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Abstract Background: Sarcasm detection has been

a well-studied problem for the computational linguistic

researchers. However, research related to different

categories of sarcasm has still not gained much

attention. Self-Deprecating Sarcasm (SDS) is a special

category of sarcasm in which users apply sarcasm over

themselves, and it is extensively used in social media

platforms, mainly as an advertising tool for the brand

endorsement, product campaign, and digital marketing

with an aim to increase the sales volume.

Methods: In this paper, we present a deep learning

approach for detecting SDS on Twitter. We propose

a novel Convolution and Attention with Bi-directional

Gated Recurrent Unit (CAT-BiGRU) model, which

consists of an input, embedding, convolutional,

Bi-directional Gated Recurrent Unit (BiGRU), and

two attention layers. The convolutional layer extracts

SDS-based syntactic and semantic features from the

embedding layer, BiGRU layer retrieves contextual

information from the extracted features in both

preceding and succeeding directions, and attention

layers are used to retrieve SDS-based comprehensive

context representation from the input texts. Finally,

sigmoid function is employed to classify the input texts

as a self-deprecating or non-self-deprecating sarcasm.
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Results and Conclusions: Experiments are

conducted over seven Twitter datasets to evaluate

the proposed (CAT-BiGRU) model using standard

evaluation metrics. The experimental results are

impressive and significantly better than many neural

network-based baselines and state-of-the-art methods.

In this paper, we have highlighted biologically-inspired

and psychologically-motivated basis of the proposed

approach to examine its affective capabilities with

respect to SenticNet. The efficacy of the proposed

model is evaluated on two SenticNet-based sentic

computing resources – Amazon word embedding and

AffectiveSpace. Based on the experimental results,

we conclude that deep learning-based approaches have

potential to detect SDS in social media texts accurately.

Keywords Self-deprecating sarcasm · Deep learning ·
Sentic computing · CNN · BiGRU · Attention

mechanism

1 Introduction

Twitter is a prevalent micro-blogging service and

provides a platform to express views, ideas, emotions,

and sentiments about the events that are happening

in the real-world. A registered user on Twitter

can post messages (aka tweets) up to a maximum

of 280 characters. Since the beginning, Twitter’s

user-base is increasing exponentially, and it has

become a substantial fact-finding source due to

the presence of the huge amount of user-generated

contents. Thus, tweets have become beneficial for many

purposes, such as product endorsement, e-governance,

open-source intelligence, election result prediction,

opinion mining, sentiment analysis, Web surveillance,

and cyber-security.
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Tweets are generally precise, short, and informal,
and they contain non-literal expressive words, bashes,
grammatically incorrect words, unstructured phrases,
and slangs. However, these syntactically imprecise and

informal tweets are morphologically rich, and their
computational analysis is advantageous to meet the
aforementioned purposes. On the other hand, the

informal and non-literal contents available on Twitter

in the form of tweets include several categories of
figurative language, such as sarcasm, irony, humor,
etc. and their detection is crucial for many real-life
applications like opinion mining and sentiment analysis
[1].

1.1 Twitter and the Sarcasm Detection Problem

Since beginning, it has been found that user-generated
contents on the Web are easily understandable by
humans, but difficult for the machines to process
it automatically [57]. Over the years, the enormous
growth of unstructured and varied data has taken the

form of big data. It is generated at an unprecedented
rate over Online Social Networks (OSNs), and the
accurate distillation of knowledge from such data has
become an extremely challenging task [45]. Due to these

reasons, researchers are giving tremendous emphasis
on community detection problem [58]. Besides that,
because of the rapid increase in human-computer

interaction over OSNs, research problems of various
interdisciplinary sciences are shifted towards computer
science as well [2]. Figurative language is one of
such problem, which is derived from the field of
linguistics, psychology, and cognitive sciences, and now
found in OSNs on a very large-scale [3]. Moreover,
sarcasm is one of the most prominent categories of
figurative language that is found over OSNs, especially
on Twitter. According to the Macmillan English
dictionary1 sarcasm is defined as “the activity of
saying or writing the opposite of what you mean,
or of speaking in a way intended to make someone
else feel stupid or show them that you are angry”.
Users post sarcastic tweets through scornful, ridicule,

harsh, and tease associated words or phrases. The
sentiment is always linked with sarcasm where profound
emotion is articulated [46]. Due to this reason, existing

sentiment analysis and polarity recognition systems
are highly affected due to the presence of non-literal
expressions and implicit meanings in sarcastic texts [4].
Self-Deprecating Sarcasm (SDS) is a special category
of sarcasm2 in which users completely refer themselves,

1https://bit.ly/2WsUkUk (last accessed on Dec. 03, 20)
2https://bit.ly/34n06rx (last accessed on Dec. 03, 20)

and execute sarcasm using deprecated, undervalued,
disparaged, or criticizing words and phrases. Formally,
SDS3 is defined as a “sarcasm that plays off of an
exaggerated sense of worthlessness and inferiority”.

Figure 1 presents an exemplar tweet representing SDS
in which a user has referred and deprecated to herself.

1.2 Why Self-Deprecating Sarcasm?

Over the last few years, due to growing interest
of social media marketing, various commercial tools
have been developed [49], and automatically capturing
the users’ sentiments through marketing campaigns
and product preferences have raised interest in both
the scientific community and the business world. In
this line, affective computing and sentiment analysis
areas play a crucial role [44]. Self-deprecating is
one of the marketing campaign strategies to capture
users’ sentiments. Self-deprecating contents are mainly
used for brand endorsement and product campaigning
so that the sales volume can be scaled up [6].
Such contents enhance self-promotion marketing, and
they improve the product-consumer relationship and
create a place among the consumers. Moreover,
self-deprecating contents are structured in such a way

that a brand accepts flaws without affecting its brand
value. Besides OSNs, self-deprecating contents are also
seen in celebrities’ interviews as well as in politicians’

speeches [6]. Stieger et al. [5] considered sarcasm
as aggressive humor. Interestingly, self-deprecating
contents are composed using sarcasm and humor
to express oneself down. The main purpose behind
the use of SDS is to intensify self-deprecating
marketing strategies for various purposes, such as
brand endorsement, product campaign, digital and
content marketing, and e-advertising to excel the sales
volume. Figure 2 presents an exemplar SDS-based
advertisement, wherein Converse, an American shoe
company, expresses SDS advertisement using the phrase
shoes are boring to promote their new sneakers shoes.

