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Abstract. Ontologies have proved to be very useful in sharing concepts 

across applications in an unambiguous way. However, since web documents 

are not fully structured sources of information, it is not possible to utilize the 

benefits of a domain ontology straight away to extract information from such 

a document. In this paper we have proposed an uncertainty handling 

mechanism based on rough-fuzzy reasoning principles which can handle 

query-processing from unstructured web documents in an elegant way.  

1   Introduction 

In order to maximize the utility of web resources, it is essential to extract 

information from heterogeneous, unstructured web documents and reason with 

them. Several question-answering systems try to do this, though most of them still 

just list the relevant URLs. AnswerBus [8] is an open-domain question answering 

system based on sentence level Web information retrieval. This system formulates 

a simple query from each user question by deleting functional words, using word 

frequency table, deleting special words and modifying word forms, if necessary. It 

then employs five search engines to retrieve relevant texts and then extracts 

relevant portions from these, reorders them and presents them as answers.  

   Though these systems work quite well, certain problems related to the nuances of 

Natural Language remain unsolved. For example we posted two queries to 

AnswerBus: (i) What is a wine with fruity flavour, light hop, strong taste? The 

answer was “Sorry, I found no answer for your question”. However when we asked 

(ii)“What is a red wine with fruity flavour, light hop, strong taste?” there were 3 

answers, starting with “The nose on this beer is ripe and fruity with slightly vinous 

esters, married to interesting hop notes - the colour of a glorious red ruby wine”. 

Clearly, this could be one of the answers for the earlier question also, since “red 

wine is a special class of wine”.  We feel that such systems can be greatly 

benefitted by integrating uncertainty handling mechanisms and underlying 

ontological structures with them. 



   Ontology based knowledge representation scheme provides a platform for sharing 

concepts across various applications in an unambiguous way [1], [2], [3], [4], [5]. 

Description logics have proved to be a useful tool in ontological engineering. 

However, in order to reason with contents of web resources, it is essential to extend 

Description Logic to query answering services [9], [10]. Since natural language 

resources contain imprecise, often vague or uncertain descriptions of concepts, for 

practical applications to question answering it is essential to extend Description 

Logic to handle imprecision. As another example, we consider the another question 

“What is a red wine with fruity flavour, light hop, not light taste”? One of the 

answers was “The mystical magic of this well is reflected in the rich golden colour, 

fruity flavour and full hop aroma of this light and refreshing ale.” Clearly this is 

not a desirable answer. The problem lies in the interpretation of terms “not light” 

against “light” or “strong”. Since the answers are based on string matching the fact 

that “not light” is closer to “strong” than “light”, cannot be taken care of.   

   Looking at these problems of dealing with natural language texts, we were 

motivated to design a document analysis system which can do the following 

• Identify implicit concepts in a document using underlying Ontological structures 
and treat words as concepts rather than patterns  

• Handle imprecision of natural language texts arising due to linguistic qualifiers 
through the use of fuzzy Description Logic [11], [12] 

[9] has shown how by placing certain restrictions on the use of variables in a query, 

Description Logic can be extended to DAML+OIL. They have focussed on 

Boolean queries to determine whether a query without free variables is true with 

respect to a Knowledge Base. Holldobler et al. [11] proposes a fuzzy Description 

Logic with Hedges as concept modifiers. 

   In this paper, we have proposed a framework for reasoning with imprecise and 

unstructured knowledge sources with an underlying ontological structure. The 

system reasons about relevance of documents using a rough-fuzzy reasoning 

mechanism.  

   Though a lot of focus is currently given on standardizing ontology representation 

languages for general domain representations, most of these assume that the 

concept world is exactly defined in terms of properties and values. The problem 

with this approach is that such a structure cannot be used straight away for 

retrieving information from an unstructured text document.  

    The salient features of this work are: 

• We have provided a complete framework for incorporating fuzzy concept 
modifiers into an ontological structure.  

• We propose a reasoning mechanism which can be used to match document 
concepts with user given concepts more satisfactorily by increasing the scope of 

the question to include related concepts.  

• Finally a relevance computation function can be used to compute the overall 
relevance of a document using the extended query.  



