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Abstract

Theoretical analysis of swarm intelligence and evolutionary algorithms is relatively less
explored area of research. Stability and convergence analysis of swarm intelligence and evo-
lutionary algorithms can help the researchers to fine tune the parameter values. This paper
presents the stability analysis of a famous Artificial Bee Colony (ABC) optimization algorithm
using von Neumann stability criterion for two-level finite difference scheme. Parameter selec-
tion for the ABC algorithm is recommended based on the obtained stability conditions. The
findings are also validated through numerical experiments on test problems.
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1 Introduction

Over past few years, algorithms taking inspiration from natural phenomena have attracted re-
searchers. Particle Swarm Optimisation (PSO) algorithm [26], Artificial Bee Colony (ABC) op-
timization algorithm [21], Differential Evolution (DE) algorithm [37], Harmony Search Algorithm
(HSA) [17], Gravitational Search Algorithm (GSA) [33] are few popular algorithms of this class.
Study has shown that these algorithms are considered as efficient solver of complex optimization
problems. Artificial Bee Colony (ABC) optimization algorithm is a prominent candidate in this
field of nature inspired algorithm. It takes inspiration from the intelligent foraging behaviour and
information sharing capability of honey bees [24][7]. Firstly it was introduced by Karaboga in 2005
for continuous optimization problems and later it was also modified to solve discrete optimization
problems [25][27].

Recently various other variants of the ABC algorithm have been proposed which includes
Chaotic ABC [4], ABC algorithm for multiobjective optimization problems [3], for constrained
optimization problem [22] and various hybrid ABC algorithms [15][32][6]. The ABC algorithm is
applied for solving various continuous and discrete optimization problems in the areas related to
neural networks [23][28], structural engineering[13], assignment problem [31][8], image processing
[14], network topology design [35] and forecasting stock markets [19].

Various researchers have worked on these meta-heuristic search algorithms analytically and
experimentally. However, one of the important aspect related to such algorithms is to ensure
that the error generated by them are bounded. Hence, stability analysis plays a significant role
in the theoretical study of these algorithms. However, a little work has been done in the area of
stability analysis of this class of algorithms. Attempts have been made to analyse the stability
behaviour of few algorithms which includes Particle Swarm Optimisation (PSO) algorithm using
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Z-transformation [20] [30][36], Differential Evolution (DE) algorithm by using Lyapunov’s stabil-
ity theorem and von Neumann stability criterion [12][18], Bacterial Foraging Optimization (BFO)
algorithm using Lyapunov’s stability condition and eigen value method [11][9], Ant Colony Opti-
mization (ACO) algorithm [1] and Gravitational Search algorithm (GSA) using passivity theorem
and Lyapunov’s stability condition [16].

In recent past, studies have been done for parameter selections of the ABC algorithm in order to
get better optimization results [2][29]. Also effect of parameters like dimension, colony size, region
scaling and effect of limit or abondment counter (AC) on the ABC algorithm has already been
discussed in [2]. To the best of authors’ knowledge, no attempt has yet been made for the stability
analysis of the Artificial Bee Colony (ABC) optimization algorithm. This paper is an attempt to
discuss the stability of the ABC algorithm for solving continuous optimization problems, using
von Neumann stability criterion for two level finite difference scheme and to propose parameter
selection based on the stability analysis. Stability of discrete version of ABC algorithm can be done
in similar way because it uses the same position update equation in order to get new candidate
solutions.

Rest of the paper is organised as follows: Original ABC algorithm is explained in section 2.
Section 3 presents the motivation for mathematical analysis of the ABC algorithm and provide
details of von Neumann stability criteria for two level finite difference scheme. In section 4 stability
analysis of the ABC algorithm is carried out. Numerical experiments and results are discussed in
section 5 and the study is concluded in section 6.

2 Artificial Bee Colony (ABC) Optimization Algorithm

Artificial Bee Colony (ABC) optimization algorithm is a population based optimization algorithm
and uses an iterative method to achieve global maximum or minimum. The bee hive constitutes
mainly three kinds of bees; employed bees, onlooker bees and scout bees. Exploitation of nectar
source is done by employed bees and onlooker bees whereas scout bees explore the search region.
In Artificial Bee Colony (ABC) optimization algorithm, the number of nectar sources equals the
number of employed bees. Also, the number of employed bees and onlooker bees are equal.
The ABC algorithm has four phases; initialization, employed bee, onlooker bee and scout bee.

2.1 Intialization

Artificial Bee Colony (ABC) optimization algorithm starts with random selection of the food source
which corresponds to the potential solution. The initial solutions are produced for employed bees
by using the equation:

xi,j = xminj + µ(xmaxj − xminj ), i = 1, 2, 3......N, j = 1, 2, 3......D (1)

where, xi,j is the jth dimension of the ith employed bee/food source; xmaxj and xminj are the

upper and lower bounds of the jth parameter, respectively; µ is a random number in the range of
[0, 1]. N is the number of food source, i.e. swarm size and D is the dimensionality of the considered
optimization problem. Also, the abandonment counter (AC) of each employed bee is reset in this
phase.