Fig. 1: An exemplar tweet representing
self-deprecating sarcasm

3https://bit.ly/3qmxJF9 (last accessed on Dec. 03, 20)
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Fig. 2: A self-deprecating sarcasm-based advertisement

1.3 Our Contribution

As stated earlier, SDS is a special category of sarcasm
where users apply sarcasm to themselves. On analyzing
the tweets of multiple datasets used in this study, we
have the following observations:

– There are several tweets in which users refer

themselves. Such tweets are called self-referential

tweets.
– All sarcastic or non-sarcastic tweets need not be

self-referential.
– A self-referential tweet can be considered as a SDS,

if it is sarcastic in nature.

This paper is an extension of one of our
previously published conference paper [7] by conducting
experiments over six benchmark datasets, additional
pattern-based regular expression queries, inclusion
of a new model called Convolution and Attention
with Bi-directional Gated Recurrent Unit (CAT-BiGRU)
based on deep learning techniques, addition of a

detailed analysis of the experimental findings and

comparison with many neural network baselines
and state-of-the-art methods. The main idea behind

the CAT-BiGRU model is to retrieve contextual
representations from the candidate self-referential
tweets to detect SDS. Incongruity using contextual
representation plays an important role in sarcastic texts
[8]. Since, a self-referential tweet can be considered
as SDS only if it has sarcastic attributes, extracting
such contextual representation helps to detect SDS
accurately.

Each candidate self-referential tweet is converted
into a self-referential input vector and passed to the
pre-trained word embedding layer. Thereafter, output
generated from the embedding layer is provided to
a convolution, followed by a Bi-directional Gated
Recurrent Unit (BiGRU), and two attention layers. The

convolutional layer extracts SDS-based syntactic and

semantic features at different positions of the input
embedding vector using one-dimensional convolutional

filters. As a result, low-level features from the

high dimensional pre-trained embedding vector are

extracted. These features are semantically robust and

abstract, and they also reduce the overall dimensions
of the candidate self-referential tweets. The BiGRU

layer extracts contextual information-based sequences
from the extracted features of the convolutional
layer. BiGRU represents actual semantics using the
contextual information which is significantly better
than a simple Gated Recurrent Unit (GRU). It
consists of both forward and backward directions,
where preceding and succeeding contextual information
sequences are extracted from the forward and backward
directions, respectively. There are two attention layers
used in our proposed CAT-BiGRU model, which provide
distinct attention in terms of the distribution of weights
to the contextual information-based variable-length
sequences retrieved from the forward and backward
directions of BiGRU for context representation. Finally,

a comprehensive context representation is obtained by
concatenating the outcomes of two attention layers,
and it is forwarded to a sigmoid activation function to

classify a candidate self-referential tweet as either SDS
or Non-Self-Deprecating Sarcasm (NSDS).

In short, the main contributions of this paper can
be summarized as follows.

– Exploring a novel SDS detection technique for
textual data (tweets) with an aim to enhance
SDS-based marketing strategy.

– Implementation of a filtration technique to identify
candidate self-referential tweets from the datasets.
The main intent behind this filtration is to remove
all those tweets from the datasets that can never
represent a SDS.

– Development of a deep learning-based CAT-BiGRU

model for detecting SDS on Twitter.
– Generating a new Twitter hashtag-based

annotated dataset for SDS detection tasks.

The rest of the paper is organized as follows.
Section 2 presents a brief review of the state-of-the-art
computational techniques for sarcasm detection.
Section 3 presents an overview of the proposed
approach. It also presents a description of the filtration
module to identify candidate self-referential tweets
and functional aspects of our proposed CAT-BiGRU

model. Section 4 presents the datasets, experimental
settings, evaluation metrics, and experimental results.
It also presents a comparative analysis of the proposed
approach with many neural network-based baselines
and state-of-the-art methods. Section 5 presents an
important discussion to analyze the effect of the
CAT-BiGRU model on different embedding dimensions,

parameters, and sentic computing resources. Finally,
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section 6 concludes the paper with future directions of
research.

2 Related Work

This section presents a detailed survey of various
state-of-the-art techniques based on machine
learning, deep learning, and other (i.e., rule- and
linguistic-based) approaches for sarcasm detection.
Besides that, we have also highlighted the current
status and limitations of the existing methods.

2.1 Machine Learning-Based Approaches

Sarcasm detection can be considered as a binary
classification task [9]. González-Ibáñez et al. [10]

considered lexical (interjections and punctuations) and

pragmatics (smiley, frowning faces, etc.) factors to
identify sarcasm in tweets. They considered unigram,

dictionary-based lexical and pragmatic features, and
applied Logistic Regression (LR), Sequential Minimal
Optimization (SMO), and Support Vector Machine

(SVM) techniques for sarcasm detection. They noticed
that SMO provides better results in comparison
to LR. Lukin and Walker [11] considered forum
post from “Internet argument corpus”. They applied

a bootstrapping technique to identify sarcasm and
nastiness, and trained high precision classifiers based
on both sarcasm and non-sarcasm posts. As a

result, a large labeled dataset is generated to train
different classifiers. Rajadesingan et al. [12] proposed
a behavior modeling-based approach and diagnosed
historical tweets for sarcasm detection. They considered
text expression-, emotion-, contrast-, familiarity-, and
complexity-based features and applied Decision Tree
(DT), SVM, and LR classifiers. Bouazizi and Ohtsuki

[1] considered a pattern-based approach for tweets.
They extracted sentiment-, punctuation-, syntactic-,
sematic-, and pattern-based features and used Näıve

Bayes (NB), SVM, and maximum entropy classifiers for

sarcasm detection.
Apart from supervised techniques,

semi-supervised-based techniques are also considered
in few studies. Tsur et al. [13] considered a
semi-supervised technique for sarcasm identification.
They considered three feature sets involving syntactic,
patterns, and punctuations. They identified a large set
of patterns from frequent words available on Amazon

dataset. Davidov et al. [14] followed the same approach
as [13] for analysing Twitter and Amazon product
reviews. Recently, we proposed the first computational
study on SDS detection task in [15], and highlighted

different categories of sarcasm. In [15], we applied a

rule-based approach to detect candidate self-around

tweets, and identified various self-deprecating and
hyperbolic features. Finally, we applied DT, NB, and

bagging classifiers for detecting SDS.

