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Abstract

Individual agents in natural systems like flocks of birds or schools of
fish display a remarkable ability to coordinate and communicate in local
groups and execute a variety of tasks efficiently. Emulating such natu-
ral systems into drone swarms to solve problems in defense, agriculture,
industrial automation, and humanitarian relief is an emerging technology.
However, flocking of aerial robots while maintaining multiple objectives,
like collision avoidance, high speed etc., is still a challenge. This paper
proposes optimized flocking of drones in a confined environment with
multiple conflicting objectives. The considered objectives are collision
avoidance (with each other and the wall), speed, correlation, and com-
munication (connected and disconnected agents). Principal Component
Analysis (PCA) is applied for dimensionality reduction and understand-
ing the collective dynamics of the swarm. The control model is character-
ized by 12 parameters which are then optimized using a multi-objective
solver (NSGA-II). The obtained results are reported and compared with
that of the CMA-ES algorithm. The study is particularly useful as the
proposed optimizer outputs a Pareto Front representing different types
of swarms that can be applied to different scenarios in the real world.

Keywords: Drone swarm, Multi-Objective Optimization, PCA, NSGA-II,
Drone swarm simulator, Collective dynamics



Springer Nature 2021 IMTEX template

2 Solving drone flocking optimization using NSGA-II and PCA

1 Introduction

Collective behavior is pervasive in nature and is frequently observed in diverse
organisms ranging from microscopic bacteria (Allison and Hughes (1991)) to
large scale flocking of birds and insects (Nagy et al (2010); Czaczkes et al
(2015)). While researchers still hypothesize the underlying mechanisms behind
such behavior, moving in groups can offer several advantages like avoiding
predators or carrying collective cargo (Ron et al (2018)). Emulating these nat-
ural systems has gained popularity in the past few years, and the development
of a robust, fault-tolerant and generalized swarm of robots is now a widely
regarded problem among researchers (Saffre et al (2021); Coppola et al (2020)).
Aerial swarms, owing to their high maneuverability and speed, find a number
of applications in various industries. They can be deployed as counter-drone
measures (Brust et al (2018)) or for basic surveillance operations in a defense
scenario. In Abraham et al (2019), the authors utilize the sensing capability
of multiple robots to yield topographical and population density maps of a
disaster-afflicted area. In Tosato et al (2019), a centralized swarm architec-
ture was proposed for measuring air pollution. A system like this could reduce
measurement error due to the bigger sample size and distributed data points
over the coverage volume. Mixed aerial and ground swarms have also been
used to automate construction tasks (Krizmancic et al (2020)). In Ju and Son
(2018), multiple UAVs have been shown to outperform a single UAV for tasks
like agricultural sensing and monitoring by measuring multiple metrics like
energy consumption, flight time, and area coverage. In general, drone swarms
can be classified into three categories in order of increasing complexity (Kumar
(2020)):

® Coordinated: This refers to the collective movement with basic environmen-
tal awareness and collision avoidance.

e Cooperative: Here, the robots work together to achieve a particular goal
using fewer resources than a single drone.

e Collaborative: This refers to multiple drones working together irrespective
of their nature, i.e., heterogeneous collaboration.

This paper proposes a methodology to solve the drone swarm coordination
problem with multiple conflicting objectives. This document uses the terms
drone, UAV, and aerial robot interchangeably.

Developing a robust velocity controller that allows multiple drones to self-
organize comes with its challenges. According to the taxonomy defined in
Coppola et al (2020), the control of velocities is one of the methods under
classical Swarming Behavior, i.e., deciding on a high-level control policy with
shared information across each agent’s neighbors. The challenge is to take this
shared information (the agent’s state as well as states of neighbors) and come
up with controllers (functions) that output an instantaneous velocity vector for
each agent. Over time, each agent’s velocity gives rise to various patterns and
mutual interactions that can potentially emerge into self-organizing behavior.
Conventionally, the first-of-its-kind algorithm by Reynolds was based on simple
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rules for each agent and has been successfully applied in many fields (Hauert
et al (2011); Dewi et al (2011); Moere (2004)). In Vaséarhelyi et al (2018), the
authors address this problem by defining a single fitness function and optimiz-
ing it through the CMA-ES algorithm. However, the study does not consider
multiple conflicting objectives, the priority of which can vary depending on the
scenario. A comprehensive study in Fine and Shell (2013) formalizes flocking
behaviors and unifies literature by presenting a data-flow template for various
flocking stages. In Marquez-Vega et al (2021), a multi-objective solution for
quad-rotors is proposed. However, the swarm size is limited, and the full range
of solutions considering the relations among the fitnesses is not explored. We
explore these relationships using unsupervised learning and extend our find-
ings to highlight the use of obtaining a non-dominating solution set for drone
flocking.

Modeling natural processes through simulation often needs to be comple-
mented by an in-depth qualitative understanding of the performance measures.
Unsupervised learning can help understand and cluster data, especially in high-
dimensional spaces that cannot be visualized. It is widely used in experiments
where abundant data is available such as mapping vulnerability indices (Abson
et al (2012)), understanding relationships between economic and environmen-
tal objectives in a chemical supply chain (Pozo et al (2012)), understanding
global motions of atoms in proteins (Loeffler and Kitao (2009)), and most
commonly for dimensionality reduction in evolutionary algorithms (Deb and
Saxena (2006)). Like many natural systems, the solution to an optimization
problem depends on various factors. Often, these factors or objectives are
conflicting and they cannot be solved simultaneously without compromising
the overall fitness. In the case of flocking, we consider six objectives from
Vasarhelyi et al (2018) (referred to by the Vasarhelyi et al. model from here
onwards):

¢ Collision avoidance with the wall.
Collision avoidance with each other.
Average speed of the swarm.

Average velocity alignment or correlation.
Total number of connected agents.

Total number of disconnected agents.

