
A Framework for Extending Fuzzy Description Logic

to Ontology based Document Processing

Shailendra Singh Lipika Dey Muhammad Abulaish

Department of Mathematics

Indian Institute of Technology, Delhi,

Hauz Khas, New Delhi, India

Email: (lipika, shailen)@maths.iitd.ernet.in

Abstract. Ontologies have proved to be very useful in sharing concepts

across applications in an unambiguous way. However, since web documents

are not fully structured sources of information, it is not possible to utilize the

benefits of a domain ontology straight away to extract information from such

a document. In this paper we have proposed an uncertainty handling

mechanism based on rough-fuzzy reasoning principles which can handle

query-processing from unstructured web documents in an elegant way.

1 Introduction

In order to maximize the utility of web resources, it is essential to extract

information from heterogeneous, unstructured web documents and reason with

them. Several question-answering systems try to do this, though most of them still

just list the relevant URLs. AnswerBus [8] is an open-domain question answering

system based on sentence level Web information retrieval. This system formulates

a simple query from each user question by deleting functional words, using word

frequency table, deleting special words and modifying word forms, if necessary. It

then employs five search engines to retrieve relevant texts and then extracts

relevant portions from these, reorders them and presents them as answers.

 Though these systems work quite well, certain problems related to the nuances of

Natural Language remain unsolved. For example we posted two queries to

AnswerBus: (i) What is a wine with fruity flavour, light hop, strong taste? The

answer was “Sorry, I found no answer for your question”. However when we asked

(ii)“What is a red wine with fruity flavour, light hop, strong taste?” there were 3

answers, starting with “The nose on this beer is ripe and fruity with slightly vinous

esters, married to interesting hop notes - the colour of a glorious red ruby wine”.

Clearly, this could be one of the answers for the earlier question also, since “red

wine is a special class of wine”. We feel that such systems can be greatly

benefitted by integrating uncertainty handling mechanisms and underlying

ontological structures with them.

 Ontology based knowledge representation scheme provides a platform for sharing

concepts across various applications in an unambiguous way [1], [2], [3], [4], [5].

Description logics have proved to be a useful tool in ontological engineering.

However, in order to reason with contents of web resources, it is essential to extend

Description Logic to query answering services [9], [10]. Since natural language

resources contain imprecise, often vague or uncertain descriptions of concepts, for

practical applications to question answering it is essential to extend Description

Logic to handle imprecision. As another example, we consider the another question

“What is a red wine with fruity flavour, light hop, not light taste”? One of the

answers was “The mystical magic of this well is reflected in the rich golden colour,

fruity flavour and full hop aroma of this light and refreshing ale.” Clearly this is

not a desirable answer. The problem lies in the interpretation of terms “not light”

against “light” or “strong”. Since the answers are based on string matching the fact

that “not light” is closer to “strong” than “light”, cannot be taken care of.

 Looking at these problems of dealing with natural language texts, we were

motivated to design a document analysis system which can do the following

• Identify implicit concepts in a document using underlying Ontological structures
and treat words as concepts rather than patterns

• Handle imprecision of natural language texts arising due to linguistic qualifiers
through the use of fuzzy Description Logic [11], [12]

[9] has shown how by placing certain restrictions on the use of variables in a query,

Description Logic can be extended to DAML+OIL. They have focussed on

Boolean queries to determine whether a query without free variables is true with

respect to a Knowledge Base. Holldobler et al. [11] proposes a fuzzy Description

Logic with Hedges as concept modifiers.

 In this paper, we have proposed a framework for reasoning with imprecise and

unstructured knowledge sources with an underlying ontological structure. The

system reasons about relevance of documents using a rough-fuzzy reasoning

mechanism.

 Though a lot of focus is currently given on standardizing ontology representation

languages for general domain representations, most of these assume that the

concept world is exactly defined in terms of properties and values. The problem

with this approach is that such a structure cannot be used straight away for

retrieving information from an unstructured text document.

 The salient features of this work are:

• We have provided a complete framework for incorporating fuzzy concept
modifiers into an ontological structure.

• We propose a reasoning mechanism which can be used to match document
concepts with user given concepts more satisfactorily by increasing the scope of

the question to include related concepts.

• Finally a relevance computation function can be used to compute the overall
relevance of a document using the extended query.