2.2 Deep Learning-Based Approaches

In the last few years, deep learning-based approaches
are broadly applied in numerous Natural Language
Processing (NLP) problems [48], including the sarcasm
detection task. Schifanella et al. [16] proposed sarcasm
detection task in multimodal platforms, including
Twitter, Instagram, and Tumblr on visual and
textual components. They applied deep Convolutional
Neural Network (CNN) and SVM, and considered
lexical, subjectivity, n-grams, and visual-semantics
features. Amir et al. [17] considered CNN to learn
user- and utterance-based embeddings. They extracted
contextual features by user embedding learning for
sarcasm detection. In addition, they also highlighted
content embedding learning using lexical representation

in the convolutional layer. Zhang et al. [9] applied
a bi-directional gated Recurrent Neural Network
(RNN) for sarcasm detection. They used syntactic

and semantic information to obtain contextual features
in historical tweets via a pooling neural network.
Poria et al. [18] considered CNN and SVM, and
applied features, such as sentiment, emotion, and
personality on balanced and unbalanced datasets.
Avvaru et al. [19] considered a transformer-based model
for sarcasm detection in conversation sentences over
Twitter and Reddit datasets. Authors highlighted
that consideration of larger corpus increases context
and perform better in terms of accuracy. Dubey
et al. [20] converted the sarcastic expressions into
their literal expressions. Apart from the rule-,
and statistical machine learning translation-based
approaches, they considered deep learning-based
techniques, such as encoder decoder-, attention-,
and pointer generator-networks. Hazarika et al. [51]
proposed CASCADE, a hybrid approach containing both

content- and context-driven modeling to detect sarcasm
on discussions post available on social media. Dubey et
al. [21] detected sarcasm in the numerical portion of the
texts using CNN and applied attention network-based
deep learning models. Interestingly, they emphasized
that sarcasm can also be involved in numbers.
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2.3 Other Approaches

Besides machine learning and deep learning-based
approaches, rule-based and linguistic-based approaches
are also used for sarcasm detection. Riloff et al. [22]
proposed to identify tweets with “positive sentiment
words contradicting with negative situation phrases”
and considered them as sarcasm. Khattri et al.
[23] considered user historical tweets and proposed
a “contrast-based predictor” which reported the
sentiment contradictions within the target tweets.

Further, Bharti et al. [24] proposed two algorithms

namely, “parsing-based lexical generation algorithm”
and “interjection word start”. They considered lexical

and hyperbolic (e.g., intensifier) features as an
indicator of sarcasm. Liebrecht et al. [25] applied a
linguistic approach based on balanced Winnow [26]
technique for sarcasm detection. Likewise, Mishra
et al. [27] considered lexical- and contextual-based
features. They considered the gaze behavior of
the readers to understand sarcasm and highlighted
cognition cognizant techniques involving eye-tracking
as a promising approach for sarcasm detection.
Justo et al. [36] proposed SOFOCO “Spanish Online
Forums Corpus”, wherein authors extracted dialogic

debates from online sources, and further annotated by

crowdsourcing platform to perform automatic analysis
of sarcasm and nastiness. Mehta et al. [47] discussed

that personality trait can be used as an input for
sarcasm detection task.

2.4 Current Status and Limitations

All of the aforementioned approaches confirm the
richness and potential of the data available on
OSNs, especially in the form of tweets for effective
sarcasm detection. All approaches discussed above
have considered only sarcasm detection, and research
on detecting different categories of sarcasm has still
not received much attention. Considering the fact
that sarcasm occurs in different forms, and SDS
is an important sarcasm category, development of
SDS detection techniques deserves greater attention,
because it is useful for numerous brand endorsement
and product campaign purposes to boost and excel the
sales volume [2]. Hence, the proposed SDS detection is

a significant, non-trivial, and worth investigation task.

3 Proposed Approach

In this section, we present the functional details of
our proposed CAT-BiGRU model for detecting SDS.

Figure 3 presents a visualization of the work-flow of our

proposed approach. Starting with a detailed description

of the data crawling, ethical aspects, data pre-processing,
and self-referential tweets identification modules, the

functionality of CAT-BiGRU model is presented in the
following sub-sections.

3.1 Data Crawling

In this study, we have considered a total of seven
datasets, including six benchmark datasets. Since
authors of the benchmark datasets are allowed to
provide only tweet ids due to the Twitter policy,

we have developed a data crawler using Python 2.7

to curate tweets using the Twitter REST API and
store them in a local repository. Since some of the

tweets have been deleted or not available due to

the protection criteria set by the Twitter users, our
crawler was unable to curate such protected or deleted

tweets at the time of crawling. In addition to six
benchmark datasets, we have created a new dataset,
namely Twitter-280 containing both sarcasm and
non-sarcasm tweets through crawler from 1st June 2019
to 31st July 2019 using the hashtag-based annotation
technique. The sarcasm tweets are collected using
#sarcasm hashtag, whereas non-sarcasm tweets are
collected using the #not, #education, #politics, #love,
and #hate hashtags. Statistical details of all datasets
are presented in sub-section 4.1. The newly created
Twitter-280 dataset is publicly accessible, but as per

the Twitter rules and guidelines and in light of the
ethical aspects, we are restricted to provide only tweet
ids for both sarcasm and non-sarcasm categories. The

dataset and source code of the proposed approach is

publicly accessible on the GitHub.4

3.2 Ethical Aspects

In OSNs, consideration of ethical aspects and following
proper guidelines for data redistribution of online
platforms have become a crucial task. In this work,

we tried our best to make sure about the privacy
and protection of accumulated tweets. The proposed
work was carried out for academic research purposes
to investigate the effectiveness and detection of SDS on

tweets using both 140 and 280 character limit criteria

set by Twitter, and we have crawled tweets as per
Twitter’s rules and guidelines, accordingly.

Elovici et al. [37] presented several ethical aspects,
which are taken into consideration during and after the

4https://github.com/Ashraf-Kamal/

Self-Deprecating-Sarcasm-Detection
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Fig. 3: Work-flow of the proposed CAT-BiGRU model

data crawling tasks. The experiment was performed

after receiving clearance from the research ethics
committee of the department, including my doctoral
supervisor. We ensured that crawled tweets are not
shared or will not be shared in the future with
any organization or third party/person. During the
experiment of this paper, we tried our level best
to not violate Twitter’s terms of service5 and

privacy policy.6 Further, as per Twitter’s content
redistribution policy,7 academic researchers are allowed
to share an unlimited number of tweet ids only for

peer-review or validation of research works. Considering
this information, we will only distribute tweet ids of
our dataset using the GitHub repository link given in
sub-section 3.1.