We use PCA to understand the collective dynamics of multi-agent systems and
therefore reduce the multi-objective optimizer’s objective space. To the best
of our knowledge, this work is the first attempt that involves using PCA to
reduce the objective functions for a drone flocking optimization problem.

These objectives are then optimized via a well-established multi-objective
optimizer (NSGA-II) to yield a Pareto front that can guide decision-making
and trade-offs under various situations. We report the results and show that
the results at the extremities of the Pareto front perform better than that of
the CMA-ES algorithm. We conclude by giving some practical examples of
such abstract mathematical formalism for real-time decision-making with a
flock of UAVs.
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In short, in this research, we create a drone swarm simulator integrated
with a multi-objective solver, use PCA to understand the collective dynam-
ics of swarms, and give a Pareto front that represents different swarms that
can be used in real-world scenarios. The rest of the paper is organized as
follows: Section 2 presents the background of Principal Component Analysis
(PCA) and multi-objective optimizer (NSGA-II). A drone flocking optimiza-
tion problem is formulated in Section 3. In Section 4, PCA is used to reduce
the number of the objective functions, and a discussion on the correlations is
followed. Section 5 presents the experimental setup, and the numerical results
and discussions are given in Section 6. The research is concluded by giving
some potential use-cases and possible future work.

2 Background

2.1 Principal Component Analysis

A high-dimensional objective space suffers from poor selection pressure and
convergence (Deb and Saxena (2006)). It is also challenging to visualize the
space and gain intuition which is often required for appropriate decision-
making. Principal component analysis, a technique under the domain of
unsupervised learning, may help understand the underlying structure of the
data without explicit labels. The idea is to search for the eigenvectors of an
m-dimensional covariance matrix (K) which is then used to decide the redun-
dant objectives. Here, m is the number of objectives. This covariance matrix is
symmetric, and its elements give the relations between the design variables on
which the analysis has been run. Such an analysis of the objectives of an opti-
mization problem can provide insights into their correlations and can help in
understanding their qualitative aspects. The process to determine K is given
in appendix A

2.2 Non-Dominating Sorting Genetic Algorithm-I1I

NSGA-II is a multi-objective optimization algorithm based on ranking each
solution in the population according to their fitness and progressively produc-
ing better solutions using genetic operators like reproduction and mutation.
We use NSGA-II in our work to trade off the reduced fitnesses with each other.
This trade-off is represented by Pareto Fronts, which are made up of non-
dominated solutions within an evolutionary population. The entire algorithm
is explained in detail in Deb et al (2002). However, a brief explanation covering
the salient features of NSGA-II is also explained in appendix A.

3 Drone flocking optimization problem

A completely decentralized flocking swarm is based on simple rules like Sep-
aration, Alignment, and Cohesion. When defined using a velocity control
algorithm, these rules have specific parameters that can be tuned to flock
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optimally. In this section, these parameters are introduced, and a simulation
framework capable of handling artificial sensor noise is created. The algorithm
used for flocking is based on the Vésarhelyi et al. model and Reynold’s Flocking
model (Reynolds (1987)). Some subtle modifications have been incorporated
to handle a multi-objective optimization framework. We use vectorized ver-
sions of the equations to leverage fast computation with matrix computation
libraries.

To simulate a multi-agent system, there must be a mechanism to share
information across the agents. In the case of a decentralized system, this infor-
mation is shared in each agent’s neighborhood N,. Moreover, real systems are
characterized by stochastic uncertainty and noise, which are incorporated into
the position(r) and velocity(v) vectors of the drones. The model for simu-
lating the noise and environmental effects is taken from Viragh et al (2014).
The relative position (r;;) and velocity (v;;) at time ¢ is then found using the
following equations:

rji(t) = (v;(t = tg"™) +x57) —ri(t) — v
vji(t) = (vt = tg"™) +v5") = vi(t) = vi”
l
R;e = I‘ji(t)

‘/jT-el — Vji (t)

A/_\/.\/_\
[\
= O —

where,

r;; = Relative position vector of jth agent with respect to i" agent at time ¢
v;; = Relative velocity vector of j** agent with respect to i'" agent at time ¢
R;el = j** row of the Relative position matrix for agent i V j = 1,2, ..., N,

V]T’d = j'" row of the Relative velocity matrix for agent i V j = 1,2,..., N,
comm —

t5o"™ = Simulated communication delay
r9P® = Simulated GPS noise for position
vIP% = Simulated GPS noise for velocity

3.1 Decision variables

The flocking rules are explained in the following sections based on the above
modification for the relative position and velocities. These rules give rise to
certain parameters which are used as decision variables for the drone flock-
ing optimization problem. Note that all the flocking operations are developed
for the i*" agent and are carried out for all N agents. All operations involv-
ing vectors/matrices and scalars are performed element-wise unless mentioned
otherwise.

3.1.1 Separation

To flock effectively without collisions, the agents must have a mechanism for
repulsion. A spring-like mechanism is used, which is activated at short ranges
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of inter-agent distance in the flock. The model for the same is taken from
Vasarhelyi et al (2018) and is delineated in appendix B.

3.1.2 Alignment

Vasarhelyi et al. Vasarhelyi et al (2018) realized that effective control of both
the magnitude and direction of velocities as a function of inter-agent distances
could yield the best alignment with scalable velocities. We use the same model
in our work as well. The equations for alignment are explained in appendix B
for the sake of completeness.

