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Abstract—In this paper, we propose a unified framework
OCTracker for tracking overlapping community evolution in
online social networks. OCTracker adapts a preliminary com-
munity structure towards dynamic changes in social networks
using a novel density-based approach for detecting overlapping
community structures and automatically detects evolutionary
events like birth, growth, contraction, merge, split, and death of
communities with time. Unlike other density-based community
detection methods, the proposed method does not require the
neighborhood threshold parameter to be set by the users, rather
it automatically determines the same for each node locally.

Index Terms—Data mining; Social network analysis; Commu-
nity detection; Community evolution; Density-based clustering.

I. INTRODUCTION

Due to increasing popularity of Online Social Networks

(OSNs) and its wide application areas, community mining re-

search has received a lot of attention in recent past and the field

is still rapidly evolving. Numerous methods based on spectral

clustering, partitional clustering, modularity optimization and

latent space clustering have been developed for community

detection in social networks. One of the important properties

of real-world social networks is that they tend to change

dynamically and this property has until recently been largely

ignored in terms of community detection. In case of dynamic

social networks, most of the studies either analyze a single

snapshot of the network or an aggregation of all interactions

over a possibly large time-window. But, such approaches

may miss important tendencies of dynamic networks and in

fact the possible causes of this dynamic behavior may be

among the most important properties to observe [1]. The

main phenomena occurring in the lifetime of communities that

have become desirable to be investigated are birth, expansion,

shrinkage, merge, split, and death. Although, recent literature

includes some approaches for analyzing communities and their

temporal evolution in dynamic networks, a common weakness

in these studies is that communities and their evolutions are

studied separately. As pointed out in [2], a more appropriate

approach would be to analyze communities and their evolution

in a unified framework, where community structure provides

evidence about community evolution.

In this paper, we propose the design of a unified frame-

work, OCTracker, which exploits a density-based approach

to track the evolution of overlapping community structures

in OSNs. The proposed approach is in line with SCAN,

DENGRAPH and other recent density-based community detec-

tion methods that are based on DBSCAN. These methods find

dense communities and also detect outliers in networks. Be-

sides these properties, the proposed method has the following

additional features.

• OCTracker detects dynamic overlapping community

structures by automatically highlighting evolutionary

events like birth, death, split and shrinkage/expansion
with time using a density-based approach.

• OCTracker does not need the neighborhood threshold

ε (mostly difficult to determine for density-based com-

munity detection methods) to be specified by the users

manually.

• OCTracker is computationally faster and naturally scal-

able to large social networks.

II. RELATED WORK

Falkowski et al. [3] extended the DBSCAN algorithm [4] to

weighted interaction graph structures of OSNs. Some impor-

tant features of density-based community detection methods

include efficiency, outlier detection, and natural scalability to

large networks. However, the main drawback such methods is

the requirement of a global neighborhood threshold ε and the

minimum cluster size μ that need to be specified by the users.

The methods are particularly sensitive to the ε parameter,

which is difficult to determine. The most popular method for

identifying overlapping communities is the Clique Percolation

Method (CPM) proposed by Palla et al. [5], which is based

on the concept of k-clique. In order to find communities in

dynamic social networks and to track their evolutions, various

methods have been proposed recently. A typical dynamic

community detection problem is formulated in [1]. In this

work, along a discrete timescale and at each time-step, social

interactions of certain individuals of a network are observed

and several subgraphs are formed. Based on these subgraphs,

the true underlying communities and their developments over



TABLE I: Notations and their descriptions
Notation Description

V The set of nodes in the social network

I−→p Total number of out-going interactions of a node p
I−→pq Number of interactions from node p to node q

I←→pq
Reciprocated interactions of p and
q:min(I−→pq , I−→qp)

I←→p
Number of reciprocated interactions of a node
p:
∑

∀q∈Vp
min(I−→pq , I−→qp)

Vp
Set of nodes in the networks with whom node p
interacts

Vpq
Set of nodes with whom both nodes p and q
interact: Vp ∩ Vq

time are identified, so that most of the observed interactions

can be explained by the inferred community structure. Similar

approaches have been followed in [6], [7]. However, as pointed

out in [2], a common weakness of these approaches is that

communities and their evolution are studied separately. It

would be more appropriate to analyze communities and their

evolution in a unified framework where community structure

provides evidence about the community evolutions. Along

this direction, Falkowski et al. [8] proposed a framework for

studying community dynamics where a preliminary commu-

nity structure adapts to dynamic changes in a social network.

Our approach is similar to [8], but unlike it, our concern is on

tracking the evolution of overlapping communities and we do

not need an ageing function to remove old interactions from

the network. Moreover, our proposed framework is applicable

to directed/un-directed and weighted/un-weighted networks,

whereas [8] applies only to un-directed and weighted net-

works.