3.3 Data Pre-processing

Since raw tweets contain various noise and unwanted

information like numbers, punctuations, acronyms,
etc., elimination of such undesirable information is
important for better accuracy and efficiency of the
system. To this end, we have applied data cleaning
steps, such as removal of symbols, punctuation
marks, URL’s, retweets, mentions, ampersands, dots,
white spaces, double quotes, emoticons, and numbers.

Thereafter, we converted all tweets into lower-case

letters and removed stop-words to reduce their
length and retain only the significant information.

While filtering stop-words, we have retained all

self-referential -specific stop-words like i,my,me,mine,
myself , we, us, our, and are in the tweets.

After data cleaning, we applied tokenization and
Parts-of-Speech (POS) tagging over each tweet using
the spaCy8 tagger, wherein POS tagging is based on

5https://twitter.com/en/tos (last accessed on Dec. 03,
20)

6https://twitter.com/en/privacy (last accessed on Dec.
03, 20)

7https://developer.twitter.com/en/

developer-terms/agreement-and-policy (last accessed
on Dec. 03, 20)

8https://spacy.io/ (last accessed on Dec. 03, 20)

the penn tree bank English POS tagset.9 Finally, all

tweets containing less than three tokens/words were
removed from the dataset, because for defining context
of a word, say w, we need at least one word left and

one word right to w.

3.4 Self-Referential Tweets Identification

On analyzing both sarcasm and non-sarcasm related
tweets of the aforementioned datasets, we found that
all tweets are not self-referential. Moreover, we found
that if a tweet is not self-referntial then it can never
be a SDS. Therefore, in line to the work of Zhao et
al. [28], we applied a filtering mechanism to consider
only self-referential tweets of the datasets for further

processing. In brief, the main steps of this module can

be summarized as follows:

(i) Identification of explicit self-referential tweets:
This step aims to identify self-referential tweets based
on the presence of some explicit patterns in the tweets.
Table 1 presents a list of regular expressions-based
patterns that are applied to identify self-referential
tweets. These patterns are categorized as – specific
patterns and generic patterns.

– Specific patterns: Specific patterns are mainly based
on either tokens or the sequential order of the
tags and tokens, and vice-versa. In some of the

patterns, tokens like love and still are fixed,
because that frequently occur in self-referential
tweets [38]. Moreover, these tokens are frequently
occur in sarcastic tweets as well [3,22,24]. Similarly,
tokens based on interjections, such as oh, wow,
or yeah are also found as strong indicators.
Effron [39] mentioned interjection as an overtly
self-referential, and it is explicitly present in most
of the self-referential instances. Interjection is an
important linguistic marker in sarcastic tweets as
well [3,6,24,41]. If a pre-processed tweet matches

with any one of the specific patterns that are given

9https://www.ling.upenn.edu/courses/Fall_2003/

ling001/penn_treebank_pos.html (last accessed on Dec. 03,
20)
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in table 1, then it is added into the list of explicit
self-referential tweets, Exps.

– Generic patterns: Generic patterns are mainly
first person singular/plural personal pronoun based

tokens like ‘i’ and ‘we’. Besides these, tokens
based on their other grammatical variants, such as
my’, ‘me’, ‘mine’, ‘myself ’, ’are’, ‘our’, ‘us’, and

‘ourselves’ are also referred as generic patterns. The
personal pronouns based tokens are strong indicator
to categorize a tweet as a self-referential tweet [40].
If a pre-processed tweet matches with any one of the
generic patterns that are given in table 1, then it is
added into the list of explicit self-referential tweets,
Exps.

Table 1: Patterns to identify explicit self-referential
tweets

Patterns Category
UH (i | my | we | are) Specific
(we | i) love (it | when) Specific
when (my | our) Specific
(am | are) still Specific
(myself | ourself) (JJ | RB) Specific
(oh | wow | yeah) (i | we) (real∗y | great∗) Specific
(i | we) MD RB Specific
(i | am | my | me | mine | myself) Generic
(we | are | us | our | ourselves) Generic

(ii) Identification of clusters from explicit
self-referential tweets:
This step clusters all tweets of Exps in the form
of connected components. Initially, Exps tweets are
modeled as an undirected graph, wherein each explicit
tweet represents a node, and similarity values between
each pair of nodes are used to create edges. The

similarity between two nodes (explicit self-referential

tweets), say ti and tj , is calculated using the Jaccard

coefficient, which is defined in equation 1. In this

equation, Ti and Tj represent the set of tri-grams of
the tweets ti and tj , respectively. In case of tweets,
unigrams, bigrams, and trigrams are the most adopted

n-grams [42,43]. We have taken tri-grams with sliding
window of size 1 instead of larger n-grams (4-grams
or 5-grams) in our experiment. An edge between
a pair of self-referential tweets (nodes) is created
only if the Jaccard similarity between their tri-grams
is greater than a threshold of 0.6, as given in [28].
Finally, all explicit self-referential tweets of a connected
component form a cluster.

J(ti, tj) =
|Ti ∩ Tj |
|Ti ∪ Tj | (1)

(iii) Pattern-mining from clusters:
After identifying the clusters of the explicit
self-referential tweets, frequent patterns (tri-grams)
from the clusters are mined in this step. To this end,

the occurrence probability of all patterns for each
cluster is calculated, and the patterns having the
probability value greater than 0.5 are considered as

frequent patterns. For example, if a cluster consists of
20 tweets and a tri-gram pattern “love being ignored”
is available in 10 out of 20 tweets, then such pattern is
considered as a frequent tri-gram pattern. All identified
frequent patterns are used to create a list of frequent
patterns, FP , and a list of unique frequent patterns,
P , is created by removing the duplicate patterns.

(iv) Identification of implicit self-referential tweets:
This steps considers all those tweets that do not have
any match in step (i) mentioned above, and termed
as implicit tweets. The main purpose of this step is
to recover from the low recall value. The identified
patterns in the previous step are used to identify

implicit self-referential. To this end, each implicit tweet
is tokenized into tri-grams and matched with the set
of frequent patterns, P . If an implicit tweet contains

any frequent pattern of P , then it is considered as an
implicit self-referential tweet, and added to the list of
implicit self-referential tweets, Imps. Table 2 presents

a partial list of three implicit self-referential tweets.