2.2 Employed Bee Phase

In this phase, for each employed bee a new candidate solution is produced. First, the solution
of the employed bee is copied to new candidate solution (vi = xi). Then, one parameter of the
solution is updated by using the equation:

vi,j = ψxi,j + φ(xi,j − xr,j) , i, r ∈
{

1, 2, 3..., N
}
, j ∈

{
1, 2, 3..., D

}
and i 6= r (2)

Here jth parameter is selected randomly for updation and the coefficient ψ is taken as unity in
original ABC algorithm. This is done by randomly selecting a candidate xr in the neighbourhood
of ith candidate. φ is the random number ranging in the interval [−1, 1], N is the number of
employed bee and D is the dimensionality of the considered optimization problem. After finding
new candidate solution and calculation of objective function value, fitness value of the candidate
solutions and solutions of employed bees are calculated as given below:



fiti =

{ 1
1+fi

, if fi ≥ 0

1 + abs(fi), otherwise

}
where fiti is the fitness value of ith candidate solution, fi is the objective function value of

ith employed bee. If the fitness value of the updated candidate solution is better than the fitness
value of current solution then the current solution is replaced with candidate solution and the
abandonment counter of the employed bee is reset to zero, otherwise abandonment counter is
increased by one.

2.3 Onlooker Bee Phase

In ABC algorithm, to improve the solution each onlooker bee selects an employed bee. The
probability of selecting ith employed bee is calculated using Roulette wheel selection:

pi =
fiti∑N
j=1 fitj

(3)

where pi is the probability of selecting ith employed bee. The solution of selected employed bee
is improved by the onlooker bees by using equation (2). If the fitness value of new solution found by
the onlooker bee is better than the employed bee, the onlooker bee is changed with the employed
bee and the abandonment counter of the employed bee is reset to zero otherwise, abandonment
counter is increased by one.

2.4 Scout Bee Phase

The abandonment counters of all employed bees are checked with a predefined limit. The employed
bee, which fails to improve the solution before reaching the limit, becomes scout bee. Hereafter,
equation (1) is used to the produce solution for scout bee and the abandonment counter is reset. The
scout bee then becomes employed bee. Therefore, scout bee prevents the stagnation of employed
bee population.

3 Motivation and Stability Criteria

3.1 Motivation

Nature inspired optimization algorithms are used to solve real world optimization problems. The
algorithms provide near optimal solution and therefore the error in the obtained solution should
be bounded. It is not necessary that the error generated by an iteration is always less than that
of the previous iteration. It may increase indefinitely. In this case, we say that the iterative
procedure is unstable. Therefore, it is worth to investigate the stability of the algorithm to bound
the generated error. In the considered ABC algorithm, greedy selection is applied in both employed
bee phase and onlooker bee phase which plays a vital role in reducing the error. In addition to that
candidate solution is selected using fitness based probability, which also reduces the error. But
upto authors’ knowledge, no attempt has yet been made to restrict the error by deriving conditions
on the parameters φ and ψ given in equation (2). The position update equation of ABC algorithm
consists of two user defined parameters φ and ψ. Therefore apart from greedy selection and fitness
based probability selection, the value of φ and ψ can also play a significant role in the ABC search
process. Hence the study of finding most suitable stable range for φ and ψ is important. Further
with experimental results on benchmark test problems, we can analyse that though selection of
candidate solution based on fitness based probability criteria and greedy selection helps in reducing
error but with proper selection of parameters φ and ψ the error can be reduced in less number of
iterations as compared to the case when there is no restriction on these parameters. The study can
serve as a recommendation to set the range of parameters φ and ψ for any proposal on modification
of ABC algorithm.

Section 4 presents the stability analysis of ABC algorithm by analysing the position update
equation (2) of ABC algorithm. The von Neumann stability criteria for two level finite difference
scheme is applied to perform the stability analysis of equation (2) and hence of ABC algorithm.

Stable range of parameter φ is defined as the range for which the ABC algorithm is stable. The
next subsection explains the von Neumann stability criterion for two level finite difference scheme.



3.2 von Neumann Stability Criterion

The linear partial differential equation considered in this paper for an initial value problem will be
represented by:

∂u

∂t
+ Lx(u) = 0

where Lx(u) represents a linear spatial differential operator and u is the dependent variable, which
is a function of independent variables x and t.
A two-level difference scheme for this linear partial differential equation can be written in the form
[39]:

mr∑
q=−ml

Bqu
n+1
j+q =

nr∑
q=−nl

Aqu
n
j+q (4)

where ml,mr, nl and nr are non-negative integers. j and n represents number of grid points in the
direction of x and t respectively.
The von Neumann stability procedure consists of replacing each term unj of the difference equation

by kth Fourier component of a harmonic decomposition of unj , i.e. by vn(k)eιkj∆x, where vn(k)

denotes the kth Fourier coefficient and ι =
√
−1.