3.1.3 Wall collisions

To account for collisions at walls, the Vasarhelyi et al. model proposes virtual
"shill" agents at the walls which the actual agents can try to align their veloc-
ities with. These shill agents have no gain, so repulsion at walls takes place to
the maximum extent (c*"*! = 1). This makes sense while flocking in confined
environments because one of the primary goals is to avoid the wall at any cost.
In our research, however, while seeking a non-dominated set of solutions (ref.
section 6), we characterize the elasticity of the virtual geo-fence using a shill
gain (c*"!) parameter. The following equations are used to find a shill velocity
vector from each wall to align with it. r.; is the relative position vector from
the agent to the arena’s center r.. This vector is used to find the distances to
the walls in Eq. (6). Eq. (8) gives a m x m sized matrix, with rows as the shill
vector from each wall. We assume a square geo-fence with the center of the
square at (0,0) in our research, but trivial modifications to Eq. (5) and (6) can
generalize it to other shapes as well.

rCi = I'c — I'i (5)
X7 = Le/2 - Iral (6)
V?hillmaa: _ D(r:’bag o TShillv ashill’pshill) (7)
V, = (vshill'&) ol (8)
‘rci‘
V;nag = Il‘/s — VZH vahillmaz (9)
yshill — gshill (ymag _ yshillmaz) Zﬁw (10)
Vg

- s

thzll _ Z Vkshzll (11)
k=1

where,

r. = Absolute position of the center of the arena

L. = Side length of the arena

r.; = Relative position of the center with respect to the agent

p*hi = Slope for the linear part of the decay curve (user-dependent
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parameter)

a*P = Acceleration for the non-linear part of the decay curve
user-dependent parameter)

c*"ill = Qverall Gain for shilling alignment (user-dependent parameter)

v*"il = Speed of shilling agents (user-dependent parameter)
rshill = Alignment cutoff distance for maximum alignment (user-dependent
parameter)

Vshill =N, x 2 sized matrix of scaled shilling velocities for all dimensions
VEhill = Alignment velocity of k" dimension i.e. k' row of Vshill
vehill = Desired collective shilling vector for it" agent.

Here, I is the identity matrix, and ® is the Hadamard product. Egs. (9) -
(11) have the same velocity alignment procedure done in section B, but here
it’s done for each wall’s shill velocity instead of each agent neighbor.

The above three velocities (3.1.1 - 3.1.3) along with the normalized flocking
velocity are summed up and normalized again to give the desired velocity for
the respective agent. This desired velocity is further used to update the current
velocity and position sequentially using a first-order Euler integration method.

viesired — ”ViH pflock yrer o ylriet  yshill (12)
Vi
desired ) desired vdesired
Ve esired , mzn{vmax’ Hvi esire H} Hvi_lesiredn (13)
1

Finally, the set of resulting 12 parameters to optimize is:

_ sep _ re frict rict rict rict rict ,.shill | shill _shill shill _shill
.TL'—{’I"O ap p7T0 7af 7pf 7vf 7Cf 7T0 7’U a 7p ,C }

)

3.2 Fitness functions

Order parameters are defined and passed through transfer functions to get the
fitnesses and measure the performance of one simulation run.

Foveed — R (grel pflock toly
Feoll — Ty (g0l gt
Fuwall — o, (gwall ptoly
FOr — ©(§OTT) T
Filise — Py(gdise N/5)
Feluster _ Ry (geluster N /5)

(14)
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Here, the order parameters ¢?¢, ¢ ¢ ¢ and transfer functions
Fi, Fo, F3 are taken from Vasarhelyi et al (2018) the Vasarhelyi et al.
model, and © is the Heaviside step function. Parameters r°, a!°!, and v*°!
are explained in Section 5. Order parameters for disconnected agents (¢9°)
and the minimum connected agents (¢°/“s*") are explained below. These

parameters are calculated locally in re/*st" sized clusters:
,r,cluster — prep + rfrict + D(UflOCk7 africt7pfrict) (15)
D is the braking distance r for which D(r, a, p) = v for any agent.

Disconnected agents

This parameter measures the average number of completely disconnected
agents throughout the simulation. Eq. (18) gives the number of agents within
retuster distance of each agent at any given moment. Eq. (19) is then used to
determine the number of agents throughout the simulation with zero connected
agents, i.e., disconnected.

1 ifz>0
O(z) = = 16
(z) {o iz <0 (16)

(17)

nlgluste'r(t) _ Z @(Tcluster —7ij (t)) (18)

J#i
disc 1 T cluster
P = T, Zg(ni (t)—1) (19)
i=1

Minimum connected agents

This parameter measures the minimum number of connected agents aver-
aged throughout the simulation and is therefore dependent on time. Since the
drones start at random positions, it was observed that keeping this parameter
time-dependent instead of steady state (the global minimum throughout the
simulation) gave a better idea of the robustness of the communication graph
throughout the simulation.

3

T
qbclusi&er(t) — %‘/0v min{ni:luster7ngluster.“ n(:luster}(t) (20)

Vi:l,2,.,N

Finally, to optimize these fitness functions given in Eq. (14) simultaneously, the
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six objectives must be analyzed for correlations among them so that the system
can be represented with fewer objectives, preferably two. In the next section,
Principal Component Analysis (PCA) is used for dimensionality reduction so
that the multi-objective optimizer NSGA-II can be used effectively.

4 Dimensionality reduction using PCA

A data set of the six objectives discussed in Section 3 is collected to reduce
the number of objective functions. This data is just the result of 500 random
simulations without any heuristic to cover the entire search space. This search
space is the same as the one used for optimization in section 6. Note that
we use the fitness values after being passed through the transfer functions as
the data for PCA. This can be done directly on the order parameters as well.
Both processes would give different correlations depending on the nature of
the transfer function. We prefer the former method as it gives a more accurate
representation of the matrix components and the exact fitnesses functions used
for optimization. This data is used to create the covariance matrix and princi-
pal components is shown in Section 2, followed by a qualitative discussion on
the correlations.

In Fig. 1, the matrices obtained from the application of PCA on the objec-
tive space are given. The matrices show some interesting results. Some insights
are discussed as follows:

K>3 is negative, implying that a higher velocity doesn’t necessarily imply
higher cohesion. This might be false in situations where the UAVs have very
high-velocity magnitudes while traveling long distances or have a large turn
radius (as in the case of fixed-wing drones). But in a confined environment
speeds must be reduced to maintain cohesion at the edges (where the flock gets
broken up most). This is also a consequence of a limited acceleration which
aligns with actual physical systems.