Table 2: Few sampler self-referential tweets identified

using frequent patterns

S. No. Implicit self-referential tweet
1 failed physics exams great.
2 absolutely love being left hang.
3 wow nothing like bit happiness.

(v) Merging with explicit self-referential tweets:

In this step, both sets of explicit self-referential tweets
and implicit self-referential tweets are merged together
to generate a list, St, of candidate self-referential tweets,

i.e., St = Exps ∪ Imps. In the remaining part of
this paper, the list (St) is used as an input for SDS
detection.

3.5 CAT-BiGRU Model

This section presents a new CAT-BiGRU model used in
our proposed approach for detecting SDS. The sequence

of words in a candidate self-referential tweet represents
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important characteristics to determine whether the
tweet represents a SDS or not. As stated in section 1.3,
contextual representation contributes significantly to
self-deprecating sarcastic texts. In recent years, various

neural network models, like RNN, have shown better
performance in many NLP applications, and obtained
remarkable outcomes with less number of features. The

architecture of RNN is sequential, and it can process
arbitrary length sequences, mainly to perform sequence
modeling tasks. GRU belongs to the RNN family,
and it overcomes the complicated word modeling task
associated with unstructured texts. Although, GRU
extracts contextual information from the texts, it does
not retrieve important information from the identified
contextual data.

CAT-BiGRU model aims to improve the
aforementioned drawbacks by integrating a
convolutional, BiGRU, and two attention layers
together. Figure 4 presents the architecture of our
proposed CAT-BiGRU model. Motivated by Liu and
Guo [29] architecture, the convolutional layer is

used to extract SDS-based syntactic and semantic
features from the candidate self-referential tweets,
enabling BiGRU to extract contextual information

as sequences from the features extracted by the
convolutional layer in both forward and backward
hidden layers. Two attention layers are applied to
extract SDS-based context representation using the
weights of the important words. These representations
are retrieved from the preceding and succeeding
contextual information sequences of BiGRU. Further,
the contextual information retrieved from the
attention layers is concatenated for a comprehensive
context representation. Finally, it is forwarded to the
sigmoid activation function to classify a candidate
self-referential tweet as either SDS or NSDS. In brief,
the overall functioning of the CAT-BiGRU model can be
summarized as follows:

Input layer:
Each candidate self-referential tweet is tokenized,
converted into sequences, and replaced with its
dictionary index value, i.e., SεR1×N , where N
represents words (tokens) count in the entire training
dataset containing candidate self-referential tweets. To
make each candidate self-referential tweet of the same
length, a fixed value of padding is used, i.e., SεR1×K ,
where K is the maximum length of a candidate
self-referential tweet, and it is same for all candidate
self-referential tweets in the dataset. In this study, the
value of K is set as 20. Thereafter, it is transformed
into a matrix form, where each row represents a
self-referential tweet vector, and passed to the word

embedding layer.

Embedding layer:
Embedding layer works as a hidden layer in

neural network architectures. It shows distributed
representations of the words as low-dimensional
real-valued dense vectors learned from a large corpus
in a continuous embedding space. In word embedding,
words that are semantically related to each other
have similar vector representation. Furthermore,
semantic and syntax relations of words depend on
the context factor, and it is useful for many NLP
applications involving text classification, machine
translation, and speech recognition. In this paper,
Global Vectors (GloVe), a pre-trained word embedding

of 200-dimensions based on Twitter-specific data
that consists of 27 billion tokens is used. It is one
of the popular pre-trained word embedding, which

directly takes the global statistics of the large corpus.
It considers co-occurrence matrix dataset for training,
where word pairs based on target and context are

taken to encode the semantic information. In this
paper, the self-referential input vector generated from
the input layer is feed to the pre-trained GloVe word
embedding layer, which converts each token into a
distributional vector of dimension D. As a result, the
input self-referential matrix is converted into SεRK×D.

Convolutional layer:
The convolutional layer is employed for dimension
reduction task, and it also captures the sequence
information from the input embedding vector. In
CAT-BiGRU, a one-dimensional convolutional operation
takes place in the convolutional layer. We have
considered a total of 256 filters and a window size of

3, which moves on the embedding vector for extracting
features. As a result, various sequences are generated
that grasp the SDS-based syntactic and semantic

features. Equation 2 presents an nth feature sequence
fn, which is generated from a window of words xt,
where Wt and B represent the filter weight and bias
term, respectively; and r(·) represents the non-linear
activation function as rectified linear unit (aka ReLU).
All 256 filters perform the convolutional operation from
top to bottom on an input candidate self-referential
tweet. Finally, the feature sequence is obtained as Lf

= [f1, f2, ..., f256].

fn = r(Wt · xt +B) (2)

BiGRU layer:
BiGRU seems the right fit for sequential modeling
tasks, and it represents word-vector representation.
It works in both forward and backward directions,
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Fig. 4: Architecture of the proposed CAT-BiGRU model

and obtains contextual information-based sequences
from the features generated by the convolutional

layer. It contains a forward GRU (
−−−→
GRU) which

represents the succeeding feature sequences (i.e., f1 to
f256) and a backward GRU (

←−−−
GRU) which represents

the preceding feature sequences (i.e., f256 to f1).
Formally, equations 3 and 4 present BiGRU outputs
in forward and backward directions, respectively. It
obtains annotations for SDS-based words (tokens) by
summarizing both forward and backward directions.
These annotated words (tokens) contain contextual
information in a candidate self-referential tweet.

Annotation for a given feature sequence Lf of a
candidate self-referential tweet St is obtained by the
−→gf and ←−gb for the forward and backward hidden states,
respectively. Both states compile the information
which is collected around Lfn to retrieve contextual
information-based sequences related to the SDS.

−→gf =
−−−→
GRU(Lfn), n ∈ [1, 256] (3)

←−gb =
←−−−
GRU(Lfn), n ∈ [256, 1] (4)

Attention layer:
In neural networks, an attention mechanism highlights
the important keywords and minimizes the effect of
non-keywords by specifying distinct weights to each
word of a text. In this paper, two attention layers
are used to allow different weights for the words

in a candidate self-referential tweet to strengthen
the understanding of the SDS-based words/tokens.

