which includes following inequality

constraints:

• Generator constraints:
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Mmin
gi ≤Mgi ≤Mmax

gi , for i = 1, 2, .., ng (18)

Wmin
gi ≤Wgi ≤Wmax

gi , for i = 1, 2, .., ng (19)

Nmin
gi ≤ Ngi ≤ Nmax

gi , for i = 1, 2, .., ng (20)

• Security constraints:

Nmin
li ≤ Nli ≤ Nmax

li , for i = 1, 2, .., nl (21)

Rli ≤ Rmax
li , for i = 1, 2, .., Nl (22)

• Transformer constraints:

Pmin
i ≤ Pi ≤ Pmax

i , for i = 1, 2, .., nt (23)

• Shunt VAR compensator constraints:

Wmin
ci ≤Wci ≤Wmax

ci , for i = 1, 2, .., nc (24)

Penalty function approach is applied for constrained handling [24]. Therefore, the modified

objective function is written as:

Min Jmod = J(α, β) + λm(Mg1 −M lim
g1 )2+

λn

nl∑
i=1

(Nli −N lim
li )2 + λw

ng∑
i=1

(Wgi −W lim
gi )2

+λr

Nl∑
i=1

(Rli −Rlim
li )2

(25)

Here, λm, λn, λw and λr represent the penalty factors. alim denotes the limit value of a, where a

can be any dependent variable from to Mg1, Nli, Wgi or Rli.
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Table 8

Cost coefficients of generator in Case 1.

Cost coefficients
Bus Number

1 2 5 8 11 13

a 0.00 0.00 0.00 0.00 0.00 0.00

b 2.00 1.75 1.00 3.25 3.00 3.00

c 0.00375 0.01750 0.06250 0.00834 0.02500 0.02500

5.2. Test system under consideration

In order to validate the the wide applicability of MGABC algorithm, it is applied on standard

IEEE 30-bus system. The configuration of IEEE 30-bus system is considered from [24] and defined

as follows:

• Six generators at buses 1, 2, 5, 8, 11 and 13,

• Four transformers with off-nominal tap ratios in lines 6− 9, 6− 10, 4− 12 and 28− 27,

• Nine shunt VAR compensation buses at buses 10, 12, 15, 17, 20, 21, 23, 24 and 29.

The proposed MGABC has been applied to solve the OPF problem for three cases regarding to

three different objective functions.

Case 1: Quadratic fuel cost function

In this case, generator cost characteristic is represented by a quadratic cost function of generator

power output. Therefore, in equation(25), J(α, β) is taken as:

J(α, β) =

ng∑
i=1

fi(Mgi) =

ng∑
i=1

(ai + biMgi + ciM
2
gi) (26)

Where fi denotes the fuel cost of ith generator. The variables ai, bi and ci represent the cost

coefficients of ith generator. The values of these variables are given in Table 8.
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Table 9

Cost coefficients of generator in Case 2.

Bus Number From MW To MW
Cost coefficients

a b c

1
50 140 55.00 0.70 0.0050

140 200 82.50 1.05 0.0075

2
20 55 40.00 0.30 0.0100

55 80 80.00 0.60 0.0200

Case 2: Piecewise quadratic fuel cost functions

For this case, the generators associated with buses 1 and 2 possess two fuel options. In order

to model different fuels, the cost characteristics of these generators are expressed as a piece-wise

quadratic cost function.

fi(Mgi) =



ai1 + bi1Mgi + ci1M
2
gi , Mmin

gi ≤Mgi ≤Mgi1

ai2 + bi2Mgi + ci2M
2
gi , Mgi1 ≤Mgi ≤Mgi2

.............

aik + bikMgi + cikM
2
gi , Mgik−1 ≤Mgi ≤Mmax

gi

(27)

Where aik, bik and cik are cost coefficients of the ith generator for fuel type k. Therefore, in

(25), J(α, β) is taken as:

J(α, β) =

ng∑
i=1

fi(Mgi) =

2∑
i=1

fi(Mgi) +

ng∑
i=3

(ai + biMgi + ciM
2
gi) (28)

Where equation (27) is used to select the values of fi(Mgi) for generators 1 and 2. The values

of cost coefficients are given in Table 9, whereas the other generators take same cost coefficients as

of case 1.

Case 3: Quadratic fuel cost function with valve-point effects

In this case, the generators of buses 1 and 2 are considered to have the valve point effects on their
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Table 10

Cost coefficients of generator in Case 3.