III. PROPOSED METHOD

As pointed out in section II, the main drawback of tradi-

tional density-based community detection methods is that they

require a global neighborhood threshold ε and a minimum

cluster size μ to be specified by the users. The proposed

method does not require the global neighborhood threshold

parameter ε to be set manually at the beginning of the process.

Instead, it uses a local representation of the neighborhood

threshold which is automatically calculated for each node

locally using a much simpler approach from the underlying

social network. Moreover, a local version of μ is also com-

puted for each node automatically using a global percentage

parameter η. The proposed method thus requires only a single

tunable parameter η to be set by the users. Before discussing

density-based overlapping community detection method, first

we present some preliminary definitions. The notations used

in these definitions are described in table I.

Definition 1 (Response). For any two nodes p, q ∈ V in an
interaction graph GI =< V,Ew > of a social network, the
response of the node q and the commonly interacted nodes
of p and q, to the interactions of node p, is represented as
response(p, q) and defined as the average of the per-user
reciprocated interactions of q and the common nodes of p
and q with p using equation 1.

response(p, q) =

⎧⎨
⎩
(∑

s∈Vpq
(I←→ps)+I←→pq

|Vpq|+1

)
if I←→pq > 0

0 otherwise

(1)

Definition 2 (Distance). For any two interacting nodes p, q ∈
V , the distance between them is represented as dist(p, q) and
defined as the minimum of the reciprocals of their mutual
directed responses, normalized by their respective total count
of outgoing interactions in the interaction graph, as shown in
equation 2.

Definition 3 (Local-Neighborhood Threshold (εp)). For a
node p ∈ V , the local-neighborhood threshold is represented
as εp and defined using equation 3 as the average per-receiver
reciprocated interaction-score of p with all its neighbors (i.e.,
friends and non-friends with which it interacts).

εp =

⎧⎪⎨
⎪⎩

(
I←→p
|Vp|

)−1

I−→p
if I←→p > 0

0 otherwise

(3)

Definition 4 (Local εp-neighborhood (Nlocalp)). The local εp-
neighborhood of a node p ∈ V is represented by Nlocalp and
defined as the set of p’s interacting nodes whose distance with
p is less than or equal to εp (see equation 4).

Nlocalp = {q : q ∈ Vp ∧ dist(p, q) ≤ εp} (4)

For proposed method, we define a local version of

minimum-number-of-points for a node p, represented by μp,

which is also computed automatically from the underlying

network. However, we need to specify a global percentage
threshold (η) to compute μp. For a node p ∈ V , μp is taken

as η percent of its interacted nodes in the network. It should be

noted that the global percentage constant (η) forms the only

parameter for the proposed method to be set by the users.

Moreover, besides determining the local minimum-number-of-

points threshold (μp) for a node p, the value of η is also used

to specify a distance constraint, which is specified as follows:

The distance between two interacting nodes p and q can be

measured by equation 2 only if the number of commonly

interacted nodes of p and q is greater than η percent of the

minimum of their individually interacted nodes minus one;

otherwise, it is taken as 1.

A. COMMUNITY DETECTION PROCESS

For a given global percentage threshold (η), the community

detection process iteratively finds a density-connected com-

munity by randomly selecting an un-visited node, say p, to

grow a community using density-reachable relationship of p
with other nodes. It checks whether p is a core node and if p
qualifies the test, it finds all density-reachable nodes of p to

identify its community. To do so, it first computes the local

εp threshold for p using equation 3. If the εp threshold for

p is greater than zero, then it uses the distance function of



dist(p, q) =

{
min

(
response(p,q)−1

I−→p
, response(q,p)−1

I−→q

)
if response(p, q) > 0 ∧ response(q, p) > 0

1 otherwise
(2)

equation 2 and distance constraint to determine the local εp-

neighborhood of p, i.e., Nlocalp. If node p qualifies as a core

node, the following steps are performed to identify a density-

connected community of p.

1) All un-visited mutual-core nodes of p in Nlocalp are

appended with the current community label. They are

marked as visited and pushed to a stack to identify the

density-reachable nodes of p. This step is later repeated

for each node in the stack for the current community

in order to find the connected sequences of mutual-

core nodes starting from p. These connected sequences

of mutual-core nodes form the Mutual-core Connected
Maximal Sub-graph (MCMS) of a community. All nodes

in the MCMS of a community are called the primary-

core nodes of that community. However, if a core-node p
does not show mutual-core relation with any other core-

node, then only the node p along with its Nlocalp forms

a community with p being its only primary core-node.

2) If a core-node q in Nlocalp is not a mutual-core of p, it is

appended with the current community label; however, it is

not pushed into the stack to grow the current community

and its visited/un-visited status is kept un-altered.

3) Non-core nodes in Nlocalp are marked as visited and they

are appended with the current community label. Such

nodes form boundary nodes for the community of p and

are thus not pushed into the stack as they cannot be used

to grow a community.