Attention mechanism focuses on self-deprecating
sarcastic keyword-based features and minimizes the
effect of non-keywords in a candidate self-referential
tweet. The word annotation −→gf is first provided to
retrieve a hidden representation −→αf by using one layer

perceptron. It is formally presented in equation 5, where

w and b represent weight and bias, respectively, and
tanh is the hyperbolic tangent function.

−→αf = tanh(w−→gf + b) (5)

The CAT-BiGRU model highlights the importance

of each word, and it is done by calculating the
similarity between −→αf and

−→
βf , where

−→
βf represents

word-level context vector, which is initialized randomly
and fully learned at the time of training the CAT-BiGRU
model. It is considered as a high-level representation
of the self-deprecating sarcastic words from the input
candidate self-referential tweets. Further, it obtains a

normalized weight −→zf for each word using the softmax
activation function, as given in equation 6, where ∗
and exp(.) represent multiplication and exponential

function, respectively.

−→zf =
exp(−→αf ∗ −→

βf )∑N
i=1(exp(

−→αf ∗ −→
βf ))

(6)

Thereafter, equation 7 presents the forward context
representation Fc, and it is computed using −→gf
and −→zf . Similarly, equation 8 presents the backward
context representation Bc, and it is computed using



10 Cogn Comput

weighted sum of the word annotation ←−gb and the
normalized weight ←−zb in the backward direction. Hence,
annotation of a particular feature sequence Lf is
determined by concatenating the forward and backward

context representations Fc and Bc, respectively. A
comprehensive context representation Sc = [Fc, Bc] is
obtained by concatenating Fc and Bc which represents

a set of comprehensive features. Finally, it is feed to
the sigmoid activation function, which is a two-class
logistic regression function, to classify a candidate
self-referential tweet as either SDS or NSDS.

Fc =
∑

(−→zf ∗ −→gf ) (7)

Bc =
∑

(←−zb ∗ ←−gb) (8)

In our proposed CAT-BiGRU model, drop out is
used to reduce over-fitting and improve generalization
error by dropping a random sample of neurons during
the training process. A binary cross-entropy loss
function is used for classifier training which interprets
self-referential tweets label as SDS or NSDS. Further,
all datasets are divided into a training set and a
testing set, where 80% data is used for training and
20% is used for testing. The batch size and verbose
values are taken as 256 and 2, respectively. We have
considered Adam optimization algorithm and a total of
100 epochs to train the model which classifies candidate

self-referential tweets as either SDS or NSDS.

4 Experimental Setup and Results

This section presents the experimental details of our

proposed approach. It includes the description of
the datasets, experimental settings, evaluation metrics
and results, and comparative analysis with neural

network-based baselines and state-of-the-art methods,
as discussed in the following sub-sections.

4.1 Datasets

The proposed approach is evaluated over seven

datasets, including six benchmark datasets including
Twitter data. All these datasets are based on the old
140 characters limit. Besides these, we have created a

new Twitter dataset, namely Twitter-280, which is
based on the new 280 characters limit. Table 3 presents
a brief statistics of the datasets.

Out of the seven datasets given in table 3, tweets
of three datasets viz. Ptácek et al. [30], SemEval
2015 [4], and Riloff et al. [22] are manually annotated
as either SDS or NSDS. These datasets are directly
passed to the CAT-BiGRU model for SDS detection.

Table 3: Statistics of the datasets

Datasets #Sarcasm #Non-sarcasm
Total

(#tweets)
Ptácek et al. [30] 53088 98195 151283
SemEval 2015 [4] 1526 2366 3892
Riloff et al. [22] 370 1431 1801
Bamman and Smith [32] 7702 7358 15060
Ling and Klinger [31] 26776 25800 52576
Ghosh and Veale [33] 19452 22251 41703
Twitter-280 17488 25134 42622

Table 4: Class-distributions of the manually
annotated datasets

Datasets #SDS #NSDS
Total

(#tweets)
Ptácek et al. [30] 10793 11207 22000
SemEval 2015 [4] 1189 1310 2499
Riloff et al. [22] 483 417 900

Class-distributions of these three manually annotated

datasets are given in table 4.
Another three benchmark datasets viz. Ling and

Klinger [31], Bamman and Smith [32], and Ghosh

and Veale [33], and the newly created Twitter-280
dataset of table 3 are used for the identification
of self-referential tweets, as discussed in sub-section
3.4. Table 5 presents the statistics of the datasets
after filtering out non-self-referential tweets using the
self-referential tweets identification module.

Table 5: Statistics of the datasets after filtering out
non-self-referential tweets

Datasets #Sarcasm #Non-sarcasm
Total

(#tweets)
Bamman and Smith [32] 3366 3548 6914
Ling and Klinger [31] 22591 18864 41455
Ghosh and Veale [33] 12767 13991 26758
Twitter-280 14492 19389 33881

4.2 Experimental Settings

In this paper, data crawling, data pre-processing,
and self-referential tweets identification modules are
implemented in Python 2.7. The CAT-BiGRU model
for SDS detection task is implemented in Python 3.5

and executed using a neutral network API, Keras,10

which is a high-level neural network library in Python,
and it is mainly used for experimental evaluation of

10https://keras.io/(last accessed on Dec. 03, 20)
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the deep learning models. Table 6 presents the values
of different hyperparameters used to implement the
CAT-BiGRU model.

Table 6: Hyperparameters and their values used to
implement the CAT-BiGRU model

Hyperparameter Value
Embedding dimension 200
Padding sequences 20
Number of filters 256
Filter width 3
Dropout 0.4
Number of neurons (GRU) 256

4.3 Evaluation Metrics

The proposed approach is evaluated using four standard
evaluation metrics – precision, recall, f-score, and

accuracy. These metrics are defined formally in
equations 9, 10, 11, and 12 in terms of True positive
(TP), False Positive (FP), True Negative (TN), and
False Negative (FN). TP is defined as the number of

correctly identified SDS tweets. FP is defined as the
number of incorrectly identified SDS tweets. TN is
defined as the number of correctly identified NSDS
tweets. Finally, FN is defined as the number of
incorrectly identified NSDS tweets.

Precision (P ) =
TP

TP+ FP
(9)

Recall (R) =
TP

TP+ FN
(10)

F-score =
2× P× R

P+ R
(11)

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(12)

4.4 Evaluation Results and Comparative Analysis

This section presents the evaluation results of our

proposed approach and comparison with neural
network-based baselines and state-of-the-art methods
over all datasets in terms of precision, recall, f-score,
and accuracy. Table 7 presents the evaluation results,

where the bold entries highlight the best results across
manually annotated and hashtag labeled datasets. This
section also presents a comparative analysis over all

datasets in terms of training and validation accuracy
values, as given in figure 5.