2   Enriching Ontological Description with Linguistic Qualifiers 

Ontology provides a shared conceptualization of domains to heterogeneous 

applications. Usually a concept is defined in terms of its mandatory and optional 

properties along with the value restrictions on those properties. Figure 1 shows the 

elements of an ontological framework and Description Logic.   

   We find that, in general there is no ontological framework for qualifying a 

property. Even if linguistic variables like low, high etc. are used, they are most 

often used as value restrictions. For example, the wine ontology [3] defined by 

W3C group, uses the properties hasflavour, hascolor, hasbody etc. for describing 

any class of wine. The value restrictions on hasflavour is the set {Delicate, 

Moderate, Strong} and that of hascolor is {Red, White, Rose}. This ontology also 

describes a set of instances of wines of various types and describes them in terms of 

the above mentioned properties. Using Description Logic it is possible to retrieve 

information from this knowledge base.  

   However, some web documents describing wine are produced below:  

• “BARBERA is a full bodied, fairly acidic red wine grown originally in 
California's coastal areas is now the major component of the red jug wines 

produced in California's Central Valley”; 

• “CABERNET FRANC is a light, fruity red wine from France's Loire Valley, 
often blended with Merlot. Basically used as a blending grape in California, 

especially with Cabernet Sauvignon.”  

   If the user is looking for a wine that is “medium bodied, not acidic, light 

flavoured”, then definitely CABERNET FRANC is a better choice than 

BARBERA.  

   Considering these we propose a framework in which a general set of concept 

modifier can be associated to ontology. The role of these modifiers will be to 

change the degree of a property value. This set is usually a partially ordered set 

[11]. For example, the hedges “pale, slight, light, more or less, very, deep, dark, 

rich” can be associated to the wine ontology.  We change the wine description 

ontology to include in addition to its original definition, the description of linguistic 

qualifiers and their associations to the property values. We accomplish this through 

multiple inheritance of each “Winedescriptor” property. “FuzzyQualifier” is a new 

subclass which can take values from the set of hedges only. The hedges are ordered 

by increasing instance number of nodes. Each property like “WineTaste”, 

“WineFlavour” etc. are subclasses of “WineDescriptor”. Now we introduce fuzzy 

property classes like “FuzzyTaste”, “FuzzyBody” etc. as subclasses which multiply 

inherit from “FuzzyQualifier” and the respective class descriptor. This property 

inherits the possible values from the property descriptor and the concept modifiers 

from the fuzzy qualifier class. Thus a description of a wine can be generated in 

terms of a list of concept modifiers followed by a property value. Parts of the OWL 

code that is generated thereby is shown below:  

<owl:Class rdf:ID="FuzzyQualifier"> 

    <rdfs:subClassOf> 

      <owl:Restriction> 

        <owl:onProperty> 

          <owl:DatatypeProperty rdf:about="#has-qualifier"/> 



        </owl:onProperty> 

        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 

        >1</owl:cardinality> 

      </owl:Restriction> 

    </rdfs:subClassOf> 

  </owl:Class> 

<owl:Class rdf:ID="FuzzyBody"> 

    <rdfs:subClassOf rdf:resource="#WineBody"/> 

    <rdfs:subClassOf rdf:resource="#FuzzyQualifier"/> 

    <rdfs:subClassOf> 

      <owl:Restriction> 

        <owl:onProperty> 

          <owl:DatatypeProperty rdf:about="#has-qualifier"/> 

        </owl:onProperty> 

        <owl:maxCardinality 

rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 

        >8</owl:maxCardinality> 

      </owl:Restriction> 

    </rdfs:subClassOf> 

    <rdfs:subClassOf> 

      <owl:Restriction> 

        <owl:onProperty> 

          <owl:DatatypeProperty rdf:about="#has-value"/> 

        </owl:onProperty> 

        <owl:allValuesFrom rdf:resource="#WineBody"/> 

      </owl:Restriction> 

    </rdfs:subClassOf> 

    <rdfs:subClassOf> 

      <owl:Restriction> 

        <owl:onProperty> 

          <owl:DatatypeProperty rdf:about="#has-qualifier"/> 

        </owl:onProperty> 

        <owl:allValuesFrom rdf:resource="#FuzzyQualifier"/> 

…………….. 