2 Enriching Ontological Description with Linguistic Qualifiers

Ontology provides a shared conceptualization of domains to heterogeneous

applications. Usually a concept is defined in terms of its mandatory and optional

properties along with the value restrictions on those properties. Figure 1 shows the

elements of an ontological framework and Description Logic.

 We find that, in general there is no ontological framework for qualifying a

property. Even if linguistic variables like low, high etc. are used, they are most

often used as value restrictions. For example, the wine ontology [3] defined by

W3C group, uses the properties hasflavour, hascolor, hasbody etc. for describing

any class of wine. The value restrictions on hasflavour is the set {Delicate,

Moderate, Strong} and that of hascolor is {Red, White, Rose}. This ontology also

describes a set of instances of wines of various types and describes them in terms of

the above mentioned properties. Using Description Logic it is possible to retrieve

information from this knowledge base.

 However, some web documents describing wine are produced below:

• “BARBERA is a full bodied, fairly acidic red wine grown originally in
California's coastal areas is now the major component of the red jug wines

produced in California's Central Valley”;

• “CABERNET FRANC is a light, fruity red wine from France's Loire Valley,
often blended with Merlot. Basically used as a blending grape in California,

especially with Cabernet Sauvignon.”

 If the user is looking for a wine that is “medium bodied, not acidic, light

flavoured”, then definitely CABERNET FRANC is a better choice than

BARBERA.

 Considering these we propose a framework in which a general set of concept

modifier can be associated to ontology. The role of these modifiers will be to

change the degree of a property value. This set is usually a partially ordered set

[11]. For example, the hedges “pale, slight, light, more or less, very, deep, dark,

rich” can be associated to the wine ontology. We change the wine description

ontology to include in addition to its original definition, the description of linguistic

qualifiers and their associations to the property values. We accomplish this through

multiple inheritance of each “Winedescriptor” property. “FuzzyQualifier” is a new

subclass which can take values from the set of hedges only. The hedges are ordered

by increasing instance number of nodes. Each property like “WineTaste”,

“WineFlavour” etc. are subclasses of “WineDescriptor”. Now we introduce fuzzy

property classes like “FuzzyTaste”, “FuzzyBody” etc. as subclasses which multiply

inherit from “FuzzyQualifier” and the respective class descriptor. This property

inherits the possible values from the property descriptor and the concept modifiers

from the fuzzy qualifier class. Thus a description of a wine can be generated in

terms of a list of concept modifiers followed by a property value. Parts of the OWL

code that is generated thereby is shown below:

<owl:Class rdf:ID="FuzzyQualifier">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#has-qualifier"/>

 </owl:onProperty>

 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:cardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

<owl:Class rdf:ID="FuzzyBody">

 <rdfs:subClassOf rdf:resource="#WineBody"/>

 <rdfs:subClassOf rdf:resource="#FuzzyQualifier"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#has-qualifier"/>

 </owl:onProperty>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >8</owl:maxCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#has-value"/>

 </owl:onProperty>

 <owl:allValuesFrom rdf:resource="#WineBody"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#has-qualifier"/>

 </owl:onProperty>

 <owl:allValuesFrom rdf:resource="#FuzzyQualifier"/>

……………..

<j.0:FuzzyQualifier rdf:ID="Instance_56"

 j.0:has-qualifier="not"/>

<j.0:FuzzyQualifier rdf:ID="Instance_57"

 j.0:has-qualifier="mild"/>

<j.0:FuzzyQualifier rdf:ID="Instance_58"

 j.0:has-qualifier="moderate"/>

<j.0:FuzzyQualifier rdf:ID="Instance_59"

 j.0:has-qualifier="very”/>

Fig. 1. Elements of an ontological framework and Description Logic

With this definition an entity can have property value �A, where � is a list of

concept modifiers. This can be interpreted as having the value A to a certain

degree. For example the wine BARBERA which has taste “fairly Acidic”, has

certain degree of membership to the “Acidic Taste” category which is definitely

different from 1. With a predefined set of concept modifiers, given an entity

description in terms of these, the relevance of the entity to a user query can be

computed as a function of its membership to the user given description. Thus if a

user asks for a “very strong” wine, the relevance of two wine descriptions which

are “light” and “very, very, strong” respectively, can be computed.