4.4.1 Comparison with Neural Network-Based
Baselines

Starting with a brief description of the neural
network-based baseline methods and their different
combinations, this section presents a comparison of our
proposed approach with the baseline methods.

– CNN: Kim [34] introduced CNN. It is used as a
baseline for comparison with our proposed model.
In our experiment, the filter width and number of
filters are set as 3 and 100, respectively.

– LSTM: Long-Short Term Memory (LSTM) [35] is
a kind of RNN which does not suffer with the
vanishing gradient problem. It consists of three
digital gates (input, output, and forget) and a cell
memory state. In our experiment, a total of 256
neurons are considered.

– BiLSTM: Likewise BiGRU, Bi-directional
Long-Short Term Memory (BiLSTM) consists
of a forward LSTM and a backward LSTM. In our
experiment, a total of 256 neurons are considered.

– CNN-LSTM: It is a combination of the CNN and
LSTM model. In our experiment for CNN-LSTM
combination, filter width, number of filters, and

number of neurons are set as 3, 256, and 256,
respectively.

– CNN-BiLSTM: It is a combination of the CNN
and BiLSTM model. In our experiment for
CNN-BiLSTM combination, filter width, number of
filters, and number of neurons are set as 3, 256, and
256, respectively.

The results presented in table 7 show that our
proposed approach using the CAT-BiGRU model
outperforms the neural network-based baseline

methods over all datasets. Overall, SemEval 2015 [4]

and Riloff et al. [22] achieved better results in terms
of all evaluation metrics over all datasets. SemEval

2015 et al. [22] achieved highest precision and accuracy
values, whereas Riloff et al. [22] achieved highest
recall and f-score values. On the other hand, hashtags
labeled datasets also perform better in terms of all
evaluation metrics for the proposed approach. Bamman
and Smith [32] performs better in terms of precision
and accuracy values, Ling and Klinger [31] achieved
highest recall value, and highest f-score value is same
for Bamman and Smith [32] and Ling and Klinger
[31] over hashtag labeled datasets. The newly created
Twitter-280 dataset also receives better results for

the proposed approach in terms of the aforementioned
evaluation metrics.

It can be observed that among baseline methods,

CNN achieved the highest precision, f-score, and
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Table 7: Performance evaluation results over Ptácek et al. [30] (DS-1), SemEval 2015 [4] (DS-2), Riloff et al. [22]
(DS-3), Bamman and Smith [32] (DS-4), Ghosh and Veale [33] (DS-5), Ling and Klinger [31] (DS-6), and

Twitter-280 (DS-7) datasets in terms of precision, recall, f-score, and accuracy. The bold entries in the table
highlight the best results across the manually-annotated and hashtag labeled datasets

Evaluation metrics ↓ Datasets → Manually annotated Hashtag labeled
DS-1 DS-2 DS-3 DS-4 DS-5 DS-6 DS-7

Precision

Proposed approach 0.90 0.92 0.91 0.86 0.84 0.84 0.77
Abulaish and Kamal [15] 0.67 0.72 0.66 0.54 0.52 0.76 0.57
Ghosh and Veale [33] 0.73 0.62 0.53 0.51 0.61 0.73 0.61
CNN 0.80 0.80 0.77 0.73 0.76 0.81 0.75
LSTM 0.75 0.70 0.58 0.60 0.62 0.72 0.57
BiLSTM 0.75 0.69 0.56 0.60 0.61 0.72 0.57
CNN-LSTM 0.73 0.67 0.53 0.60 0.57 0.70 0.33
CNN-BiLSTM 0.72 0.66 0.54 0.52 0.56 0.69 0.7

Recall

Proposed approach 0.89 0.93 0.98 0.85 0.83 0.87 0.75
Abulaish and Kamal [15] 0.36 0.42 0.48 0.37 0.34 0.48 0.16
Ghosh and Veale [33] 0.72 0.33 0.97 0.24 0.60 0.74 0.65
CNN 0.81 0.79 0.87 0.69 0.71 0.85 0.62
LSTM 0.77 0.68 0.95 0.54 0.52 0.76 0.33
BiLSTM 0.76 0.71 0.97 0.51 0.54 0.75 0.29
CNN-LSTM 0.72 0.45 0.96 0.35 0.33 0.73 0.37
CNN-BiLSTM 0.72 0.35 0.95 0.22 0.28 0.73 0.72

F-score

Proposed approach 0.89 0.92 0.94 0.85 0.84 0.85 0.76
Abulaish and Kamal [15] 0.46 0.53 0.55 0.43 0.41 0.58 0.25
Ghosh and Veale [33] 0.72 0.43 0.68 0.32 0.60 0.74 0.63
CNN 0.80 0.79 0.81 0.70 0.73 0.83 0.68
LSTM 0.75 0.68 0.72 0.57 0.56 0.74 0.41
BiLSTM 0.75 0.69 0.71 0.55 0.57 0.73 0.38
CNN-LSTM 0.72 0.53 0.68 0.40 0.41 0.71 0.35
CNN-BiLSTM 0.72 0.45 0.69 0.30 0.37 0.70 0.71

Accuracy

Proposed approach 0.90 0.93 0.92 0.86 0.84 0.84 0.80
Abulaish and Kamal [15] 0.57 0.61 0.60 0.53 0.54 0.63 0.57
Ghosh and Veale [33] 0.73 0.58 0.53 0.51 0.53 0.71 0.57
CNN 0.80 0.82 0.80 0.72 0.75 0.81 0.75
LSTM 0.75 0.71 0.62 0.61 0.61 0.71 0.61
BiLSTM 0.76 0.71 0.57 0.61 0.61 0.70 0.61
CNN-LSTM 0.73 0.62 0.54 0.56 0.56 0.67 0.57
CNN-BiLSTM 0.72 0.60 0.53 0.52 0.55 0.67 0.57

accuracy values, except in Riloff et al. [22], wherein
BiLSTM achieved highest recall value. Similarly, for
hashtag labeled datasets, CNN reports the highest
precision, recall, f-score, and accuracy values. However,
the proposed approach performs 15.00% better in terms
of precision, 16.04% better in terms of f-score, and
13.41% better in terms of accuracy values in comparison
to CNN, and 1.03% better in terms of recall value
in comparison to BiLSTM for manually annotated
datasets. Similarly, the proposed approach performs