K13 also confirms the above statement regarding confined environments.
To maintain cohesion at walls, the UAVs can either slow down or skip the wall
altogether. A combination of slowing down and breaching the geo-fence makes
the above movement the most efficient. Note that intuition would suggest that
as speed increases, it would be easier to decrease the wall fitness as there is

1%t component Covariance matrix
(w) (K)
Fall [ 0.191 ] [ 1.002 0.2821 —0.172 —0.115 —0.094 —0.131 ]
Fepeed 0.329 0.282 1.002 —0.285 —0.283 —0.301 —0.259
Feerr —0.495 —0.172 —0.285 1.002 0.253 0.5815 0.682
Feok ~0.285 —0.115 —0.283 0.253 1.002 0.278 0.204
Fdise —0.509 —0.094 —0.301 0.581 0.278 1.002 0.748
Feluster —0.518 | —0.131 —0.259 0.682 0.204 0.748 1.002 |

Fig. 1: Matrices obtained from Principal component analysis
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indeed a limited acceleration/deceleration available. Upon running numerous
simulations and making covariance matrices, it was found that this is because
Fwall jtself is time-dependent. This means that the fitness is inversely pro-
portional to the number of time frames the drones spend outside the wall.
Since Feorr, Fdisc and Feluster collectively maintain cohesion and connectiv-
ity wherever possible at the expense of ¢ and F**! whenever the drones
slow down, they naturally spend more time frames outside and turn slowly
irrespective of the acceleration. This makes Fw% and F*P¢¢d directly corre-
lated with each other on average. The elements w1 and w2 and K75 represent
this fact.

Drones naturally collide less with each other when their velocities are
aligned and they are well connected. This is because the time it takes for
velocity changes to travel throughout the communication network is much
lesser. Although, when this network is strongly connected, the agent has to
sum up through many velocity differences in its neighborhood. While this is
advantageous when the neighbors are moving in similar directions, it can be
detrimental when there is a lot of noise and the inter-agent velocity differences
point in different directions. As a result, the summed-up alignment velocity
for the concerned agent gets dampened by canceling out. This results in inter-
agent friction and makes the entire flock sluggish (slow to react). This is clearly
shown by the elements wy and ws, which are strongly uncorrelated. It is also
worth pointing out that elements w3 through wg are strongly correlated, which
confirms the association of velocity cohesion and collisions with the commu-
nication network. As expected, the cluster parameters for disconnection and
minimum number of connected UAVs are strongly correlated (Kg5) as they are
both direct functions of the communication network.

Using a single objective can result in the loss of important information
as the final fitness is just the collective product or weighted sum. Notably,
in noisy dynamical systems such as multi-agent robotics, efforts need to be
made to retain as much information as possible and use it intelligently to guide
the decision-making process. We propose a multi-objective methodology for
optimization of the swarm’s fitness to tackle this problem.

The principal component (w) for the maximum variance captures all the
above relations and shows them how they relate with each other on average.
The sign of the elements indicates correlation which gives rise to the following
features/objectives:

fl _(J—_-wall ) J,—_'speed) (21)
-FZ _ _(J—_-corr ) J—_-coll i J—_'disc . fcluster) (22)

Unlike traditional PCA, we do not use just the non-redundant objectives.
Each objective captures tangible physical information about the simulation
and therefore, we multiply the two sets individually to retain that information
and also make it easier to draw a comparison with the single objective CMA-ES
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optimizer as given in Section 6. Apart from quantitative comparison, multi-
plying the F’s also eased the qualitative analysis of collective behaviors. For
example, a sudden drop in F> could be attributed to a specific fitness within
the product, and an appropriate analysis could be carried out. One might also
use weights for each objective and their respective correlations to determine
this final objective function. Note that we consider the product’s negative as
we minimize the objective functions.

It is worth mentioning that the above covariance matrix is dependent on
the number of agents and the size of the confined arena. While some param-
eters like the cluster connectivity and cohesion remain the same because they
are independent of the above parameters, a different non-redundant set of
objectives was obtained upon changing the size of the geo-fence. The simu-
lations dictated that the same number of agents in a larger space took more
time to align with the shill agents due to the stronger inter-agent alignment
over long distances. The covariance matrix for the same is not shown here for
brevity. In Vasarhelyi et al (2018), there is a certain ambiguity in the size of
the geo-fence. While the authors mentioned that they used a side length of
250m for the square arena, the averaged results on their open-source simula-
tor were closer to the claimed ones when a radius of 250m (or side length of
500m) was used for the arena. To make comparisons easier, we also continue
with the latter definition for our study.

The reduced objectives are passed to the multi-objective solver NSGA-IT
(Deb et al (2002)), and the results are summarized below.

5 Numerical Experiments

A custom simulator MOflock was created in the Python programming language
to test the proposed algorithm and for future work. The ease of use in setting up
multiple processes and leveraging optimization and machine learning libraries
was a major influence in choosing Python. The simulator is highly object-
oriented and modular. It has the drone agent abstracted at various levels and
allows experimenting with both single (Bot) and multiple collaborative agents
(CoBot). The class diagram for the same is given in appendix C. It was kept in
mind that error between RobotSim (Vasarhelyi et al (2018)) and the current
work should remain under a threshold of 5-10%. This is done so that MOflock
can be validated against state-of-the-art simulators which have been tested
on drone hardware. The code repository link is available at supplementary
material S1 (2022), and a screenshot of the simulation is shown in Fig. 2. All
the experiments are carried out with a flocking velocity (v#!°°*) and maximum
velocity (v™%") of 6 m/s. However, no changes were made in the algorithm to
avoid disrupting the scalability in velocity. Artificial GPS noise is added using
the Brownian noise model used in Viragh et al (2014). Communication delays
are integral to the result of optimization as they simulate a kind of inertia at the
walls and with neighbors as well. Without these delays and noises, the drones
favor high gain and short-range repulsion as opposed to the model optima.
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Fig. 2: MOflock simulation screenshot. The blue and red swarms are non-
interacting. See 7?7 for a video of the simulation.

