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Abstract

Autophagy (in Greek: self-eating) is the cellular process for delivery of heterogenic intracellular

material to lysosomal digestion. Protein kinases are integral to the autophagy process, and when dys-

regulated or mutated cause several human diseases. Atg1, the first autophagy-related protein identified is

a serine/threonine protein kinases (STPKs). mTOR (mammalian Target of Rapamycin), AMPK (AMP-

activated protein kinase), Akt, MAPK (mitogen-activated protein kinase) and PKC (protein kinase C)

are other STPKs which regulate various components/steps of autophagy, and are often deregulated in

cancer. MAPK have three subfamilies – ERKs, p38, and JNKs. JNKs (c-Jun N-terminal Kinases) have

three isoforms in mammals – JNK1, JNK2, and JNK3, each with distinct cellular locations and func-

tions. JNK1 plays role in starvation induced activation of autophagy, and the context-specific role of

autophagy in tumorigenesis establish JNK1 a challenging anticancer drug target. Since JNKs are closely

related to other members of MAPK family (p38, MAP kinase and the ERKs), it is difficult to design

JNK-selective inhibitors. Designing JNK isoform-selective inhibitors are even more challenging as the

ATP-binding sites among all JNKs are highly conserved. Although limited informations are available

to explore computational approaches to predict JNK1 inhibitors, it seems diificult to find literature

exploring machine learning techniques to predict JNKs inhibitors. This study aims to apply machine

learning to predict JNK1 inhibitors regulating autophagy in cancer using Random Forest (RF). Here, RF

algorithm is used for two purposes– to select and rank the molecular descriptors calculated using PaDEL

descriptor software and as clasifier. The descriptors are prioritized by calculating Variable Importance

Measures (VIMs) using functions based on mean square error (IncMSE) and node purity (IncNodePu-

rity) of RF. The classification models based on a set of 22 prioritized descriptors shows accuracy 86.36%,
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precision 88.27% and AUC (Area Under ROC curve) 0.8914. We conclude that machine learning-based

compound classification using Random Forest is one of the ligand-based approach that can be opted for

virtual screening of large compound library of JNK1 bioactives.

Keywords: Machine learning, Classifiers, Autophagy, Lysosomes, Kinases, JNKs.

Author Summary

Out of the three isoforms of JNKs (cJun N-terminal Kinases) in human (each with distinct cellular

locations and functions), JNK1 plays role in starvation induced activation of autophagy. The role of

JNK1 in autophagy modulation and dual role of autophagy in tumor cells makes JNK1 a promising

anticancer drug target. Since JNKs are closely related to other members of MAPK (Mitogen-Activated

Protein Kinases) family, it is difficult to design JNK selective inhibitors. Designing JNK isoformselective

inhibitors are even more challenging as the ATP binding sites among all JNKs are highly conserved.

Random forest classifier usually outperforms several other machine learning algorithms for classification

and prediction tasks in diverse areas of research. In this work, we have used Random Forest algorithm

for two purposes: (i) calculating variable importance measures to rank and select molecular features,

and (ii) predicting JNK1 inhibitors regulating autophagy in cancer. We have used paDEL calculated

molecular features of JNK1 bioactivity dataset from ChEMBL database to build classification models

using random forest classifier. Our results show that by optimally selecting features from top 10%

based on variable importance measure the classification accuracy is high, and the classification model

proposed in this study can be integrated with drug design pipeline to virtually screen compound libraries

for predicting JNK1 inhibitors.