The steps through 1 − 3 are repeated for each un-visited

node to find the overlapping community structure in the social

network. At the end of the process, un-labeled nodes (if

any) represent outlier nodes, i.e., they do not belong to any

community as they do not show an interaction behavior that is

similar to any node or enough number of nodes in the network.

IV. TRACKING EVOLUTIONARY EVENTS

It should be noted that unlike [8], we do not need an ageing

function to remove old interactions and we also argue that it

is difficult to decide upon a selection criteria to do so. As

our approach involves local average interactions of nodes for

the clustering process, addition of new interactions results in

new averages for the involved nodes and directly effects their

neighborhoods and roles for clustering. A social network and

its resulting community structure can evolve due to various

events triggered by the social network individuals. These

events may include (i) addition of new weighted interaction

links and/or nodes, (ii) increase in the interaction weights of

existing links, and (iii) removal of existing nodes.

In order to track the evolution of communities in dy-

namic social networks like OSNs, the proposed framework

OCTracker first detects a preliminary community structure

from an initial state of the network using the method discussed

in section III-A. Then for each node involved in a change

in the network, various transitions can occur. They can be

handled by either considering a live stream of changes as

the network evolves (an online evolutionary adaption of the

community structure), or the set of changes observed in a

specific time-window (an offline evolutionary adaption of the

community structure). In either case, the new edges and/or

nodes are added to the network or nodes are removed from

the network, and each node involved in a change is marked

as un-visited. Thereafter, each remaining un-visited node is

re-checked for a core-node property by re-calculating its

local ε(p)-neighborhood. Various events or transitions used

by OCTracker to model the evolution of communities are

presented in the following sub-sections.

A. A Non-Core Node Becomes a Core

In this case, either an existing non-core node or a newly

added node in the network becomes a core node. In order

to track a possible evolutionary event, OCTracker checks

the following conditions. For the new core node p, if there

exist core nodes in the local ε(p)-neighborhood with which the

node p has mutual-core relations and which already belong to

different communities, then p causes the primary communi-

ties of these core nodes to merge into a single community.

Consequently, in this case, p causes the MCMSs of different

communities to join and form a single MCMS for the new

merged community. The merged community also forms the

primary community of the new core node p and nodes in its

local neighborhood are also added to the merged community.

If the new core node p has mutual-core relations with nodes

that have the same primary community C, then p also forms a

primary core of community C by appending this community

label to itself and to its local neighborhood. This simply

results in the expansion of community C. Finally, if the new

core node p has no mutual-core relations, then p forms a

new community and appends the new community label to its

local neighborhood and itself. This causes the birth of a new

community with p being its only primary core.

B. A Core Node Becomes a Non-Core

In this case, an existing core node no longer remains a core

node due to some change in the network. This triggers either

a split or a shrink event in the evolution of a community as

follows. Let p be a primary core node of a community C at

a previous stage, and p seize to exist as a core node due to

a new dynamic change in the network. Let S be the set of

primary cores of the community C which had mutual-core

relations with p before the change in the network. We mark

the nodes in S as un-visited. For any core node q ∈ S, let T be

a simple BFS traversal of nodes starting from q, visiting nodes



in the local neighborhoods of the core nodes and branching

at mutual-core relations wherein each newly visited node is

labeled as visited. If T includes all the core nodes in S, then

p is simply removed from being a primary core of community

C. Moreover, if p and/or any other node that belonged to the

earlier local neighborhood of p are not in the traversal T , then

they are removed with the community label of C, causing C to

shrink. However, If T does not include all the core nodes in S,

then T forms a new community, i.e., the original community

C split as p with loosed core-node property causes a cut in the

MCMS of C. The community label C of the nodes in T (which

now represents a split part of community C) are replaced with

a new community label. The traversals are repeated for each

remaining un-visited core nodes in S until no further split

of community C is possible, i.e., no node in S remains un-

visited after a traversal. In the last traversal, if a node s is

visited which does not have the community label of C(i.e.,

it was removed as s belonged to a previous traversal that

split the community C), then the community label of C is re-

appended to it resulting in an overlapping node. At the end,

the node p and/or any node that belonged to its previous local

neighborhood may be labeled with community label C, but do

not belong to the last traversal. In this case, the community

label C for these nodes is removed, causing community C to

further shrink.

C. A Core Node Gains or Looses Nodes but Remains a Core

In this case, the addition or removal of nodes are handled as

follows. If the local εp-neighborhood of a core node p gains

a set of nodes S that do not have mutual-core relation with p,

then the primary-community label of p is simply appended

to each node q ∈ S. However, if the added nodes have

mutual-core relation with p, then they are handled in the same

way as the mutual-cores of a newly formed core node are

handled (section IV-A). This can either cause the expansion
of a community or merge of multiple communities. It is

obvious that if all the mutual-cores of p in its neighborhood

including p have the same primary-community, then only the

neighborhood of p is updated resulting in expansion of a

community.