The (n)th and (n+ 1)th Fourier coefficients of harmonic decomposition of unj are related by

vn+1(k) = g(k)vn(k)

where g(k) is the amplification factor of the finite difference scheme.

For a two level finite difference scheme with only one dependent variable, the necessary and
sufficient condition for stability is |g(k)| ≤ 1 for all values of k. If |g(k)| = 1 for all k, then the
difference scheme is said to be nondissipative or marginally stable, and if |g(k)| > 1 for some k, the
scheme is unstable [34]. The stability criterion for finite difference scheme (4) can also be presented
as below.

For two-level schemes, the square of the magnitude of amplification factor, i.e. |g(k)|2 can
always be expressed as a rational function given below [39]:

|g(k)|2 = 1− 4zr
S(z)

P (z)
(5)

where,
z = sin2(θ/2), θ = k∆x (6)

S(z) =

s∑
i=0

αiz
i, α0 = S(0) 6= 0 (7)

P (z) =

d∑
i=0

βiz
i > 0, β0 = P (0) = 1 (8)

Here, α0, α1, ..., αs and β0, β1, ..., βd are constants. r is a positive integer and s is a non-negative
integer, and they are related by the formula r + s = m. Where, m = max(ml + mr, nl + nr) is
determined by the number of spatial grid points to the left and right of xj in the difference scheme.
The integer d is non-negative and d = mr +ml.
The polynomial S(z) determines the stability of the given difference scheme. The necessary and
sufficient condition for stability is [39]:

S(0) > 0 , S(z) ≥ 0 for 0 < z = sin2(θ/2) ≤ 1 (9)

In short, the necessary and sufficient condition for the stability of a difference scheme given in
(4), with magnitude of amplification factor represented by (5)− (8) can be stated as below:
Two level difference scheme (4) is stable iff:

S(0) > 0 , S(z) ≥ 0 for 0 < z = sin2(θ/2) ≤ 1 (10)

If the solution update mechanism in an iterative algorithm is represented in the form of two
level difference scheme (4), then the necessary and sufficient condition for algorithm’s stability can



be given by (10).

In the next section, stability analysis has been carried out for Artificial Bee Colony (ABC)
optimization algorithm based on the von Neumann stability criterion discussed above.

4 Stability Analysis of ABC Algorithm

The parameter φ plays an important role in the search process of Artificial Bee Colony (ABC)
optimization algorithm:
This parameter provides stochastic search in ABC and thus prevents the particles from getting
stagnated at local optima.

In Artificial Bee Colony (ABC) optimization algorithm, the solutions are updated using the
position update equation (2):

vi,j = ψxi,j + φ(xi,j − xr,j) , i, r ∈
{

1, 2, 3..., N
}

; j ∈
{

1, 2, 3..., D
}
and i 6= r (11)

If the current iteration counter is t, then xi,j is the jth dimension of the ith candidate solution
at iteration t, while vi,j is the jth dimension of the ith candidate solution at iteration (t+1). In the
original version of ABC algorithm, the coefficient ψ is taken to be unity. Without loss of generality
the above equation can be written as:

xi,j(t+ 1) = ψxi,j(t) + φ(xi,j(t)− xr,j(t)) (12)

In ABC algorithm, the position update equation (12) is implemented component wise, i.e.
each dimension of the solution is updated independently. The only link between the dimensions
of the problem space is introduced via objective function. Thus, without loss of generality, the
algorithm description can be reduced for analysis purposes to the one dimension case as considered
in [38][16][11]. Thus equation (12) can be written as:

xi(t+ 1) = (ψ + φ)xi(t)− φxr(t) (13)

where, r is randomly selected solution index different from i. Since r and i are non-negative inte-
gers in [1, N ], thus we can write r = i± a where, a is random positive integer in the range [1, N ].

Hence, equation (13) in the form of difference equation can be written as:

xt+1
i = (ψ + φ)xti − φxti±a (14)

If the true solution to a problem in an i -t computational domain is represented by x = x(i, t), the
approximate solution on the nodes of a computational grid will be represented by xl,n = x(il, tn).
In terms of grid points xl,n the difference equation can further be written as:

xn+1
l = (ψ + φ)xnl − φxnl±a (15)

In accordance with von Neumann stability procedure, each term xnl of the difference equation
is replaced by vn(k)eι(kl∆i), which is the kth Fourier component of a harmonic decomposition of
xnl . Here, vn(k) is the kth Fourier coefficient in this decomposition. The (n)th and (n+1)th Fourier
coefficients of harmonic decomposition of xnl are related by:

vn+1(k) = g(k)vn(k) (16)

where g(k) is the amplification factor of the finite difference scheme (15).
The amplification factor of the difference scheme (15) can easily be calculated and is given by [See
Appendix A]:

g(k) = (ψ + φ)− φeι((±a)k∆i) (17)

or
g(k) = (ψ + φ)− φeι(θ), where θ = (±ak∆i) (18)