<j.0:FuzzyQualifier rdf:ID="Instance_56" 

     j.0:has-qualifier="not"/> 

<j.0:FuzzyQualifier rdf:ID="Instance_57" 

     j.0:has-qualifier="mild"/> 

<j.0:FuzzyQualifier rdf:ID="Instance_58" 

     j.0:has-qualifier="moderate"/> 

<j.0:FuzzyQualifier rdf:ID="Instance_59" 

     j.0:has-qualifier="very”/> 

Fig. 1. Elements of an ontological framework and Description Logic 

With this definition an entity can have property value �A, where � is a list of 

concept modifiers. This can be interpreted as having the value A to a certain 

degree. For example the wine BARBERA which has taste “fairly Acidic”, has 



certain degree of membership to the “Acidic Taste” category which is definitely 

different from 1. With a predefined set of concept modifiers, given an entity 

description in terms of these, the relevance of the entity to a user query can be 

computed as a function of its membership to the user given description. Thus if a 

user asks for a “very strong” wine, the relevance of two wine descriptions which 

are “light” and “very, very, strong” respectively, can be computed.  

 

2.1 Computing Relevance of Property Values with Concept Modifiers 

Let H = {h1, h2, ….., hp} be a set of hedges, among which each element of H is 

either positive or negative with respect to all other hedges including itself. The 

function sign: H X (HU�) →{-1,+1} is defined in [11] as  

*
-1 i f h i s n ega t i ve wr t h ,* i

s i g n(h , h )i *
1 i f h i s p os i t i ve wr t hi

         

           

=




 

(1) 

The set of fuzzy qualifiers operates with hedge algebra as defined by [11]. An 

entity can have property value �A, where � is a list of concept modifiers. � = 

h*, where h ∈ H. This membership value of �A can be calculated using the 
algorithm presented in [11]. Using this algorithm one can compute the membership 

of any arbitrary combination of the concept modifiers.  

Table 1. Membership calculation for concept modifiers 

 

 Sig β 
Strong 

Light 

1 

-1 

2 

0.5 

Very  

Mol 

1 

-1 

2 

0.5 

Very 

Strong 

+1 4 

Very 

light 

-1 0.25 

 Mol 

Light 

+1 0.75 

 

 

   In our adaptation of this approach, we have made the following modifications. 

The set H is defined as follows: 

H = {h0, h1, ………, hp} where h0 = not. While the remaining set of modifiers 

behave in the same way as before: the sign of h0 is defined as follows: 



*
-1 i f s i g n (h , A) -1 fo r any A*

s i gn(h , h )
0 *

1 i f s i g n (h , A) 1 fo r any A

         

           

=
=

= +





 

 

(2) 

 

Table 1 below shows the computation of a four member set containing {strong, 

light, very, mol} with partial relationships defined between strong and light and 

between very and mol, where mol stands for “more or less”.  Thus if it is given that 

“a wine is red has value 0.7”, then the membership of “the wine is very red” = 0.49, 

“the wine is not red = -0.7”, “the wine is not very red =-.49”. This rightly interprets 

than it is more correct to say that the wine is not very red than to say the wine is not 

red.  

3   Accepting User Query 

The query is assumed to have a mandatory component – entity name, followed by 

an optional list of property specification. The property specification is a variable 

length list of property qualifiers and values. Thus a query assumes the following 

structure: Query: [Entity name: [{Property}: <List of Qualifiers>* <Property 

value>]]*]. Thus a sample query in the wine domain can be  

[wine:[{Flavour}:<Light>(Fruity)] 

           [{Colour}:<very deep>(red)] 

           [{Taste}:<Very strong>(acidic)]]. 

   For queries pertaining to an arbitrary entity that does not belong to any defined 

ontology, currently the system accepts any string given as property name and value. 

However, the concept modifiers can function correctly only if they are part of the 

defined modifier resource. For example looking for a bright celestial body 

resembling a comet, without any underlying ontology one can construct the query 

as: 

[celestial body: [{appearance}<bright>] 

             {like}<very much><comet>].  