Note that the experiments in this paper are carried out in two-dimensional
vector space.

After analyzing the covariance matrix for correlations (Section 4), the
objectives are combined accordingly and passed to the multi-objective opti-
mizer. A good multi-objective optimization algorithm should contain the
following characteristics:

1. Guide the solutions to an optimal Pareto front
2. Maintain solution diversity

NSGA-II is proven to be one of the best-performing algorithms in this
regard. The ‘pymoo’ (Blank and Deb (2020)) python library is used with
default parameters.

It is imperative to set up the optimization problem so that there is enough
diversity in the search space to find "good enough" solutions through heuristic
methods. For the sake of exploration, a test run is conducted using the CMA-
ES algorithm without any bounds on the parameters. The solution for this
setup revealed that the flock only moves in a tight circle around the center and
does not collide with the walls at all. While such a solution is mathematically
optimal, it does not encapsulate the physical limitations and logical constraints
on the variable bounds. This happens because the correlation and wall fitnesses
become abnormally high. For instance, this solution has a very large ’I"gMCt
value much greater than the communication range of the drones. This allows
each drone to have velocity correlation to the maximum extent and increases
JFeorT drastically.
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Table 1: Optimization parameters Table 2: Simulation parame-
ters
Lower bound  Upper bounds

Parameter Value
rgep 30.8 m 51 m
p"eP 0.02 1/s 0.10 1/s pflock 6 m/s
r‘();MCt 58.5 m 100 m pmax 6 m/s
alrict 5.04 m/s? 10.0 m/s? t9pe 0.2's
plrict 0.38 1/s 9.67 1/s N 30
vl riet 0.3 m/s 2.7m/s Larena 500 m
cfrict 0.03 0.22 Cinner 0.005 m?2/s2
rghill -10 m 0m [ 1ls
pshill 10.0 m/s 15.0 m/s reoll 3m
ashitl 1.54 m/s? 6.55 m/s? vtol 3.75 m/s
phill 0.48 1/s 9.96 1/s atol 0.0003
Cshill 0.3 1 Ttol 5m

To avoid such solutions which disregard environmental constraints, either
explicitly known bounds can be set on the variables which are realistic and
relevant to the physics of a UAV, or another objective that maximizes the
search area covered in minimum time can be incorporated into the optimiza-
tion process. For this study, the former approach is used without any loss of
generality. An iterative process is used to find the optimization bounds. To
begin with, the exact optimization bounds from Vaséarhelyi et al (2018) are
used and tweaked progressively according to our use case. We do this by relax-
ing or constraining the bounds so that the specific behaviors we wanted to
analyze through PCA (colliding/surpassing the wall, coming very close to each
other etc.) could be incorporated. For instance, r§"! and c*"*! are relaxed so
that walls could be ignored sometimes. When all behaviors could be observed,
we started optimizing in this space. In cases where the optimizer does’t explore
enough or there is a major change in flocking physics, we tweak the bounds,
conduct PCA again, obtain the covariance matrix and optimize on the newly
obtained bounds. Some bounds were large enough and did not need any change
(eg: separation parameters). The bounds used for the variables are shown in
Table 1 and some miscellaneous simulation parameters including certain toler-
ance parameters r° ¢*! and v*® for the transfer functions in section 3.2 are
given in Table 2. Appropriate values for these tolerance parameters promote
a better search of solutions and gradient directions.

We use simulated binary crossover and polynomial mutation with default
parameters from the library Blank and Deb (2020), and the optimization is run
for a total of 40 generations and a population size of 50. All the experiments
were performed on a machine with the AMD Ryzen 7 4800H 16 core CPU and
16 GB of RAM. The results are reported in Section 6.
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Fig. 3: Statistical evaluations (mean + standard deviation) of different con-
figurations with respect to the optimal Pareto front. The blue and red
curves are comparisons of MOflock and RobotSim at the model optima(X,)
for v/lo* = 6m/s. F(X,)|RobotSim is the multi-objective fitness for the
model optima X, taken from Vésarhelyi et al (2018) and evaluated on
RobotSim itself. F(X,)|MOflock is the fitness for X, evaluated on MOflock.
FOMA-ES( X, +)|MOflock is the optimized fitness result on our simulator using
the CMA-ES algorithm. The highest ranked Pareto front for the last generation
using the NSGA-II algorithm is also shown }"{VSGA_H, ]-'ZNSGA_”|MOﬂock
are mean values for the extreme points on this Pareto Front.

6 Results and Discussions

The results of the optimization procedure are analyzed and discussed in this
section.

Fig. 3 shows 100 simulations for different points. As targeted, the error
on mean fitnesses between both simulators at the model optima in Vasarhelyi
et al (2018) is 4.28%. Note that FEMA=ES(X )| MOflock was not evaluated
using a multi-objective algorithm but was separated into F; and F» according
to Section 4. This is done so that comparisons can be drawn easily between
the single objective and multi-objective results.

Since the single objective fitness is the product of all individual fitnesses, it
follows that neither of the six fitnesses can be close to zero or even guaranteed
to be maximum if there exists a negative correlation between some. As a
result, when optimizing a single objective function, a ‘best of both’ situation
is sought after. However, in the case of multiple conflicting objectives, this can
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within themselves but dominate all other minimizes F7 in the highest ranked

solutions in the population. Here rank is Pareto front from the last generation;

calculated using the formula in appendix A Point B: Red agents represent the cohe-
sive flock which minimizes F5 in the
highest ranked Pareto front from the
last generation.

Fig. 4: Optimization Results

be forgiven for better performance on the separated fitness functions. This also
explains why the CMA-ES point lies around the knee of the Pareto fronts.
It should be noted, however, that the CMA-ES optimum on our simulator
outperforms the Pareto front at its knee. This is owed to the high degree of
automation and robustness of the CMA-ES algorithm.