Since the considered two level finite difference scheme given by equation (15) has only one de-
pendent variable, and as discussed in section 3.2, the necessary and sufficient condition for stability
is given by: |g(k)| ≤ 1. From equation (18) we obtain [See Appendix B]



|g(k)| =
√
ψ2 + 4φ(ψ + φ)sin2(θ/2) (19)

Further using necessary and sufficient condition for stability we get√
ψ2 + 4φ(ψ + φ)sin2(θ/2) ≤ 1 (20)

or
ψ2 + 4φ(ψ + φ)sin2(θ/2) ≤ 1 (21)

or
ψ2 ≤ 1− 4φ(ψ + φ)sin2(θ/2) (22)

or
ψ2 ≤ 1− 4φ(ψ + φ) Since, sin2(θ/2) ≤ 1 (23)

Since, xr,j(t) represents the randomly selected candidate solution in the current iteration and
outcome of its difference with xi,j(t) in equation (12) can be either positive or negative. Hence,
without loss of generality equation (12) can be rewritten as:

xi,j(t+ 1) = ψxi,j(t) + φ(xr,j(t)− xi,j(t)) (24)

which can again be written as

xi,j(t+ 1) = ψxi,j(t) − φ(xi,j(t)− xr,j(t)) (25)

As done earlier the amplification factor is given by

g(k) = (ψ − φ) + φeι((±a)k∆i) (26)

or
g(k) = (ψ − φ) + φeι(θ), where θ = (±ak∆i) (27)

By doing the similar mathematical analysis and calculations as done earlier, the necessary and
sufficient condition for the stability is given by :

ψ2 ≤ 1 + 4φ(ψ − φ) Since, sin2(θ/2) ≤ 1 (28)

Equation (23) and (28) provide the necessary and sufficient conditions for the stability of ABC
position update equation (2).

In the next subsection, a special case, i.e. (ψ = 1) is considered which corresponds to the
original ABC algorithm. The stable range of φ is recommended for this case as well.

4.1 Stability analysis of ABC algorithm with coefficient ψ = 1

We will find the stable range of φ by two different methods. Firstly, by taking ψ = 1 in equation (23)
and (28) to get the desired range of φ. Secondly, by using the stability condition from equation (10).

By taking ψ = 1 in equation (23) we get
−φ(1 + φ) ≥ 0, i.e. φ ∈ [−1, 0]

Similarly, By taking ψ = 1 in equation (28) we get
φ(1− φ) ≥ 0, i.e. φ ∈ [0, 1]

By combining the above two results we can conclude that ABC algorithm is stable for φ ∈
[−1, 1].

Now, we will use the stability condition as explained in equation (10) to verify the results
obtained from first method.
In Artificial Bee Colony (ABC) optimization algorithm, the solutions are updated using the position
update equation (2) (ψ is taken as unity):

vi,j = xi,j + φ(xi,j − xr,j) , i, r ∈
{

1, 2, 3..., N
}

; j ∈
{

1, 2, 3..., D
}
and i 6= r (29)



If the current iteration counter is t, then xi,j is the jth dimension of the ith candidate solution
at iteration t, while vi,j is the jth dimension of the ith candidate solution at iteration (t + 1).
Without loss of generality the above equation can be written as

xi,j(t+ 1) = xi,j(t) + φ(xi,j(t)− xr,j(t)) (30)

In ABC algorithm, the position update equation (12) is implemented component wise, i.e.
each dimension of the solution is updated independently. The only link between the dimensions
of the problem space is introduced via objective function. Thus, without loss of generality, the
algorithm description can be reduced for analysis purposes to the one dimension case as considered
in [38][16][11]. Thus equation (30) can be written as:

xi(t+ 1) = (1 + φ)xi(t)− φxr(t) (31)

where, r is randomly selected solution index different from i. Since r and i are non-negative inte-
gers in [1, N ], thus we can write r = i± a where, a is random positive integer in the range [1, N ].

Hence, equation (31) in the form of difference equation can be written as:

xt+1
i = (1 + φ)xti − φxti±a (32)

If the true solution to a problem in an i -t computational domain is represented by x = x(i, t), the
approximate solution on the nodes of a computational grid will be represented by xl,n = x(il, tn).
In terms of grid points xl,n the difference equation can further be written as:

xn+1
l = (1 + φ)xnl − φxnl±a (33)

In accordance with von Neumann stability procedure, each term xnl of the difference equation
is replaced by vn(k)eι(kl∆i), which is the kth Fourier component of a harmonic decomposition of
xnl . Here, vn(k) is the kth Fourier coefficient in this decomposition. The (n)th and (n+1)th Fourier
coefficients of harmonic decomposition of xnl are related by:

vn+1(k) = g(k)vn(k) (34)

where g(k) is the amplification factor of the finite difference scheme (33).