Since our emphasis is on ontology based query processing, the system expects 

concepts to be from a particular domain. If so, then it is logical to expect that the 

entities are described in terms of a pre-defined set of concepts. Our query-

processing framework exploits this structure along with the query approximations 

constructed above, to locate property values. 

4   Query Extension using Related Concepts 

Question answering systems usually extend a given user question by extending the 

user query to include relevant words. The set of words to be included for a query is 

usually a predetermined set derived from works on Question classification[13]. For 



example, [13] mentions 15 categories of questions, how they can be identified and 

extended.  

   In our work however, we extend the query with ontologically related concepts. 

Since ontologies are generated by domain experts, this leads to a better 

approximation of query. The ontologically related concepts to be included into a 

query is determined from the type of the question.  

   Along the lines of rough approximation, we define two approximations of the 

question – the lower approximation and the upper approximation. Let Q be the user 

query consisting of a set of concepts C.   

Definition 1. Lower approximation of Q includes all those concepts which are 

semantically equivalent to the concepts. Mathematically, 

{ }' '
Q(C) c | c c where c C  = ≡ ∈  

(3) 

 

If the underlying ontology is the English language, then all words synonymous to 

the original set of words will be included in Q(C) .  

   Upper approximation of Q can include all concepts which are related to the 

concepts in the original query through the class-subclass relations. We define two 

types of upper approximations that can be obtained depending on the type of the 

query.   

Definition 2. The generalized upper approximation of a query Q, denoted by 

Q (C)
G

, extends the set of query concepts C by including all concepts which are 

super classes of the original concepts. Thus  

{ }' '
Q (C) c | c c where c C
G

,   = ⊆ ∈  
(4) 

Definition 3. The specialized upper approximation of a query Q, denoted by 

Q (C)
G

, extends the set of query concepts C by including all concepts which are 

super classes of the original concepts. Thus  

{ }' ' '
Q (C) c | c c where c, c C
G

,   = ⊆ ∈  
(5) 

   The query type will determine which type of approximation is to be taken. For 

example, let us look at the following queries: 

1. Get a wine with a fruity flavor:  If fruity is replaced by anything that is a fruit 

like orange, strawberry, grapes etc. the quality of answer remains same. 

2. What is a fruit? : If fruit is replaced by a subclass like citrus fruit or berry, the 

answers retrieved with the specialized concepts may not give the exact answer.  



   We are yet to find a satisfactory way of determining which approximation is 

better under given circumstances. We work with the union of both the 

approximations. Since concepts in the original query and those included in the 

approximated extension cannot have the same weight while calculating document 

relevance, we associate weights to the concepts in the approximated query.  

Let the original query be denoted by Q and let A denote the approximated 

query. The weight of any concept c ∈ A is computed in terms of its closeness to 

concepts in Q. 

Thus …c ∈ A, w(c) = sup d∈    QQQQ {1/(dist(c,d) +1)}, where dist(c,d) is the number 

of classes lying between c and d in the ontology tree, along a class-subclass 

hierarchy.    

The above measure ensures that if c is a concept from the original query it is 

retained with weight 1.0. New concepts are inducted with a weight that is 

determined by the minimum distance of the concept form one of the query 

concepts.  

5   Query Processing Framework 

To find the relevant documents, we compute the similarity between the extended 

query and the unstructured texts. Since we have not implemented a query classifier, 

presently the user query is assumed to be in a structured format.  

   To extend a query with its approximation, we consider all values in the original 

query, and extend it to include other terms form the ontology. Thus we include all 

classes which are either generalization or specialization of the original value 

concepts, in conjunction to the appropriate property.  

Locating Relevant Concepts in Document. Each document is considered in its 

text form as a collection of words. HTML tags are deleted in case it is an HTML 

document.  