Bus Number Mmin
gi

Cost coefficients

a b c d e

1 50 150.00 2.00 0.0016 50.00 0.0630

2 20 25.00 2.50 0.0100 40.00 0.0980

characteristics. The cost coefficients of these generating buses are taken from [24] and given in

Table 10. The cost coefficients for other generators are same as of case 1.

The cost characteristics of generators associated with 1 and 2 are described as:

fi(Mgi) = ai + biMgi + ciM
2
gi + |di sin(ei(M

min
gi −Mgi))|

, where i = 1 and 2.
(29)

where ai, bi, ci, di and ei are cost coefficients of the ith generating unit. Therefore, J (α, β) in

the objective function (equation (25) is designed for this case as:

J(α, β) =

ng∑
i=1

fi(Mgi) =

2∑
i=1

(ai + biMgi + ciM
2
gi+

|di sin(ei(M
min
gi −Mgi))|)

+

ng∑
i=3

(ai + biMgi + ciM
2
gi)

(30)

5.3. Solving Optimal Power Flow problem using MGABC

To optimize the objective functions mentioned in section 5.2, MGABC initializes a swarm of

SN food sources where each food source is defined as:

α = (Mg2....Mgng, Ng1....Ngng,Wc1....Wcnc, P1....Pnt). Each control variable of the individual food

source α is bounded within predefined limits given in Table 11. In case of violation of limits of any

control variable, modified objective function (equation 25) is considered for optimization [25].
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Table 11

The bounds of control variables

Control variables Min Max Control variables Min Max

M1 50 200 P11 0.9 1.1

M2 20 80 P12 0.9 1.1

M5 15 50 P15 0.9 1.1

M8 10 35 P36 0.9 1.1

M11 10 30 Wc10 0 5

M13 12 40 Wc12 0 5

N1 0.95 1.1 Wc15 0 5

N2 0.95 1.1 Wc17 0 5

N5 0.95 1.1 Wc20 0 5

N8 0.95 1.1 Wc21 0 5

N11 0.95 1.1 Wc23 0 5

N13 0.95 1.1 Wc24 0 5

Wc29 0 5

Table 12

Load data.

Bus Number
Load

Bus Number
Load

Bus Number
Load

M W M W M W

1 0.000 0.000 11 0.000 0.000 21 0.175 0.112

2 0.217 0.127 12 0.112 0.075 22 0.000 0.000

3 0.024 0.012 13 0.000 0.000 23 0.032 0.016

4 0.076 0.016 14 0.062 0.016 24 0.087 0.067

5 0.942 0.190 15 0.082 0.025 25 0.000 0.000

6 0.000 0.000 16 0.035 0.018 26 0.035 0.023

7 0.228 0.109 17 0.090 0.058 27 0.000 0.000

8 0.300 0.300 18 0.032 0.009 28 0.000 0.000

9 0.000 0.000 19 0.095 0.034 29 0.024 0.009

10 0.058 0.020 20 0.022 0.007 30 0.106 0.019
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5.3.1. Parameters Setting for OPF Problem

To solve OPF problem using MGABC and ABC, the following setting is adopted:

• Colony size NP =50 and number of food sources SN= NP/2,

• The number of simulation/run=100,

• Maximum number of generations/iterations = 1000,

• Other parameters of MGABC and ABC are same as the given in Section 4.2,

• Tables 8, 9 and 10 represent the cost coefficients of case 1, 2 and 3, respectively.

• The bounds for control variables are adopted from [24] and are given in Table 11

• The load data are selected from [24] and listed in Table 12,

• The line data are adopted from [24],

• The penalty factors λm, λn, λw and λr are taken as 105.

5.3.2. Results Analysis and Discussion

The optimal control variables of IEEE 30 bus system with all three cases achieved by MGABC

are given in Table 13. A fair comparison of MGABC with state-of-art algorithms and other nature-

inspired algorithms has been presented in Tables 14-16 regarding minimum fuel cost and average

minimum fuel cost over 100 runs. After analyzing the results of all three cases, it is clear that

MGABC is more robust than ABC and other algorithms which have been taken into consideration.

As far as the convergence speed is concerned, a comparative study is made (refer Fig. 4) between

MGABC and ABC. It is clear from Fig. 4a, 4b, and 4c that MGABC has higher convergence rate

than ABC to solve OPF problem for all three cases. Table 17 presents a comparison of MGABC

with recent work for solving different cases of optimal power flow problem.

6. Conclusion

In this paper, two modified position update strategies have been proposed for employed and

onlooker bee phases of GABC to make it more efficient for constrained optimization problems. These

strategies produce an individual movement in the solution which is based upon its fitness probability.
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Table 13

Optimal values of control variables obtained by MGABC in all three cases.