1 Introduction

Two Nobel prizes in physiology or medicine, one for the discovery of lysosomes to Christian de Duve in

1974 and another for the discovery of mechanisms of autophagy to Yoshinori Yosumi in 2016, attracted

many reseachers to work towards and uncover the fundamental physiological importance of autophagy

for human health and diseases. Autophagy is a catabolic process by which heterogenic cellular mate-

rials are delivered to lysosomal digestion. Various diseases such as tumorigenesis, neurodegeneration,

immune diseases as well as ageing are caused by chemical, genetic and age-driven changes in autophagic

activity (Dikic and Elazar, 2018). Although the core molecular components involved in the execution of

autophagy are well studied, there is limited information on how cellular signaling pathways, particularly

kinases, regulate this complex process. The human kinome constitutes about 2% of all human genes,

comprising around 538 eukaryotic protein kinase (ePK) genes which are subdivided into seven families

of typical and seven families of atypical protein kinases, majority of which are serine/threonine protein
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kinases (STPKs). Kinases are integral to autophagy. Atg1, the first autophagy-related protein identified

is a STPK, and is regulated by another STPK– mTOR. The role of many different kinases in regulation

of various components/steps of autophagy is discussed in literature. mTOR, AMPK (AMP-activated

protein kinase), Akt, MAPK (mitogen-activated protein kinase viz. ERK, p38 and JNKs) and PKC

(protein kinase C) are other STPKs often deregulated in cancer and hence are important therapeutic

targets (Sridharan et al., 2011).

JNKs (c-Jun N-terminal kinases) are also known as stress-activated protein kinases (SAPKs) as they

are activated in response to inhibition of protein synthesis. The JNKs bind and phosphorylate the

DNA binding protein c-Jun (a component of the AP-1 transcription complex which is an important

regulator of gene expression) and increase its transcriptional activity. There are three isoforms of JNKs

in mammals– JNK1, JNK2 and JNK3, each with distinct cellular locations and functions. In mam-

malian cells, the antiapoptotic protein, Bcl-2, binds to Beclin 1 during nonstarvation conditions and

inhibits its autophagy function. Experimental studies show that JNK1 plays role in starvation induces

phosphorylation of cellular Bcl-2 at residues T69, S70, and S87 of the nonstructured loop which causes

dessociation of Bcl-2 from Beclin 1 and activation of autophagy. It is found that JNK1 but not JNK2

plays role in starvation induced activation of autophagy (Wei et al., 2008), while JNK3 is implicated in

neuronal apoptosis (Xie et al., 1998). JNKs are closely related to other members of MAPK family such

as the p38, MAP kinases and the ERK (extracellular-regulated kinase), hence it is difficult to design

JNK-selective inhibitors. Designing JNK isoform-selective inhibitors are even more challenging as the

ATP-binding sites among all JNKs are highly conserved (Koch et al., 2014).

As of February 2015, there are 33 approved kinase inhibitors most of which are launched for the treatment

of cancer except tofacitinib (a JAK3 inhibitor) for the treatment of rheumatoid arthritis, sirolimus for

organ rejection, fasudil for cerebral vasospasm, and nintedanib(a VEGFR2 inhibitor) for the treatment

of Idiopathic pulmonary fibrosis, while more than 130 kinase inhibitors are reported to be in Phase-2/3

clinical trials. The design of selective kinase inhibitors is challenging because of structural similarity in

the ATP binding site, which is the target of most of the approved and clinically advanced kinase in-

hibitors except rapalogs and trametinib. The poor selectivity of the kinase inhibitors within the kinome

leads to undesirable side effects (Fabbro et al., 2015; Roskoski Jr, 2016). Several highly selective pan-

JNK inhibitors have been characterized, and the first potent pan-JNKs inhibitor– SP600125 (Celgene) is

still a common reference in JNK assay systems. Few chemical entities targeting JNKs– Bentamapimod

(AS602801, PGL5001), CC-930 (tanzisertib, F2) and a peptidic inhibitor XG-102 (AM-111, O2) have

been in clinical trials. Since JNK proteins may promote tumour development in a tissue- or cell-specific

manner, designing JNK-isoform selective inhibitors (either ATP-competitive/non-competitive or inhibit-

ing downstream cellular targets of a specific JNK protein in a tissue-specific manner) may be effective in

checking specific tumour formation (Bubici and Papa, 2014). However, it is difficult to design isoform-

specific JNK inhibitor, and such inhibitors are not yet commercially available (Gehringer et al., 2015).