2.1 Computing Relevance of Property Values with Concept Modifiers

Let H = {h1, h2, ….., hp} be a set of hedges, among which each element of H is

either positive or negative with respect to all other hedges including itself. The

function sign: H X (HU�) →{-1,+1} is defined in [11] as

*
-1 i f h i s n ega t i ve wr t h ,* i

s i g n(h , h)i *
1 i f h i s p os i t i ve wr t hi

=




(1)

The set of fuzzy qualifiers operates with hedge algebra as defined by [11]. An

entity can have property value �A, where � is a list of concept modifiers. � =

h*, where h ∈ H. This membership value of �A can be calculated using the
algorithm presented in [11]. Using this algorithm one can compute the membership

of any arbitrary combination of the concept modifiers.

Table 1. Membership calculation for concept modifiers

 Sig β
Strong

Light

1

-1

2

0.5

Very

Mol

1

-1

2

0.5

Very

Strong

+1 4

Very

light

-1 0.25

 Mol

Light

+1 0.75

 In our adaptation of this approach, we have made the following modifications.

The set H is defined as follows:

H = {h0, h1, ………, hp} where h0 = not. While the remaining set of modifiers

behave in the same way as before: the sign of h0 is defined as follows:

*
-1 i f s i g n (h , A) -1 fo r any A*

s i gn(h , h)
0 *

1 i f s i g n (h , A) 1 fo r any A

=
=

= +





(2)

Table 1 below shows the computation of a four member set containing {strong,

light, very, mol} with partial relationships defined between strong and light and

between very and mol, where mol stands for “more or less”. Thus if it is given that

“a wine is red has value 0.7”, then the membership of “the wine is very red” = 0.49,

“the wine is not red = -0.7”, “the wine is not very red =-.49”. This rightly interprets

than it is more correct to say that the wine is not very red than to say the wine is not

red.

3 Accepting User Query

The query is assumed to have a mandatory component – entity name, followed by

an optional list of property specification. The property specification is a variable

length list of property qualifiers and values. Thus a query assumes the following

structure: Query: [Entity name: [{Property}: <List of Qualifiers>* <Property

value>]]*]. Thus a sample query in the wine domain can be

[wine:[{Flavour}:<Light>(Fruity)]

 [{Colour}:<very deep>(red)]

 [{Taste}:<Very strong>(acidic)]].

 For queries pertaining to an arbitrary entity that does not belong to any defined

ontology, currently the system accepts any string given as property name and value.

However, the concept modifiers can function correctly only if they are part of the

defined modifier resource. For example looking for a bright celestial body

resembling a comet, without any underlying ontology one can construct the query

as:

[celestial body: [{appearance}<bright>]

 {like}<very much><comet>].

Since our emphasis is on ontology based query processing, the system expects

concepts to be from a particular domain. If so, then it is logical to expect that the

entities are described in terms of a pre-defined set of concepts. Our query-

processing framework exploits this structure along with the query approximations

constructed above, to locate property values.

4 Query Extension using Related Concepts

Question answering systems usually extend a given user question by extending the

user query to include relevant words. The set of words to be included for a query is

usually a predetermined set derived from works on Question classification[13]. For

example, [13] mentions 15 categories of questions, how they can be identified and

extended.

 In our work however, we extend the query with ontologically related concepts.

Since ontologies are generated by domain experts, this leads to a better

approximation of query. The ontologically related concepts to be included into a

query is determined from the type of the question.

 Along the lines of rough approximation, we define two approximations of the

question – the lower approximation and the upper approximation. Let Q be the user

query consisting of a set of concepts C.

Definition 1. Lower approximation of Q includes all those concepts which are

semantically equivalent to the concepts. Mathematically,

{ }' '
Q(C) c | c c where c C = ≡ ∈

(3)

If the underlying ontology is the English language, then all words synonymous to

the original set of words will be included in Q(C) .

 Upper approximation of Q can include all concepts which are related to the

concepts in the original query through the class-subclass relations. We define two

types of upper approximations that can be obtained depending on the type of the

query.