The amplification factor of the difference scheme (33) can easily be calculated and is given by
[See Appendix A]:

g(k) = (ψ + φ)− φeι(θ), where θ = (±ak∆i) (35)

Further, we can obtain

|g(k)|2 = (1 + φ)2 + (φ)2 − 2φ(w − φ)cosθ (36)

|g(k)|2 − 1 = 4φ(1 + φ)sin2(θ/2) (37)

where, θ = (±ak∆i)
For two-level schemes, the modulus of square of amplification factor can be expressed in the

form of rational function as:

|g(k)|2 = 1− 4zr
S(z)

P (z)
(38)

where,
z = sin2(θ/2) , θ = (k∆x)
S(z) =

∑s
i=0 αiz

i , α0 = S(0) 6= 0

P (z) =
∑d
i=0 βiz

i , β0 = P (0) = 1
Here, r is a positive integer, s and d are non negative integers.

The necessary and sufficient condition for stability as given in equation (10) is [39]:

1. S(0) > 0

2. S(z) ≥ 0 for 0 < z = sin2(θ/2) ≤ 1



By comparing equation (37) with equation (38) we get:
S(z) = −φ(1 + φ)

Hence, the necessary and sufficient condition for stability is given by:

−φ(1 + φ) ≥ 0, i.e. φ ∈ [−1, 0]

Since, xr,j(t) represents the randomly selected candidate solution in the current iteration and
outcome of its difference with xi,j(t) in equation (12) can be either positive or negative. Hence,
without loss of generality equation (12) can be rewritten as:

xi,j(t+ 1) = xi,j(t) + φ(xr,j(t)− xi,j(t)) (39)

which can again be written as:

xi,j(t+ 1) = xi,j(t) − φ(xi,j(t)− xr,j(t)) (40)

By doing the similar mathematical analysis and calculations as done earlier, the necessary and
sufficient condition for the stability of ABC algorithm is given by :

S(z) = φ(1− φ) ≥ 0 i.e. φ ∈ [0, 1]

So, by combining the above two results, we can easily interpret that necessary and sufficient
condition for the stability of update equation of ABC algorithm is that the parameter φ must lie in
the interval [−1, 1]. In short, the stability of ABC algorithm depends upon the range of parameter
φ.

The findings of the stability analysis of Artificial Bee Colony (ABC) optimization algorithm
verifies the recommended setting of parameter φ in Artificial Bee Colony (ABC) algorithm search
process. That is, for the stability of ABC algorithm, φ must be in the range [−1, 1].

This stability analysis can further be applied to improve the performance of various advanced
variants of ABC, e.g. [5][10]. In [5], Akay et al. introduced an adaptive scaling factor ‘φ’ based
on Rechenbergs 1/5th mutation rule. The analysis undertaken in this paper can be used to set
the value of coefficient ‘ψ’(refer equation 2) as a function of adaptive scaling factor (ASF). This
strategy can further improve the ABC algorithm in terms of accuracy.

Similarly, the stability analysis carried out in this paper can also be applied to set the scaling
factors ‘φG’ and ‘φC ’ introduced by Das et al. [10] in two different ways:

1. Stability analysis of ABC with two scaling factors ‘φG’ and ‘φC ’ can provide a relation
between ‘φG’ and ‘φC ’.

2. A relation like equation (23) and (28) among ’ψ’, ’φG’ and ’φC ’ can be obtained.

An intensive future research is required for these analyses. Other variants of ABC can also be
checked for this kind of relations between proposed coefficient ψ and scaling factor φ.

Next section verifies numerically that other ranges of φ are not as efficient as stable range
[−1, 1].

5 Numerical Experiments

In order to validate our theoretical findings numerically, four different ranges of parameter φ are
considered. Numerical experiments are performed with φ ∈ [−1, 1], φ ∈ [−3,−1], φ ∈ [1, 3] and
φ ∈ [−2,−1]∪ [1, 2]. The length of all the ranges are same as the length of stable range. The range
[−3,−1] represents the case if φ is selected from left of stable range, while the range [1, 3] chooses
φ from the right of stable range. The range [−2,−1]∪ [1, 2] represents choice of selection of φ from
left or right of the stable range.

Following three types of numerical experiments are performed:

1. In subsection 5.1, error convergence graphs are plotted .

2. Subsection 5.2, presents evolving performance of the ABC algorithm for four different ranges
of parameter φ and results are validated through Mann-Whiteny U rank sum test.