Crystal structures of JNK1 with its inhibitors have been reported from Protein Data Bank (PDB ids–

3

.CC-BY 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/459669doi: bioRxiv preprint first posted online Nov. 1, 2018; 

http://dx.doi.org/10.1101/459669
http://creativecommons.org/licenses/by/4.0/


3ELJ, 4AWI, 4L7F, 3PZE, 2NO3, 2GO1) and bioactive molecules of JNK1 are deposited in biological

databases. Together, these may guide structure-based or ligand-based inhibitor design for JNK1 kinase.

Compound classification and similarity search based approaches are two broad ligand-based approaches

commonly applied for virtual screening of large compound library. Clustering, partitioning and machine

learning-based approaches are well known compound classification based approaches, whereas Molecular

graphs (2D) or conformations (3D) derived molecular fingerprints, and 3D pharmacophore models are

few similarity search based approaches well adopted in ligand-based virtual screening (LBVS). Several

machine learning-based classification algorithms are available such as Decision Tree (DT), Random For-

est (RF), Support Vector Machine (SVM), Naive Bayes (NB), K-Nearest Neighbour (KNN) and Artificial

Neural Network (ANN) (Lavecchia, 2015). These LBVS approaches can be applied irrespective of target

information.

Detail studies of JNK signalling pathways in cancer to design and develop JNK inhibitors are reviewed

in literature (Bubici and Papa, 2014; Messoussi et al., 2014). Yao et al., designed a selective inhibitor

of JNK1, AV-7, and tested in in vitro studies (Yao et al., 2009). Kataria et al., studied inhibitor design

against JNK1 through e-pharmacophore modeling docking and molecular dynamics simulations (Katari

et al., 2016). To date, limited informations are available with focus on computational studies to design

JNKs inhibitors, while it is diificult to find literatures on prediction of isoform-specific JNKs inhibitors

using machine learning techniques. Hence, in this study we have used ligand-based machine learning

approach using random forest to predict JNK1 inhibitor regulating autophagy in cancer.

2 Material and Methods

2.1 Data Set

The whole data set is downloaded from ChEMBL (Gaulton et al., 2012) using the following refining

criteria: (1) only human JNK1 inhibition assay data based on enzyme or enzyme regulation are collected

(2) duplicated compounds and compounds without detail assay value (IC50) are not considered. By

applying these criteria, 1486 diverse compounds associated with JNK1 (target id CHEMBL2276) are

selected for our study which have IC50 values ranging from 0.00024µM to 667µM. The 2-D structures of

the compounds are converted into 3-D structures using CORINA (version 2.64) software. The molecules

are saved in 3-D sdf format. Finally, 1198 compounds with calculated descriptors are selected in which

988 with IC50 values less than 10µM are considered active and remaining 210 compounds with IC50

values ≥ 10µM are considered inactive. For hit-to-lead activity of bioactives from biological databases,

10µM cutoff value is considered to be reasonable starting point for most of the targets unless specifically

specified in literature through experimentations.
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2.2 Calculation and Selection of Molecular Descriptors

Prior to splitting the data set in training and test set, molecular descriptors of JNK1 bioactives are calcu-

lated using PaDEL descriptor software (Yap, 2011). Informative descriptors are retained and prioritized

using Random Forest Variable Importance Measures (RFVIMs), while non-informative descriptors are

removed from the final selected data sets.

2.2.1 PaDEL-Descriptor

The software currently calculates 1875 descriptors (1444 1D, 2D descriptors and 431 3D descriptors)

and 12 types of fingerprints. The descriptors and fingerprints are calculated using Chemistry Devel-

opment Kit with few additional descriptors and fingerprints such as atom type electrotopological state

descriptors, atom-based calculation of partition coefficient (Crippen’s logP) and Molecular Refractivity

(MR), extended topochemical atom (ETA) descriptors, molecular linear free energy relation descriptors,

ring counts, count of chemical substructures identified by Laggner, and binary fingerprints and count of

chemical substructures identified by Klekota and Roth.