Definition 2. The generalized upper approximation of a query Q, denoted by

Q (C)
G

, extends the set of query concepts C by including all concepts which are

super classes of the original concepts. Thus

{ }' '
Q (C) c | c c where c C
G

, = ⊆ ∈
(4)

Definition 3. The specialized upper approximation of a query Q, denoted by

Q (C)
G

, extends the set of query concepts C by including all concepts which are

super classes of the original concepts. Thus

{ }' ' '
Q (C) c | c c where c, c C
G

, = ⊆ ∈
(5)

 The query type will determine which type of approximation is to be taken. For

example, let us look at the following queries:

1. Get a wine with a fruity flavor: If fruity is replaced by anything that is a fruit

like orange, strawberry, grapes etc. the quality of answer remains same.

2. What is a fruit? : If fruit is replaced by a subclass like citrus fruit or berry, the

answers retrieved with the specialized concepts may not give the exact answer.

 We are yet to find a satisfactory way of determining which approximation is

better under given circumstances. We work with the union of both the

approximations. Since concepts in the original query and those included in the

approximated extension cannot have the same weight while calculating document

relevance, we associate weights to the concepts in the approximated query.

Let the original query be denoted by Q and let A denote the approximated

query. The weight of any concept c ∈ A is computed in terms of its closeness to

concepts in Q.

Thus …c ∈ A, w(c) = sup d∈ QQQQ {1/(dist(c,d) +1)}, where dist(c,d) is the number

of classes lying between c and d in the ontology tree, along a class-subclass

hierarchy.

The above measure ensures that if c is a concept from the original query it is

retained with weight 1.0. New concepts are inducted with a weight that is

determined by the minimum distance of the concept form one of the query

concepts.

5 Query Processing Framework

To find the relevant documents, we compute the similarity between the extended

query and the unstructured texts. Since we have not implemented a query classifier,

presently the user query is assumed to be in a structured format.

 To extend a query with its approximation, we consider all values in the original

query, and extend it to include other terms form the ontology. Thus we include all

classes which are either generalization or specialization of the original value

concepts, in conjunction to the appropriate property.

Locating Relevant Concepts in Document. Each document is considered in its

text form as a collection of words. HTML tags are deleted in case it is an HTML

document.

 Since a document as a whole may not be relevant to the query, we first try to

locate appropriate portions in the document which are likely to be relevant to the

query. We call the relevant portion the “property window”. For each property

specified in the query the property window for that property is the portion of the

document which contains information about it. In our implementation we have used

a sentence containing property names as a property window. A single property

window may be verified by multiple property queries since a single sentence can

have more than one property definition in it. Once we find the property windows,

we look for qualifier-value matches within the window. Those properties for which

a window could not be located, we consider the values in the approximations of the

query and try to locate them in the document. These values are considered to be

relevant only in conjunction with the properties that have not been already located.

The sentences which contain the values serve as “value windows” for these

properties. Once again, the same value window may be chosen for multiple

properties since in absence of a specific property name, it is not possible to decide

the value is pertaining to which property.

Computing relevance in terms of value matches between query and document:

In this phase we initiate an activation mechanism to locate the query values within

property windows. A value may be a concept in the original query or in the

extended query. When a value concept is located in the document, a search for the

modifiers preceding it is initiated. This may yield a list of modifier concepts. The

final match is expressed as a similarity measure between the original query

concepts and the concepts found in the document.
 Let δ be the concept modifier for c in original query. Let β be the power
determined for δ using algorithm of [11]. We find the concept modifier in the
document for the related concept by initializing η to blank and then while earlier
token in the sentence is a hedge h ∈H, we concatenate h to η so that η becomes hη.
We then determine β′, the required power for η. The relevance of the value is then
computed as

Rel(n) = 1, if w(n)=1 and β=β′

/* denotes an exact match for value as well as qualifier*/

else Rel(n) = w(n).e
-|β-β′|

This value is always less than or equal to 1.0, for each concept n. The final

relevance of a document is computed as a normalized value of all matches with

concepts in approximate query.

 For example, let us consider the query [Wine:<requirements for flavor are - <light

fruit>+<strong malt> + <mild citrus>. We show the relevance with respect to

single sentences picked up from documents on beer from www.RateBeer.com.