3. Effect of φ range variation on efficiency of the ABC algorithm is discussed in section 5.3.



Table 1
List of Test Problems (AE: Acceptable Error, U: Uni-modal, M: Multi-modal, S: Separable, N:
Non-separable )

Name of the
problem

Objective function Search Range Optimum
Value

Dim (n) AE Characteristic

Sphere Minf1(x) =
∑n

i=1 x
2
i [−5.12, 5.12] f(~0) = 0 30 8.0E − 04 U, S

Rastrigin Minf2(x) = 10n+
∑n

i=1[x2
i − 10 cos(2πxi)] [−5.12, 5.12] f(~0) = 0 30 5.0E − 01 M, S

Griewank Minf3(x) = 1 + 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos( xi√

i
) [−600, 600] f(~0) = 0 30 9.05E − 06 M, N

Alpine Minf4(x) =
∑n

i=1 |xi sinxi + (0.1)xi| [−10, 10] f(~0) = 0 10 8.5E − 04 M, S

Cosine Mixture Minf5(x) =
∑n

i=1 xi
2−0.1(

∑n
i=1 cos 5πxi)+0.1n [−1, 1] f(~0) = −n× 0.1 30 6.3E − 06 M, S

Zakharov Minf6(x) =
∑n

i=1 xi
2 + (

∑n
i=1

ixi
2 )

2
+ (
∑n

i=1
ix1
2 )

4
[−5.12, 5.12] f(~0) = 0 30 135.0 M, N

Axis parallel hyper-
ellipsoid

Minf7(x) =
∑n

i=1 i.x
2
i [−5.12, 5.12] f(~0) = 0 30 6.5E − 06 U, S

Sum of different
powers

Minf8(x) =
∑n

i=1 |xi|
i+1 [−1, 1] f(~0) = 0 30 1.0E − 05 U, S

Rosenbrock Minf9(x) =
∑n

i=1(100(xi+1 − x2)2 + (xi − 1)2) [−30, 30] f(~0) = 0 30 25.0 U, N

Shifted Ackley Minf10(x) = −20 exp(−0.2
√

1
n

∑n
i=1 z

2
i ) −

exp( 1
n

∑n
i=1 cos(2πzi))+20+e+fbias, z = (x−o),

x = (x1, x2, ........xn), o = (o1, o2, ........on)

[−32, 32] f(o) = fbias =
−140

10 20.0 M, N
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Fig. 1. Convergence graphs for f1 with various ranges of φ.

5.1 Convergence

In order to see convergence behaviour of the ABC algorithm with different ranges of parameter φ,
experiments are performed over 10 test problems given in Table 1. The test problems of Table 1
consists of separable, non separable, uni-modal and multi-modal optimization functions.

Figure 1 to 10 show convergence graphs of the ABC algorithm over 1000 iterations. It can be
concluded that in ABC algorithm greedy selection and fitness based probability selection is done
to get improved results in each iteration hence, error is decreasing with increase in iteration for
almost every range of parameter φ. Graphs clearly show that for theoretically proposed stable
range of parameter φ, i.e. [-1,1], the algorithm takes less number of iterations to reach to near
optimal solution as compared to other ranges of φ. Hence the proposed stability criteria for ABC
algorithm plays a vital role in convergence behaviour of ABC algorithm.

5.2 Evolving Performance of ABC Algorithm

Accuracy of the ABC algorithm is tested for various ranges of parameter φ using evolving perfor-
mance indicator based on mean error. Following parameter settings are adopted to perform the
numerical experiments on the test problems given in Table 1.

1. Swarm size: 50

2. Maximum number of runs: 100

3. Maximum number of iterations: 1000

4. Acceptable error: Refer Table 1

Numerical results are presented in Table 2. Table 2 presents the mean error in 200, 400, 600,
800 and 1000 iterations over 100 runs. This mean error is obtained for all four considered ranges
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Fig. 2. Convergence graphs for f2 with various ranges of φ.
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Fig. 3. Convergence graphs for f3 with various ranges of φ.
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Fig. 4. Convergence graphs for f4 with various ranges of φ.
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Fig. 5. Convergence graphs for f5 with various ranges of φ.
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Fig. 6. Convergence graphs for f6 with various ranges of φ.
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Fig. 7. Convergence graphs for f7 with various ranges of φ.
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Fig. 8. Convergence graphs for f8 with various ranges of φ.
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Fig. 9. Convergence graphs for f9 with various ranges of φ.
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Fig. 10. Convergence graphs for f10 with various ranges of φ.

of parameter φ. From Table 2, it can be observed that the minimum mean error is obtained if
φ ∈ [−1, 1].

In order to check whether this difference in mean error is due to randomness or not, a non-
parametric test, Mann-Whiteny U rank sum test is applied. In this study, the test is performed on
mean error at 5% level of significance between ABC with stable range and ABC with φ ∈ [−3,−1],
φ ∈ [−2,−1] ∪ [1, 2] and φ ∈ [1, 3]. Table 4 represents results of Mann-Whiteny U rank sum test
for mean error (ME) over 100 runs.

If these data sets have not significant difference then we say that null hypothesis (there is no
significant difference) is accepted and ‘=’ sign appears. If the difference is significant then we say
that null hypothesis is rejected. In Table 4, ‘+’ sign appears if the variant of ABC algorithm with
stable range performs better than other variants. Otherwise, ‘-’ sign will appear. Table 4 contains
9 ‘+’ signs out of 10. Thus it is clear that the accuracy of ABC algorithm is better if the parameter
φ is in the stable range.