Control

variables

Case 1 Case 2 Case 3

M1 177.0576 139.982 199.5956

M2 48.6906 55 20

M5 21.3816 24.1716 21.9925

M8 21.3193 34.99 26.6493

M11 11.9632 18.4592 12.7639

M13 12 17.527 12.0176

N1 1.08372 1.07326 1.08395

N2 1.04325 1.03865 1.0099

N5 1.03308 1.03175 1.03018

N8 1.03724 1.03951 1.04729

N11 1.0787 1.06266 1.07703

N13 1.04974 1.06294 1.05292

P11 1.01432 0.993451 1.05282

P12 0.957501 0.96414 0.908546

P15 0.970988 0.997858 0.97705

P36 0.973029 0.974064 0.973815

Wc10 5 5 4.89258

Wc12 2.90361 4.0749 0.179152

Wc15 3.2368 5 4.47957

Wc17 5 5 5

Wc20 4.35918 5 4.9673

Wc21 5 1.03988 4.99997

Wc23 4.86991 4.37257 3.80944

Wc24 5 5 4.99267

Wc29 2.66776 2.96206 2.60403

Fuel cost

($/h)

800.4533 646.5207 918.7265
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Fig. 4. Convergence speed for MGABC and ABC over Case 1, Case 2 and Case 3
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Table 14

Minimization results of MGABC along with different optimization methods for Case 1 of IEEE 30-bus

system over 100 runs

Methods
Fuel cost ($/h)

Min Average

ITS [24] 804.5560 -

EP [24] 802.6300 803.5100

IEP [24] 802.4650 802.5210

DE-OPF [24] 802.3940 -

MDE-OPF [24] 802.3760 802.3820

TS [24] 802.5020 -

TS/SA [24] 802.7880 -

SADE-ALM [24] 802.4040 -

Enhanced GA [24] 802.0600 -

PSO [24] 800.4890 -

ABC-OPF [24] 802.9086 803.6341

BBO [25] 800.4852 -

DBBO [25] 800.4564 -

MGABC 800.4533 800.5765
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Table 15

Minimization results of MGABC along with different optimization methods for Case 2 of IEEE 30-bus

system over 100 runs

Methods
Fuel cost ($/h)

Min Average

ITS [24] 654.8740 -

EP [24] 647.7900 649.7000

IEP [24] 649.3120 650.2170

DE-OPF [24] 648.3840 -

MDE-OPF [24] 647.8460 648.3560

TS [24] 651.2460 -

TS/SA [24] 654.3780 -

PSO [24] 647.6900 -

GSA [24] 646.8480 646.8962

BBO [24] 647.7430 647.7645

ABC-OPF [24] 648.9124 649.4393

MGABC 646.5207 646.6735
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Table 16

Minimization results of MGABC along with different optimization methods for Case 3 of IEEE 30-bus

system over 100 runs

Methods
Fuel cost ($/h)

Min Average

ITS [24] 969.1090 -

EP [24] 955.5090 959.3630

IEP [24] 953.5730 956.4600

DE-OPF [24] 931.0850 -

MDE-OPF [24] 930.793 942.5010

TS [24] 956.0000 -

TS/SA [24] 959.5630 -

EADDE [24] 930.745 -

SADE-ALM [24] 944.031 -

BBO [24] 919.7647 919.8389

GSA [24] 929.7260 930.9240

ABC-OPF [24] 930.4153 931.2629

MGABC 918.7265 918.7912
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Table 17

Comparison of MGABC with recent work for solving different cases of optimal power flow problem

Algorithm Case 1 Case 2 Case 3

Optimal Power Flow Using Differential Search

Algorithm [26]

799.0943 647.9215 923.4573

ALC-PSO [27] 797.1457 —— 915.3243

Dragonfly Algorithms [28] 800.6594 —– —–

ABCGLN [24] 800.4464 646.4461 918.8439

TLBO [29] 799.0715 647.9202 923.4147

MGABC 800.4533 646.5207 918.7265

This movement rectifies the possibility of premature convergence caused by the formation of a

cluster around the Gbest individual in GABC. The experimental results tested over 3 constrained

engineering problems and 20 constrained benchmark problems show the effectiveness of the modified

update strategies in MGABC. MGABC significantly outperforms other considered algorithms on

most of the test problems, with higher accuracy, reliability and efficiency.

Additionally, MGABC is tested over OPF problem with three different cases. The outcome verifies

the wide applicability of proposed modification in ABC.
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