• Beer1 - A wine that has aroma of moderate malt, light fruit, with notes of

orange peel, toffee, light note of alcohol - relevance 1.0

• Beer2 - This wine has aroma is which is of strong fruit, with notes of apple,
toffee, light note of alcohol – relevance = Relevance = 0.078.

We consider the query stated earlier rephrased as

[Wine:[<Flavour><Fruity>[[<colour><very><red>][<hop><not><full>]]. Consider

the documents

• Document 1 - These wines can be from very pale pink to a light red in colour,
fresh and fruity in their flavour, balanced with acidity and the alcohol should

be from 9% to 12% by volume. Relevance = 0.539

• Document 2 - The mystical magic of this well is reflected in the rich golden
colour, fruity flavour and full hop aroma of this light and refreshing ale.

Relevance = 0.524.
 We can see that the concept modifiers can be taken care of in this framework and

thus the original ordering can change to give better matches.

 However, the key problem that remains is the virtually endless number of concept

modifiers and property-value pairs that can crop up in a domain, which cannot be

taken care of in an ontology. We are therefore working on a system which is

initially trained with a large number of documents, where the user identifies the

values and qualifiers. Using this initial set, we are building a database of properties

and their possible values. We have integrated this system to a tagger which can

identify the nouns, adjectives and adverbs. This is used to reduce the set of words to

be searched for. Finally we are also exploring the possibilities of utilizing a Hidden

Markov Model for analyzing the documents to give a better precision.

6 Conclusion

In this paper, we have presented a basic framework for integrating concept

modifiers in a ontological framework. The ontological structures are enhanced with

concept modifiers to model linguistic qualifiers since we found that documents

rarely contained isolated values. We have also shown how query approximations

can be done by extending the original query to include additional concepts from the

ontology. This can enable extraction of more relevant documents through the

search engines by using relevant concepts also. Finally, we have shown how

relevance of documents can be computed using concept modifiers. We have

provided an initial framework for query processing and providing to the user the

degree of relevance of a document. However, a lot more needs to be done to

accommodate unmatched concepts and we are working on integrating a learning

mechanism to improve the accuracy of the system.

References

1. Zhong, N., Liu, J., Yao, Y. Y.: In search of the wisdom web. IEEE Computer,

Vol. 35(11). (2002) 27-31

2. World wide web consortium. http://www.w3.org/

3. WineOntology.

http://kaon.semanticweb.org/Members/rvo/WebOnt_Guide/wines.owl/view

4. Gal, A., Modica, G., Jamil, H.: Improving web search with automatic ontology

matching. http://citeseer.nj.nec.com/558376.html

5. Ramsdell, J. D.: A foundation for a semantic web.

 http://www.ccs.neu.edu/home/ramsdell/papers/swfol/swfol.pdf. (2001)

6. Srinivasan, P., Ruiz, M.E., Kraft, D.H., Chen, J.: Vocabulary Mining for

Information Retrieval: Rough Sets and Fuzzy Sets. Information Processing and

Management, Vol. 37. (2001) 15-38

7. Ross, T.: Fuzzy Logic for Engineering Applications. McGraw-Hill Book

Company, New York, NY, ISBN: 0-07-053917-0. (1995)

8. Zheng, Z.: AnswerBus Question Answering System. Human Language

Technology Conference (HLT 2002). San Diego, CA (2002)

9. Horrocks, I., Tessaris, S.: Querying the semantic web: a formal approach. In

Proceedings of the 13th International Semantic Web Conference (ISWC 2002).

Lecture Notes in Computer Science, Vol.2342. Springer-Verlag (2002) 177-191

10.Horrocks, I., Tessaris, S.: A conjunctive query language for description logic

aboxes. In Proceedings of the 17th National Conference on Artificial

Intelligence (AAAI 2000). (2000) 399-404

11.Hölldobler, S., Khang, T., D., Störr, H., P.: A fuzzy description logic with

hedges as concept modifiers. In Proceedings InTech/VJFuzzy'2002. Science and

Technics Publishing House, Hanoi, Vietnam (2002) 25-34

12.Zadeh, L., A.: A fuzzy-set-theoretic interpretation of linguistic hedges. Journal

of Cybernetic, Vol. 2. (1972)

13.Li, X., Roth, D.: Learning Question Classifiers. In Proceedings of the 19th

International Conference on Computational Linguistics. (2002)