Table 2
Mean Error (ME) for various ranges of φ (TP: Test Problem)

TP Number of Itera-
tions

ME for φ ∈ [−1, 1] ME for φ ∈ [−3,−1] ME for φ ∈ [1, 3] ME for φ ∈ [−2,−1]∪ [1, 2]

f1

200 0.0198 0.0829 61.5894 29.1486
400 2.03E-05 0.00017 33.0215 15.2819
600 4.47E-08 2.98E-07 19.6312 9.2063
800 6.4E-11 4.14E-10 14.1740 6.2110
1000 5.44E-14 2.97E-13 9.8760 4.5989

f2

200 33.3116 45.5243 215.445 123.4919
400 8.9279 13.7808 163.3054 95.2967
600 3.2563 6.4717 139.3662 84.2060
800 1.2583 3.2553 124.4344 79.9609
1000 0.20008 1.5042 115.8064 77.2762

f3

200 0.1056 0.5024 224.1136 114.6292
400 0.0008 0.0089 114.6387 80.2577
600 2.66E-05 0.00029 67.5725 52.8610
800 7.0E-07 8.79E-06 46.1771 35.7186
1000 1.29E-08 1.86E-07 33.7703 26.2357

f4

200 1.2417 2.2330 23.9806 10.8493
400 0.1056 0.1876 16.8943 7.7951
600 0.0173 0.0254 14.0703 6.8470
800 0.00441 0.00450 12.5115 6.3361
1000 0.00065 0.0011 11.5609 6.1795

f5

200 0.1566 0.2616 4.5688 2.3293
400 0.00020 0.00063 2.8025 1.4782
600 2.2E-07 8.76E-07 2.0048 1.1653
800 1.43E-10 7.28E-10 1.5822 1.0061
1000 9.9E-14 5.82E-13 1.3401 0.9067



Table 2 Continued:

TP Number of Itera-
tions

ME for φ ∈ [−1, 1] ME for φ ∈ [−3,−1] ME for φ ∈ [1, 3] ME for φ ∈ [−2,−1]∪ [1, 2]

f6

200 161.0309 192.2592 214.5265 194.6106
400 149.8301 187.1040 210.8385 188.6762
600 141.7908 183.7348 207.3502 185.2423
800 136.2172 179.9766 204.7566 182.8562
1000 131.304 177.4148 202.4118 180.9851

f7

200 0.0667 0.6254 863.9613 433.1880
400 7.98E-05 0.0014 446.9480 199.3566
600 3.12E-07 4.16E-06 269.4713 117.2702
800 5.43E-10 7.61E-09 167.4189 84.8911
1000 5.66E-13 8.48E-12 111.8956 62.5686

f8

200 0.00040 0.00099 0.4317 0.2166
400 3.21E-06 1.67E-05 0.2155 0.1198
600 6.57E-08 4.02E-07 0.1202 0.0484
800 8.8E-10 1.19E-08 0.0690 0.0329
1000 1.9E-11 5.51E-10 0.0429 0.0238

f9

200 3199.1690 36530.66 9.51E+09 4.15E+09
400 361.4558 761.3498 4.1E+09 1.76E+09
600 77.4787 235.8983 2.27E+09 1.12E+09
800 21.1273 148.5883 1.3E+09 6.19E+08
1000 7.8110 118.4342 8.14E+08 3.98E+08

f10

200 20.00409 20.01365 20.1471 20.10007
400 20.00079 20.00404 20.1046 20.0769
600 20.00027 20.002 20.0779 20.0606
800 20.00013 20.00125 20.0631 20.0480
1000 20.00008 20.0009 20.0483 20.0399



Table 3
Comparision of ABC algorithm for various ranges of φ using Mann-Whiteny U rank sum test (TP: Test
Problem, ME: Mean Error, A1: φ ∈ [−1, 1], A2: φ ∈ [−3,−1], A3: φ ∈ [1, 3], A4: φ ∈ [−2,−1] ∪ [1, 2] )

TP Based on ME of
A1 Vs A2

Based on ME of
A1 Vs A3

Based on ME of
A1 Vs A4

f1 + + +

f2 + + +

f3 + + +

f4 + + +

f5 + + +

f6 + + +

f7 + + +

f8 + + +

f9 + + +

f10 = = =

Number
of + sign

9 9 9

5.3 Efficiency

To see the effect of parameter φ over the efficiency of ABC algorithm, numerical experiments are
performed.

The average number of function evaluations (AFEs) are reported in Table 3 for all four consid-
ered ranges of parameter φ. Test problems of Table 1 are considered for experiments and parameter
selection is same as explained in section 4.2. In addition to that, the algorithm is stopped when
either acceptable error is obtained or maximum number of iterations (which is set to be 1000) has
been reached. It is clear that for stable range of parameter φ, ABC algorithm is most efficient.