In present study, 1444 (1D and 2D) descriptors of JNK1 bioactives are calculated using PaDEL de-

scriptor software (Yap, 2011) prior to splitting the data set in training and test set. 269 out of which

1444, 1-D and 2-D descriptors are finally selected, as descriptors with NA (not applicable) for most of

the samples are removed. Finally, 1198 unique samples with known IC50 values (988active and 210

inactive) and 269 calculated features of each samples are used for model building using RF algorithm.

Few calculated descriptors in this study are– Atom type electrotopological state (nHBint6), Molecu-

lar distance edge (MDEN-22), Atom type electrotopological state (SHBint6), Molecular distance edge

(MDEN-12), Atom type electrotopological state (MaxHBint6), Atom type electrotopological state (min-

HBint6), Molecular linear free energy relation (MLFER A), Extended topochemical atom (ETA BetaP

ns d), Autocorrelation (AATSC6c), Atom type electrotopological state (minssNH) etc.

2.2.2 Variable Importance Measures (VIMs)

The permutation VIM and the Gini VIM are two different VIMs calculated for each predictor in standard

Random Forest suggeted by Brieman. Permutation VIM is defined as the difference between the out-

of-bag (oob) error resulting from a data set obtained through random permutation of the predictor of

interest and the oob error resulting from the original data set. The oob error is expected to increase

on permutation of an important predictor, which leads to high permutation VIM. The Gini VIM of a

predictor of interest is the sum of the DGI (decrease of Gini impurity) criteria of the splits that are

based on this predictor, scaled by the total number of trees in the forest. An important predictor is

often selected for splitting and yields a high DGI when selected, leading to a high Gini VIM (Boulesteix

et al., 2012). Here, VIMs of predictors are calculated to retain the informative descriptors and remove

the non-informative descriptors using IncMSE (based on mean square error) and IncNodePurity (based
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on node purity) functions of Random Forest library in R package.

2.3 Machine Learning-based Compound Classification

Machine learning-based compound classification for activity prediction needs prior knowledge of

annotated compounds with specific activity for designing a training set divided into active or inactive

class. The training set is then analyzed to develop classifier. A classifier is a function that assigns a

label or class to an unlabeled sample. In this study, a Random Forest (RF) classifier is developed to

classify JNK1 bioactives as inhibitor or non-inhibitor. The complete data set of 1198 bioactive molecules

selected from ChEMBL database are divided into five folds using random sampling technique. One fold

is used as test set while four folds are used to train the model. The training and testing processes are

repeated five times, each time with different fold as test set and remaining four folds to train the model,

so that every molecule get trained and tested at least once. This method is known as five-fold cross

validation using which the robustness of the trained model is checked.

2.3.1 Random Forest

In RF (Breiman, 2001) algorithm, the unpruned classification or regression trees are generated

based on random feature selection (Svetnik et al., 2003). RF builds and averages a large collection of

mutually related trees. RF is significant modification of bagging or bootstrap aggregation which reduces

the variance of an estimated prediction function. Following random sampling, when the training set

for the present tree is drawn, about one-third of the data are left out of the sample. The use of out-

of-bag (oob) sample is one of the important feature of RF which gives an ongoing unbiased estimate

of the classification error as the number tree increases. oob error estimate is almost identical to the

error obtained by n-fold cross-validation, which is being performed in parallel. Hence, the training

can be terminated on stabilization of oob error (Friedman et al., 2001). Two main applications of RF

technique are: (i) to assess and rank variables by their discriminative power, and (ii) to construct classifier

for supervised learning problem. RF is an ensemble learning algorithm as predictions are made by

aggregating majority vote or averaging the predictions of the ensemble. When the number of predictors

is much larger than the number of observations, RF is capable of showing excellent performance. The

application of RF as a standard data analysis tool in bioinformatics is reviewed by Boulesteix et al.

(2012). Random Forest is implemented in a variety of packages including R.