While the user can now choose amongst any of the points depending on
the scenario and relative importance, there are two interesting points on the
optimal front corresponding to the extreme situations when either one of the
two solutions is compromised for the other. They are given by points A and
B in Fig. 3. The values of the variables and fitnesses at the above points are
summarized in Table 3. Fig. 4a shows every 4" Pareto front from the last
generation. This spacing was only chosen to display the spread and convergence
in a neat manner. A snapshot of the relevant simulations for both points is
also shown in Fig. 4b along with the graphs for their order parameters in Fig.
5. They can be qualitatively understood as follows:

Point A: A weaker cluster-dependent fitness shows that multiple clusters
can coexist in the same environment when cohesion and speed is sacrificed.

Point B: Similarly, the other point clearly skips the geo-fence and/or slows
down to maintain a good cohesion and compensate for the damping caused by
inter-agent friction and pressure at the walls.
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(a) Point A: A more agile but less cohe- (b) Point B: A cohesive but sluggish

sive flock. ¢ remains 0 throughout, swarm. ¢“%! increases progressively as

but ¢“°"" is lesser than Point B the swarm spends more time frames out-
side the geo-fence. N,;, is greater than
Point A because more agents are present
within r¢/4Ste" radius

Fig. 5: Cumulative order parameters for points A and B. The order parameters
have been scaled equally using simulation parameters to accommodate them
on a (0,1) range ordinate

The generation of the above two points directly results from the physical
and environmental restrictions imposed on the swarm. The limited acceleration
does not allow the entire swarm to turn sharply without slowing down. The
confined walls don’t allow agents to flock together when moving at high speeds
without losing some cohesion. These statements are a testament to the com-
plex dynamics that multi-agent systems exhibit. A video showing the above
interactions is available at supplementary material S2 (2022). Better math-
ematical formalism and high-fidelity simulations can be developed to realize
such intertwined relationships.

The trend in the order parameters in Fig. 5 also confirms the covariance
matrix elements in Section 4. Note that the graph is scaled to the (0,1) interval
with the relevant maximum feasible values for each parameter, and cumulative
values are shown for the curves.

Further statistical analysis of the data from the optimization shows
that there is a lot of redundancy in the decision variables. The following
observations indicate this finding:

e Even though points A and B are far apart on the Pareto front, their
respective parameters for repulsion are very similar.
e It was observed that the right combination of r§" and a*"" gives similar

fitnesses and order parameters even with a constant shilling velocity.

shill
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Table 3: Optimization results

Point A Point B

Fi(pto) —0.890+0.039 —0.065=+ 0.039
Fa(pto) —0.112 £ 0.09 —0.896 +0.179

roP 33.69 m 33.45 m
per 0.023 1/s 0.028 1/s
rdriet 59.26 m 58.95 m
alrict 5.38 m/s> 8.223 m/s>
plrict 4.62 1/s 2.67 1/s
pfrict 1.73 m/s 3.00 m/s
cfrict 0.035 1.84
rghill -2.45 m -0.21 m
pshill 12.93 m/s 12.93 m/s
ashill 4.84 m/s? 2.57 m/s?
pehitl 4.831/s 1.30 1/s
cshill 0.55 0.43

e The introduced shill gain (c*"*") does not take its maximum possible value
(1.0) even when seeking the best Fi, which is highly dependent on this
parameter.

Note that a complete PCA correlation analysis on the decision variables can
be performed to confirm the above observation and reduce the dimension of
the input space as well.

The above results are more consequential than just a Pareto front. Real-
life missions and the inherently stochastic nature of the environment demand
a range of potential solutions from which a human in the loop can choose in an
ad-hoc manner. A typical mission profile consists of cruise, loiter, surveillance,
and occasionally a payload drop. A brief description of the use of the practical
applications of the Pareto optimal points are shown below.

e Target search and loitering is a common phase in surveillance missions. A
snapshot of an extreme case where the target is located at a corner of the
geo-fence is shown in Fig. 6a. The flock breaks at corners and walls to loiter
around the target. To make this observation mathematically sound, another
order parameter called ¢t279¢ is created. The target following physical model
is taken from Viragh et al (2014).

N
. (T
xCOM (1) — % (23)
Jtarget(t) _ ”Xtarget _ XCOM(t)” (24)
where,

xCOM (t) = Center of mass of the swarm at time t
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d'r9¢t(t) = Mean distance to target (over all N agents) at time t

This parameter includes two performance measures- the closeness of the
entire flock to the target on average (Eq. (24)) and the ‘Loiter Frequency
(w)’. This frequency measures how fast the flock can loiter around the target
and turn around as a whole. As opposed to the other parameters, the steady
state version of this parameter is measured. Since the motion is circular and
periodic, the time series is fit to a sinusoidal wave similar to an audio signal.

P19 (1) = a.sin(w.d'IN(E) + 1)) + ¢ (25)
F= FFT( targety (26)
T 5
Jiarget — = draroet (¢ (27)
t=0
2 T-1
ay = T dtarget (t) — dtarqet) (28)
t=0
fo = fargmas(au))] 29
o =0 30

Co = dtarget

a,w,1,c = LSF(§' "9 d"*"9 [ ay, fo, o, Co)

where,

F = Fourier transform output

dtarget = Mean of the mean distance throughout the simulation

f° = Sample frequencies for the time series data

dter9et = Average distance throughout the simulation

fo = Initial guess of frequency for ¢*479¢¢(t) corresponding to the maximum F
1), = Initial guess of phase for ¢*om9¢!(t)

a, = Initial guess of amplitude for ¢*@"9¢(t)

¢, = Initial guess of offset for ¢?4"9¢ ()

This is done by first getting an estimate of the initial coefficients, namely
amplitude (a,), phase (¢,), offset (¢, ), and frequency (f, = w,/27)) via a Fast
Fourier Transform (FFT) on the data (Eq. (25)-(26)) and then passing this
estimate for Least Squares curve Fit represented by LSF (Eq. (32)). The final
order parameter is just the angular frequency divided by the amplitude.