Consider the case when the local εp-neighborhood of a core

node p with a primary-community C looses a set of nodes L
that were earlier in its εp-neighborhood. If the nodes in L
do not have mutual-core relation with p, and they are not

direct density-reachable from any other primary-core of the

community C, then the community label of C is removed

from the lost nodes resulting in the shrinkage of community

C. However, if a core node p looses a set of nodes S that had

mutual-core relation with it, then such nodes are handled in

the same way when the mutual-core of a core node no longer

remains a core node (section IV-B). But, in this case the core

node p in question is not excluded from the set of nodes S.

This could possibly lead to either split or no change to the

community C.

V. EXPERIMENTAL RESULTS

In this section, we present the results of OCTracker
on a benchmark dataset. We compare the results obtained

through proposed method with four state-of-the-art community

detection methods that include MOSES [9], DENGRAPH [3],

gSkeletonClu [10], and CFinder [5]. The evaluation

is performed based on two scoring measures which include

omega index and Normalized Mutual Information (NMI). Both

Omega and NMI are generalized scoring measures used for

evaluating both overlapping and non-overlapping community

structures. gSkeletonClu and MOSES are parameter free

methods and do not require an input. On the other hand,

CFinder requires an input parameter k to define the clique

size which is set to k = 4 in our experiment as it has

been shown to generate best results for this clique size.

For DENGRAPH, the input parameters ε and μ are varied to

generate the best possible results.

We present experimental results on a dynamic network

dataset provided in [11], which comprises two weighted

networks of face-to-face proximity between 242 individuals

representing students and teachers in a primary school over

a period of two days. The two networks correspond to two

days of study wherein a daily contact network is provided.

The nodes in this network represent students and teachers,

and edges correspond to the interactions between them. The

weight of an edge represents the number of times two nodes

have interacted during the day. The students actually belong

to ten different classes which can represent the ground truth

communities. The teachers do not specifically belong to any

class and interact with any student community.
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Fig. 1: Experimental results on a primary school dynamic

network considering the network (a) after day-1 and (b) after

day-2 (i.e., merged day-1 and day-2 network).

Figure 1a shows the comparison of performance scores

(Omega and NMI) for the various methods on the interac-

tion network of the individuals after day-1. The scores are

computed against the known ground truth for day-1. In order

to detect the evolutionary events, the community structure

detected by OCTracker for day-1 forms its initial community

state. This initial community structure is now adapted to

changes in the network, i.e., by adding the interactions for

day-2 to the underlying network which could also include

adding new nodes, as discussed in section IV. Figure 2

shows the dynamic changes that occur in the community

structure of the primary school interaction network over two



days as tracked by OCTracker. Initially on day-1 network,

OCTracker detects 9 communities labeled as A − H , of

which community C overlaps with D and E overlaps with I .

Now, the interactions for day-2 are merged with the underlying

day-1 network which leads to addition of some new nodes and

edges, and increase in the weights of some already existing

edges. OCTracker now scans the changes in the network as

discussed in section IV and tracks the resulting community-

centric changes in the initial community structure. As shown in

figure 2, almost all the initial communities gain nodes resulting

in their expansion. Two important evolutionary events are

detected by OCTracker after the second day of interactions.

Firstly, the two overlapping communities C and D merge

to form a single community labeled as C + D. Secondly,

community G splits into two overlapping communities labeled

as G1 and G2. Moreover, after the second day of interactions,

many communities begin to overlap with each other which are

represented by overlapping circles in figure 2.
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Fig. 2: Community evolution tracking in a primary school

dynamic network.

Figure 1b shows the comparison of performance scores

(Omega and NMI) for the various methods on the interaction

network of the individuals after day-2, i.e., the network repre-

sented by merging the interactions and nodes for both day-1

and day-2. The scores are computed against the known ground

truth for both day-1 and day-2 data. As can be seen from the

results, OCTracker performs better than all other methods in

question for the complete primary school interaction network

over two days. To generate the results for OCTracker on the

primary school network dataset, the input parameter η is set to

65%. Surprisingly, CFinder could not generate any results

for the primary school network data due to its higher space

complexity.

VI. CONCLUSION

In this paper, we have proposed a novel density-based

framework OCTracker that can track the evolution of over-

lapping community structures in online social networks. The

novelty of the proposed framework lies in the approach for

allowing the communities to overlap, and its distance function

which is defined as a function of the average interactions

between a node and its neighborhood. Furthermore, unlike

other density based methods for which the neighborhood

threshold is to be set by the users, which is generally difficult

to determine, OCTracker computes a local neighborhood

threshold for each node from the underlying network.
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