3 Results

3.1 Prioritization of Molecular Descriptors

Random Forest automatically selects and ranks the important descriptors using IncNodePurity

and IncMSE functions for VIM. The model uses regression for calculating VIM and shows out-of-bag
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(oob) error of 0.08675 (mean square error; MSE) which corresponds to 60.93% variance unexplained

when number of trees (ntree) is 500 and the number of input variables to be used in each node (mtry)

is 89 as shown in Table 1. The oob data (one-third of training data) is able to explain 39.07% variance

of the training data. The model shows that the oob error remains almost constant after 300 trees are

generated as shown in Fig.1. We have considered 500 trees to avoid over-fitting of the model.

Table 1: RF model to calculate VIM showing no. of trees, mean square error and %variance

] Trees MSE %variance

100 0.08841 62.10
200 0.08725 61.28
300 0.08734 61.34
400 0.08709 61.16
500 0.08675 60.93

Figure 1: RF model to calculate VIM (showing no. of trees and out-of-bag error)

Out of 269 calculated descriptors, top 10% (27) descriptors are selected for building classification

model using RF classifier. Top 10 descriptors with their IncMSE measures are shown in table 2, whereas

top 30 descriptors with their IncMSE measures are plotted as shown in Fig. 2.
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Table 2: Relative importance of top 10 descriptors using IncMSE function of RF-VIM

Rank Descriptors IncMSE

1 ATSC0c 16.8522455505
2 AATSC1v 12.6246738825
3 AATS7p 12.4114747628
4 ATSC3s 11.6990337935
5 AATSC3s 11.4763612558
6 AATSC0c 10.8516271753
7 MATS3m 10.1128028665
8 ATSC1v 9.0966608707
9 AATS4i 9.0962395998
10 AATSC8p 8.6634381244

Figure 2: Relative importance of top 30 variables using IncMSE function of RF

Top 10 descriptors with their IncNodePurity measures are shown in table 3, whereas top 30

descriptors with their IncNodePurity measures are plotted as shown in Fig. 3.

Table 3: Importance of top 10 variables using IncNodePurity function of RF-VIM

Rank Descriptors IncNodePurity

1 ATSC0c 5.1225495212
2 AATS7p 3.0129326771
3 AATSC0c 2.3678963858
4 AATSC3s 2.0567042176
5 AATSC1v 1.9148403892
6 ATSC3s 1.7456336954
7 AATSC7p 1.5572340296
8 AATSC6i 1.4527806122
9 ATSC1v 1.4285816216
10 AATS4i 1.3773576137
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Figure 3: Relative importance of top 30 variables using IncNodePurity function of RF

Using IncNodePurity (>0.720) and IncMSE (>5.9) of RF-VIM, top 10% (27) descriptors are

extracted using both functions. Finally, 22 common variables are selected for building classification

models using RF classifier.

3.2 Performance Evaluation and Cross-Validation of the Model

Various performance evaluation metrics viz. Accuracy, Specificity, Recall (Sensitivity) and Preci-

sion (Positive Prediction Value) are calculated using confusion matrix as shown in Table 4. These metrics

are calculated using number of inhibitors or True Positives (TP), non-inhibitors or True Negatives (TN),

non-inhibitors predicted as inhibitors or False Positives (FP), and inhibitors predicted as non-ihibitors

or False Negatives (FN). Cross-validation is performed to validate the accuracy and robustness of the

prediction model. In our experiment, 5-fold cross-validation is used to validate the generated models

using RF (default setting).

By default, RF picks up 2/3rd data for training and 1/3rd data for testing for regression

and almost 70% data for training and 30% for testing during classification. Since it randomizes the

variable selection during each tree split, it is not prone to overfit unlike other models. Out-of-bag error

calculated during model training is an indicator of test set performance. However, to ensures that all

samples appear in the training and test sets so that 100% of the data gets used at some point for training

and for testing, cross validation is crucial for model evaluation and comparison with other models for

the same data set. Hence, 5-fold cross-validation is used for model evaluation.