Table 4
AFEs for various ranges of φ (AFEs: Average number of Function Evaluations, TP: Test Problem)

TP Range of φ AFEs

f1

[−1, 1] 13181.5
[−3,−1] 17296.5
[1, 3] 50025
[−2,−1] ∪ [1, 2] 30969.5

f2

[−1, 1] 42517.5
[−3,−1] 49263
[1, 3] 50025
[−2,−1] ∪ [1, 2] 50025

f3

[−1, 1] 32399
[−3,−1] 39702.5
[1, 3] 50025
[−2,−1] ∪ [1, 2] 42525

f4

[−1, 1] 43441
[−3,−1] 46956
[1, 3] 50025
[−2,−1] ∪ [1, 2] 48577.02

f5

[−1, 1] 24624.5
[−3,−1] 26650
[1, 3] 50025
[−2,−1] ∪ [1, 2] 44153.5

f6

[−1, 1] 36149.5
[−3,−1] 48858.5
[1, 3] 49386.94
[−2,−1] ∪ [1, 2] 48787.82



Table 4 Continued:

TP Range of φ AFEs

f7

[−1, 1] 23449
[−3,−1] 28965.5
[1, 3] 50025
[−2,−1] ∪ [1, 2] 38044.5

f8

[−1, 1] 16121.5
[−3,−1] 19639
[1, 3] 50025
[−2,−1] ∪ [1, 2] 32579.52

f9

[−1, 1] 37509
[−3,−1] 49798
[1, 3] 50025
[−2,−1] ∪ [1, 2] 49317.02

f10

[−1, 1] 6411.5
[−3,−1] 11412.66
[1, 3] 50025
[−2,−1] ∪ [1, 2] 50025

As an overall observation, the performance of ABC algorithm significantly deteriorates if the
range of parameter φ is deviated from the stable range [−1, 1]. From above numerical experi-
ments, we can say that for better convergence, accuracy and efficiency the recommended range of
parameter φ is same as the stable range [−1, 1] obtained in section 4.

6 Conclusion and Future Work

Mathematical validity of parameters of probabilistic algorithms has always been a challenging
task. Stability theory can help to derive value or the range of one or more parameters for the
algorithms. In this paper, stability analysis of the ABC position update equation with parameter
φ and coefficient ψ has been carried out. A generic method for testing the stability, von Neumann
stability procedure for two-level finite difference scheme is considered. The outcome of stability
analysis verifies the usual settings of parameter φ in the range [-1, 1]. Also stability condition
depending on parameter φ and coefficient ψ is proposed which will bound the error in subsequent
iterations. The findings are verified with graphical interpretation and numerical results over test
problems. The study can also further be extended for the convergence analysis of ABC algorithm.
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Appendix A

Finding amplification factor discussed in equation (18).
As discussed in section 3.3, amplification factor is calculated by replacing each term xnl of the

difference equation (15) by vn(k)eι(kl∆i) and then using equation (16). After doing the required
substitutions, equation (15) is modified as

vn+1(k)eι(kl∆i) = (ψ + φ)vn(k)eι(kl∆i) − (φ)vn(k)eι(k(l±a)∆i) (41)

or
vn+1(k) = (ψ + φ)vn(k)− (φ)vn(k)eι((±a)k∆i) (42)

or
vn+1(k) =

[
(ψ + φ)− (φ)eι((±a)k∆i)

]
vn(k) (43)



By comparing equation (16) and (43), the amplification factor is given by

g(k) = (ψ + φ)− φeι(θ), where θ = ((±a)k∆i) (44)

Similarly, amplification factor described in equation (27) can be calculated.
Appendix B

Finding modulus of amplification factor discussed in equation (19).
By using equation (18), amplification factor is given by

g(k) = (ψ + φ)− φeι(θ) (45)

or
g(k) = (ψ + φ)− φ(cos(θ))− ιφsin(θ) (46)

By taking modulus of the above equation we get

|g(k)| =
√[

(ψ + φ)− φcos(θ)
]2

+
[
φsin(θ)

]2
(47)

By further expansion, the above equation (47) is modified as

|g(k)| =
√

(ψ + φ)
2

+ φcos(θ)
2 − 2φ(ψ + φ)cos(θ) + (φsin(θ))

2
(48)

or

|g(k)| =
√

(ψ + φ)
2

+ φ2 − 2φ(ψ + φ)
(
1− 2sin2(θ/2)

)
(49)

or

|g(k)| =
√

(ψ + φ)
2

+ φ2 − 2φ(ψ + φ) + 4φ(ψ + φ)sin2(θ/2) (50)

or

|g(k)| =
√

(ψ + φ− φ)
2

+ 4φ(ψ + φ)sin2(θ/2) (51)

or
|g(k)| =

√
ψ2 + 4φ(ψ + φ)sin2(θ/2) (52)

Similarly, modulus of amplification factor given in equation (27) can be calculated.
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