   Since a document as a whole may not be relevant to the query, we first try to 

locate appropriate portions in the document which are likely to be relevant to the 

query. We call the relevant portion the “property window”. For each property 

specified in the query the property window for that property is the portion of the 

document which contains information about it. In our implementation we have used 

a sentence containing property names as a property window. A single property 

window may be verified by multiple property queries since a single sentence can 

have more than one property definition in it. Once we find the property windows, 

we look for qualifier-value matches within the window. Those  properties for which  

a window could not be located, we consider the values in the approximations of the 

query and try to locate them in the document. These values are considered to be 

relevant only in conjunction with the properties that have not been already located. 

The sentences which contain the values serve as “value windows” for these 

properties.  Once again, the same value window may be chosen for multiple 

properties since in absence of a specific property name, it is not possible to decide 

the value is pertaining to which property.  



Computing relevance in terms of value matches between query and document: 

In this phase we initiate an activation mechanism to locate the query values within 

property windows. A value may be a concept in the original query or in the 

extended query. When a value concept is located in the document, a search for the 

modifiers preceding it is initiated. This may yield a list of modifier concepts. The 

final match is expressed as a similarity measure between the original query 

concepts and the concepts found in the document.  
   Let δ be the concept modifier for c in original query. Let β be the power 
determined for δ using algorithm of [11]. We find the concept modifier in the 
document for the related concept by initializing η to blank and then while earlier 
token in the sentence is a hedge h ∈H, we concatenate h to η so that η becomes hη. 
We then determine β′, the required power for η. The relevance of the value is then 
computed as  

Rel(n) = 1, if w(n)=1 and β=β′  

/* denotes an exact match for value as well as qualifier*/ 

else Rel(n) = w(n).e
-|β-β′|

  

This value is always less than or equal to 1.0, for each concept n. The final 

relevance of a document is computed as a normalized value of all matches with 

concepts in approximate query.  

   For example, let us consider the query [Wine:<requirements for flavor are - <light 

fruit>+<strong malt> + <mild citrus>.  We show the relevance with respect to 

single sentences picked up from documents on beer from www.RateBeer.com. 

• Beer1 - A wine that has aroma of moderate malt, light fruit, with notes of 

orange peel, toffee, light note of alcohol - relevance 1.0   

• Beer2 - This wine has aroma is which is of strong fruit, with notes of apple, 
toffee, light note of alcohol – relevance = Relevance = 0.078. 

We consider the query stated earlier rephrased as 

[Wine:[<Flavour><Fruity>[[<colour><very><red>][<hop><not><full>]]. Consider 

the documents 

• Document 1 - These wines can be from very pale pink to a light red in colour, 
fresh and fruity in their flavour, balanced with acidity and the alcohol should 

be from 9% to 12% by volume. Relevance = 0.539 

• Document 2 - The mystical magic of this well is reflected in the rich golden 
colour, fruity flavour and full hop aroma of this light and refreshing ale. 

Relevance = 0.524. 
   We can see that the concept modifiers can be taken care of in this framework and 

thus the original ordering can change to give better matches.  

   However, the key problem that remains is the virtually endless number of concept 

modifiers and property-value pairs that can crop up in a domain, which cannot be 

taken care of in an ontology. We are therefore working on a system which is 

initially trained with a large number of documents, where the user identifies the 

values and qualifiers. Using this initial set, we are building a database of properties 

and their possible values. We have integrated this system to a tagger which can 

identify the nouns, adjectives and adverbs. This is used to reduce the set of words to 

be searched for. Finally we are also exploring the possibilities of utilizing a Hidden 

Markov Model for analyzing the documents to give a better precision.  



6   Conclusion 

In this paper, we have presented a basic framework for integrating concept 

modifiers in a ontological framework. The ontological structures are enhanced with 

concept modifiers to model linguistic qualifiers since we found that documents 

rarely contained isolated values. We have also shown how query approximations 

can be done by extending the original query to include additional concepts from the 

ontology. This can enable extraction of more relevant documents through the 

search engines by using relevant concepts also. Finally, we have shown how 

relevance of documents can be computed using concept modifiers. We have 

provided an initial framework for query processing and providing to the user the 

degree of relevance of a document. However, a lot more needs to be done to 

accommodate unmatched concepts and we are working on integrating a learning 

mechanism to improve the accuracy of the system.  
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