The data set of 1198 molecules which include 988active (IC50 values <10µM) and 210 inactive (IC50

values ≥ 10µM ) are randomly sampled followed by five-fold cross-validation. The complete data set is

split into five parts so that four parts (959) are considered for training and remaining one part (239) for

testing. The process is iterated five times so that each time different set of molecules are considered for

testing. Then the models are developed with classifier using RF to classify the molecules as inhibitors or

non-inhibitors. For evaluation of the models, different statistical measures such as Accuracy, Specificity,
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Sensitivity (Recall) and Precision are calculated. When the classifiers are based on top 10% of selected

descriptors, RF model shows accuracy of 86.36%, precision of 88.27%, specificity 40.00% and sensitivity

96.24%, as is shown in table 4 & 5.

Table 4: Confusion matrix of the classifiers based on top 10% of selected descriptors

Classifier Folds1 2 3 4 5 Sum

RF TP 188 201 189 184 186 948
TN 18 17 12 16 21 84
FP 25 15 33 30 23 126
FN 8 6 5 9 9 37

Table 5: Performance evaluation metrics of classifiers based on top 10% of selected descriptors

Classifiers
Accuracy
(%)

Specificity
(%)

Sensitivity
(Recall)

Precision
(%)

RF 86.36 40.00 96.24 88.27

A ROC (Receiver Operating Characteristic) curve plots the true positive rate (sensitivity) against

the false positive rate (1−specificity) for all possible cutoff values. ROC curve for the RF classification

model which is based on top 10% descriptors is shown in Fig.4.

Figure 4: ROC curve of RF classifier based on common out of top 10% descriptors ranked by RF-VIM

Classification model based on a set of 22 common molecular descriptors out of top 27 ranked by both

incMSE and incNodePurity functions of RF-VIM achieves accuracy 86.36% and area under ROC curve

(AUC) 0.8914 respectively using RF classifier.
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4 Discussion

In this study, we have used machine learning to prioritize molecular descriptors, and based on which

in silico classification models have been developed to classify a data set of 1198 bioactive molecules of

JNK1 from ChEMBL database as inhibitor or inhibitor. 1444 (1D and 2D) molecular descriptors are

calculated using PaDEL descriptor software, out of which 269 descriptors are retained after removing

the descriptors with non-informative values (NA) for most of the compounds, and then ranked using

IncMSE and IncNodepurity functions of Random Forest Variable Importance Measure (RF-VIM). As

the out-of-bag error remains constant after 300 trees, this would be an optimal choice for model building

for calculating RF-VIM. As no single descriptor is enough to discriminate inhibitors from non-inhibitors,

a set of 22 descriptors out of top ranked 10% of 269 (27) descriptors are prioritized and selected to build

the classification models. The data set of 1198 molecules which include 988active (IC50 values <10µM)

and 210 inactive (IC50 values ≥ 10µM ) are randomly sampled followed by five-fold cross-validation.

The complete data set is split into five parts so that four parts (959) are considered for training and

remaining one part (239) for testing. The process is iterated five times so that each time different set of

molecules are considered for testing. Then the classification models are developed using RF to classify

the molecules as inhibitors or non-inhibitors. For evaluation of the models, different statistical measures

such as Accuracy, Specificity, Sensitivity (Recall) and Precision are calculated. When the classifiers are

based on top 10% of selected descriptors, RF model shows accuracy of 86.36%, precision of 88.27%,

specificity 40.00% and sensitivity 96.24%.