Flarget — y/q (33)

The analysis shows that point A on the Pareto front has a lower loiter
frequency because of the extra inter-agent friction created to maintain the
flock cohesion. Point B, on the other hand, has almost half the amplitude and
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Fig. 6: Target order parameter comparison

double the frequency because of the higher velocity, loosely correlated flock
with more collisions. These curves and an accompanying simulation screenshot
are shown in Fig. 6. A full video showing the target tracking and fitness analysis
is available at supplementary material S3 (2022).

There have been recent studies in which collisions are handled explicitly
through physical boundaries and mechanisms instead of an implicit algo-
rithm (Mulgaonkar et al (2017)). The idea is to allow for some collisions as
long as agility is maintained and the drones reach their target. Point A on
the front is akin to such a situation. The flock does not give much attention
to inter-agent separation or cohesion in local clusters. Instead, speed is given
a higher priority. This is especially useful when tiny drones need to overcome
narrow passages and crevices without acting as a fully connected flock but
get through the region as fast as possible, with each drone acting for itself.
Point B naturally resembles a good flock where connectivity and cohesion
is concerned. The decentralized neighbor architecture makes the flock very
desirable where robustness and swarm health is an absolute requirement,
and the entire swarm needs to travel long distances as a fully connected
cluster.

While developing the methodology for this work, several characteristics of

collective behavior were noticed in the multi-agent simulations. For instance,
the parameters which characterize the swarm changed drastically based on fac-
tors like communication delay and the arena size. These two variables affect the
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swarm as a whole because any control action for an agent close to the wall is
propagated throughout the swarm with the appropriate communication delay.
Naturally, every PCA analysis with different simulation parameters yielded
unique objectives and, therefore, a different Pareto front. The advantage of sep-
arating the objective function into multiple grouped objectives is that global
swarm behavior can be controlled by choosing a point on the Pareto front
instead of tuning parameters manually or running an offline optimization for
each possible situation that the swarm would encounter. Therefore, it follows
that this swarm behavior can be controlled by a supervisor with access to the
appropriate Pareto front. Moreover, such distinctions and swarm gradients are
more consequential when we start attributing human-readable names to these
fitnesses. In our case, the swarm which minimizes F; acts as an ‘agile’ swarm
whereas minimizing F» constitutes a ‘cohesive’ swarm. A human operator
with access to the Pareto front and such terminology could potentially direct
global swarm behavior according to the situation at hand. Similar notions of
‘stable’ vs ‘sensitive’ swarms have been developed in the past (Balazs et al
(2020)) and show that the problem of generalizing a semi-autonomous swarm
based on various scenarios is often difficult to handle with just online learning
algorithms. A compromise between both, wherein we can control large-scale
behavior through multiple objectives and individual decision-making through
reinforcement-learning can be sought after to solve the generalization problem.

7 Conclusion

In this paper, we proposed a methodology to address the problem of drone
flocking. First, a simulator with an integrated optimizer was designed to test
the algorithm. The decision variables that characterize the flocking operators
and fitness functions that indicate the performance swarm’s performance were
derived from the Vasarhelyi et al. model and modified accordingly. To use the
multi-objective optimizer effectively, the six-dimensional objective space was
reduced to two dimensions using Principal Component Analysis. The correla-
tion analysis revealed that fitness functions for both speed and wall avoidance
could be treated separately from the cohesive movement of the entire flock.
This process also provided insight into the various complex relationships that
multi-agent systems can exhibit. Further, the so formed two objective opti-
mization problem is optimized using NSGA-II and the results are compared
with the single objective CMA-ES optimization algorithm. It is found that
while CMA-ES performs better with respect to the knee of the Pareto front
(in situations where a ‘best of all’ configuration is required), NSGA-II outper-
forms CMA-ES on the extreme points as it offers an entire range of solutions
to choose from. The study also discussed the use cases of such a Pareto front to
guide the decision-making process in real-world scenarios. Incorporating algo-
rithms like Reinforcement Learning with the proposed methodology can be
future research agenda.
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Data Availability

The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.
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Appendix A Background

Principal Component Analysis

The covariance matrix K is formulated as follows: Let X be an n x m design
matrix with n rows as the samples and m columns as objectives. A pre-
processing step often carried out is the normalization of the design matrix
which brings the mean of samples for each objective to 0.0 and the variance to
1.0 (Eq. (Al)). The covariance matrix is then calculated by taking the mean
of all samples of the pairwise products for each objective (Eq. (A2)). In a vec-
torized format, this is equivalent to taking the matrix product of the design
matrix X with its transpose (Eq. (A3)).

Xinjm’m — Xij — My (Al)
gy
1 n
Kij =~ XXy (A2)
k=1
1
K== (Xnorm)TXnorm (A3)
n
where,

X,;; = Element of X at i*" row and j** column

XZ-"jOTm = X;; normalized to 0.0 mean and 1.0 standard deviation
w; = Mean of all n samples of 4" objective

0; = Standard deviation of all n samples of 4" objective

n = Number of samples

m = Number of objectives

K = Covariance matrix

K;; = Element of K at i'" row and j*" column

Non-Dominated Sorting Genetic Algorithm

Let P, be an N sized initial random population. This population is sorted
based on non-domination according to the following rules: An individual X3
in the population is said to be dominated by individual X5 if satisfies both of
the following conditions:

e All fitnesses of X7 must be less than or equal to that of X, particle.
® At least one fitness of X7 must be strictly less than that of X5.