5 Conclusion

Though virtual screening (VS) methods (either structure or ligand-based) cannot be solely applied to

design a new drug, yet these methods when applied in the initial stages of drug development processes,

dramatically reduce the time and cost investment to complete a drug development cycle. Machine

learning-based compound classification is one of the ligand-based virtual screening (LBVS) method which

is studied here to develop classification models to classify JNK1 bioactives from ChEMBL database as

inhibitor or non-inhibitor. We have developed machine learning-based classification models using RF to

predict JNK1 inhibitors. JNK1, a serine-threonine kinase has implications in several diseases including

cancer. Based on the existing literature it is found that JNK1 has dual role in cancer through the

process of autophagy. In mammalian cells, the antiapoptotic protein, Bcl-2 binds to Beclin 1 during

nonstarvation conditions and inhibits its autophagy function. Experimental studies show that starvation

induces phosphorylation of cellular Bcl-2 by JNK1 which causes dessociation of Bcl-2 from Beclin 1 and

activation of autophagy. It is also found that JNK1 but not JNK2 plays role in starvation induced

activation of autophagy (Wei et al., 2008), while JNK3 is implicated in neuronal apoptosis (Xie et al.,
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1998). Here, we have used Random Forest algorithm for two purposes – to measure variable importance

for optimal selection of molecular descriptors and as a classifier. It is found that by selecting top 10%

of descriptors ranked by Random Forest Variable Importance Measure, RF classifier shows accuracy

of 86.36%, precision of 96.24% and area under ROC curve (AUC)– 0.8914 . The model based on RF

classifier in this study can be used for virtual high throughput screening of large compound libraries of

JNK1 bioactives.

The limitations of this study include choice of data sets (which should ideally be stage-specific for

the study of autophagy regulating kinases (as autophagy acts as tumor-suppressor in the initial stage of

tumor development and as a tumor-promoter in well settled tumor cells to endure stressful conditions),

the choice of descriptors, prediction performance and the comparision with other classifiers viz. Support

Vector Machine, Naive Bayes, Decision Tree. Including more autophagy regulating kinases as targets to

build a common model to screen large compound library for autophagy regulating kinases is one of our

future directions of work.

References

Boulesteix, A.-L., Janitza, S., Kruppa, J., and König, I. R. (2012). Overview of random forest method-

ology and practical guidance with emphasis on computational biology and bioinformatics. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(6):493–507.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Bubici, C. and Papa, S. (2014). Jnk signalling in cancer: in need of new, smarter therapeutic targets.

British journal of pharmacology, 171(1):24–37.

Dikic, I. and Elazar, Z. (2018). Mechanism and medical implications of mammalian autophagy. Nature

Reviews Molecular Cell Biology, page 1.

Fabbro, D., Cowan-Jacob, S. W., and Moebitz, H. (2015). Ten things you should know about protein

kinases: Iuphar review 14. British journal of pharmacology, 172(11):2675–2700.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical learning, volume 1.

Springer series in statistics New York.

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., Light, Y., McGlinchey, S.,

Michalovich, D., Al-Lazikani, B., et al. (2012). Chembl: a large-scale bioactivity database for drug

discovery. Nucleic acids research, 40(D1):D1100–D1107.

Gehringer, M., Muth, F., Koch, P., and Laufer, S. A. (2015). c-jun n-terminal kinase inhibitors: a patent

review (2010–2014). Expert opinion on therapeutic patents, 25(8):849–872.

12

.CC-BY 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/459669doi: bioRxiv preprint first posted online Nov. 1, 2018; 

http://dx.doi.org/10.1101/459669
http://creativecommons.org/licenses/by/4.0/


Katari, S. K., Natarajan, P., Swargam, S., Kanipakam, H., Pasala, C., and Umamaheswari, A. (2016).

Inhibitor design against jnk1 through e-pharmacophore modeling docking and molecular dynamics

simulations. Journal of Receptors and Signal Transduction, 36(6):558–571.

Koch, P., Gehringer, M., and Laufer, S. A. (2014). Inhibitors of c-jun n-terminal kinases: an update.

Journal of medicinal chemistry, 58(1):72–95.

Lavecchia, A. (2015). Machine-learning approaches in drug discovery: methods and applications. Drug

discovery today, 20(3):318–331.

Messoussi, A., Feneyrolles, C., Bros, A., Deroide, A., Daydé-Cazals, B., Chevé, G., Van Hijfte, N.,
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