Mathematically, individual X; dominates X5 if d = 1, and the individuals
are non-dominated if d = 0.
Where, d = {Vm F(X;)™ < F(X2)™}n{3Im F(X1)™ < F(X2)™}
This method divides the population into dominating and non-dominating
solutions, which is a heuristic used to guide the population towards better solu-
tions through the generations. Each solution in this population is also ranked
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based on the number of other members it is dominated by, and accordingly, it
is assigned a front rank. Next, an offspring population Q is created from the
sorted population by applying tournament selection, recombination, and muta-
tion operators. A new 2N sized population is made using P U @ and is again
sorted and ranked to retain the best solution across generations (elitism). To
make the next population P11 from this combined set, solutions are taken in
order of their front ranking. In case the number of solutions belonging to a
front exceeds the amount that can be accommodated into the new N sized pop-
ulation, the remaining solutions in that front are ranked based on a crowding
operator as follows:

Let F* be the set of solutions on the k' ranked Pareto front. The crowding
distance (c) for the m®* objective for i'" solution on this front is defined as
the normalized distance between the two nearest solutions i.e. (i + 1) and
(i — 1)t (Eq. (A4)). The overall crowding distance (¢;) is the sum taken for
each objective (Eq. (A5)).

F™(Xip1) — F™(Xi-1)
Fm 7Fm

mazx min

M
c; = Z e (A5)
m=1

VX, e FF it = (A4)

This crowding operator ensures that the Pareto Front is uniformly dis-
tributed, and the range of each objective value is minimized as the search
progresses. The remaining solutions are ranked according to ¢; and the new
population P;;1 moves forward to the next generation. NSGA-II is faster than
NSGA-I and has a worst-case complexity of O(MN?).

Appendix B Decision variables

Separation

The following two equations (B7) and (B8) are used to find a repulsion vector

for agent 7 after scaling it according to the relative distances in r"*Y and a
gain p"°P.
rmag HRrel”Lrgep (B6)
el

Vrep — prep (pmag _ rep R™ B7
— P ) S (B7)

N,
V;ep = Z ‘/}Tep (BS)

j=1

where,
aTty, = max(a,b) i.e. a is at least b
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a+¢ = min(a,c) i.e. a is at most c
r"® =N, x 1 sized vector containing inter-agent distances
ro” = Repulsion cutoff distance (user-dependent parameter)
p"P = Repulsion gain (user-dependent parameter)
Ve =N, x 2 sized matrix of scaled repulsion velocities for all neighbors
VI’ = Repulsion velocity of j* neighbor i.e. j'* row of V7P

tep _ . . .
v, = Desired collective repulsion vector

Note that the upper bound of r% is the parameter 7" to enable short-

range effects. The matrix norm in Eq. (B6) is only taken along the row axis,
i.e. for each neighbor. An Nx2 matrix (R"®) of position vectors divided by
the distance vector (r™%9) yields unit position vectors. V"°? contains all the
corresponding scaled repulsion velocities, and the division and multiplication
in Eq. (B7) is done element-wise.

Alignment

The equations are similar to separation with one major difference: the upper
bound for the velocity magnitude (v/7**®) is now calculated dynamically
with decay function D in Eq. (B9), which is dependent on the inter-agent
distance (Vasarhelyi et al (2018)). Egs. (B10) - (B12) describe the process of
finding out the agent’s combined alignment vector.

Vfrictmaw _ D(r;(nag . r())‘rict o 7,66177 africt’pfrict)_rvf”a (Bg)
vag — HVTEZHTmeamw (B].O)
' ] ) VT'el
mect — Cfrzct.(vmag _ Vfrzctmax).i (B]_]_)
Vimag
No
frict _ frict
v rict _ E V] ric (B12)
j=1

where,

D is the velocity decay function from the Vasarhelyi et al. model and takes a
vector as the first argument

p/T¢t = Slope for the linear part of the decay curve (user-dependent
parameter)

af7* = Acceleration for the non-linear part of the decay curve
(user-dependent parameter)

¢/met = Overall Gain for alignment (user-dependent parameter)

vf7iet = Velocity slack for alignment (user-dependent parameter)

rg it = Alignment cutoff distance for maximum alignment (user-dependent
parameter)

124 et =N, x 2 sized matrix of scaled alignment velocities for all neighbors
ijMCt = Alignment velocity of j* neighbor i.e. j** row of V /et

frict

Vi

= Desired collective alignment vector
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Eq. (B9) gives a vector composed of each neighbor’s maximum allowable
velocity differences. The maximum is proportional to the inter-agent distance.
This ensures that the alignment for two agents in close proximity is larger
and vice-versa. Also, the maximum allowable difference is lower bound by an
optimization parameter v/7** so the agents do not strive for perfect alignment,
and there is some slack. Eq. (B11) compensates for the velocity difference for
each neighbor, and Eq. (B12) sums the alignment velocities for each neighbor.

Appendix C Software

| multiprocessing.Process |
L | CoBot
‘? - phi_coll
- phi_corr
n- Lq - cluster_count
Env - disc -
Zid - gps_gdel
- obstacles - fbors
- agepts
i - geofence :
Optimizer i gp_all_curr : gee:fa r}gliz?ilfstate(}
- name - ggfgh'"lum +aian )
- ML == + calcDesiredVelocity( )
- \nfglrm.iims L + get_nbors( )
- op_history + ?Sr:]:l agents( )
+
+ Update|
+run() + calcOr erParamsS)
+ eval_pop() * lrreasf'éﬁzﬂ)fm_tﬂ_lﬂg(
+ render( )
Bot
- pﬂi_walll
- phi_vel
Particle e
N - memor
) 53? - paramsy
- acc - gps_pos
v.d - gps_vel
+goto() )
+ sense|
- dpaie) + oL redvelocity ()
< [FIE + update( )
+ inPolygon( )

Fig. C1: Class diagram for the Multi-Objective flocking simulator. The Env
class has a 1 to n relationship with the CoBot as each environment can contain
multiple CoBots. Similarly, the Optimizer class can run multiple environments
on multiple cores/processes. The complete simulator is available on GitHub
(Supplementary material S1 (2022))
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