17.80% better in terms of precision, 2.35% better in
terms of recall, 2.40% better in terms of f-score, and
19.44% better in terms of accuracy values in comparison

to CNN for hashtag labeled datasets.
Figure 5 presents a visualization-based comparative

analysis in terms of training and validation accuracy
values for all datasets. It can be observed from

this figure that the proposed approach outperforms
neural network-based baseline methods. Overall, CNN
reports significantly better results among all neural
network-based baseline methods in terms of training
and validation accuracy values. Some interesting
observations can be inferred from the aforementioned
results that the manually annotated datasets perform

better in comparison to the hashtags labeled datasets
for our proposed approach and all baseline methods,
because such datasets are more fine-grained in

comparison to the hashtags labeled datasets in which
tweets have naturally annotated labels by the registered
users on Twitter. CNN performs significantly better

in comparison to other baseline methods because
it extracts local contextual features from the input
dataset, helping to generate global feature vectors that
can be useful for the classification task. In addition,
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the newly created Twitter-280 dataset contains tweets
of up to 280 characters. The increase in tweet-length
also increases overall explicit context and incongruity,
and it affects the performance of the applied methods

in comparison to other datasets that contain tweets of
maximum 140 characters.

4.4.2 Comparison with State-of-the-Art Methods

This section presents a comparative analysis of our
proposed approach with the following state-of-the-art
methods.

– Abulaish and Kamal [15]: In this paper, a rule-based
and machine learning techniques are applied for
detecting SDS over Ptácek et al. [30] dataset. They
reported it as the first work towards automatic
detection of SDS.

– Ghosh and Veale [33]: In this paper, authors
proposed a neural network model for document-level
sarcasm detection. They considered a stacking
approach which consists of CNN, LSTM, and DNN
layers. Their work has outperformed various neural
and non-neural baselines.

Table 7 presents the comparison results of

our proposed method with the aforementioned
state-of-the-art methods. It can be observed from
this table that our proposed approach using the
CAT-BiGRU model outperforms both state-of-the-art
methods. Similar to the neural network-based baseline
methods, previous works also perform better on
manually annotated datasets in comparison to the
hashtag-labeled datasets. Our proposed approach
performs 27.77% better in terms of precision, 1.03%
better in terms of recall, 38.23% better in terms of
f-score, and 52.45% better in terms of accuracy values
in comparison to the state-of-the-art methods over
manually annotated datasets. Likewise, our proposed
approach performs 59.25% better in terms of precision,

17.56% better in terms of recall, 14.86% better in terms
of f-score, and 62.26% better in terms of accuracy
values in comparison to the state-of-the-art methods

over hashtag-labeled datasets. Figure 5 presents a
visualization-based comparative analysis in terms of
training and validation accuracy values over all
datasets. It can be observed from this figure that
the proposed approach outperforms state-of-the-art
methods, and again manually annotated datasets
show better performance in comparison to the
hashtag-labeled datasets. Based on the aforementioned
results, it can be inferred that inclusion of two attention
layers in our proposed model which function in both
preceding and succeeding directions provides better

contextual representations in comparison to the Ghosh

and Veale [33] method, wherein stacking approach

is adopted without any attention layer mechanism.
Ghosh and Veale [33] method functions in one direction

only and lacks contextual representations for sarcasm
detection in both directions.

5 Discussion

This section presents an analysis to show the
effects of different GloVe embedding dimensions,
GRU parameters, and sentic computing resources on
CAT-BiGRU model over all aforementioned datasets.

5.1 Effect of GloVe Embedding Dimensions

Choosing the right embedding dimension is a
challenging task. Embedding dimension refers to the
total number of features that it encodes. Lower
dimensions provide fewer features and lower accuracy
values, whereas higher dimensions provide large number
of features and higher accuracy, but a chance of
over-fitting. If the corpus is not large and training
time is not a constraint, then a higher dimension is
a good choice. GloVe provides different pre-trained
word vector embedding dimensions, such as 25, 50,

100, and 200, especially for the Twitter corpus.
Although, considering the above facts, we have trained
our CAT-BiGRU model on 200-dimension Twitter

specific GloVe word embedding, here we analyze its
performance by varying the number of dimensions
as 25, 50, and 100. Figures 6 and 7 present the
classification results of CAT-BiGRU model for different

GloVe embedding dimensions – 25, 50, 100, and 200 in
terms of f-score and accuracy values, respectively. It
can be observed that the CAT-BiGRU model performs
better on GloVe 200 dimensions in comparison to 25,

50, and 100 dimensions across all datasets.
Overall, manually annotated datasets provides

better results in comparison to the hashtag-labeled

datasets. Riloff et al. [22] and SemEval 2015 [4] provide
highest f-score and accuracy values, respectively
among both (manually annotated and hashtag-labeled)
datasets. Bamman and Smith [32] and Ling and Klinger
[31] provides highest f-score value for hashtag-labeled
datasets. However, Bamman and Smith [32] also
provides the highest accuracy value for hashtag-labeled
datasets. Moreover, it can also be observed that
the performance over Twitter-280 dataset is low
in comparison to other datasets in terms of f-score

and accuracy values. Based on these results, it can
be inferred that the higher pre-trained embedding
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Fig. 5: Training and validation accuracy values over (a) Ptácek et al. [30], (b) SemEval 2015 [4], (c) Riloff et al.

[22], (d) Bamman and Smith [32], (e) Ghosh and Veale [33], (f) Ling and Klinger [31], and (g) Twitter-280
datasets
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dimension is better for the feature extraction process,
and it is also beneficial for the CAT-BiGRU model for
detecting SDS.

Fig. 6: Effect of different GloVe embeddings
dimensions (200, 100, 50, and 25) on the classification
results of CAT-BiGRU model over Ptácek et al. [30]
(DS-1), SemEval 2015 [4] (DS-2), Riloff et al. [22]

(DS-3), Bamman and Smith [32] (DS-4), Ghosh and
Veale [33] (DS-5), Ling and Klinger [31] (DS-6), and
Twitter-280 (DS-7) datasets in terms of f-score

Fig. 7: Effect of different GloVe embeddings
dimensions (200, 100, 50, and 25) on the classification
results of CAT-BiGRU model over Ptácek et al. [30]

(DS-1), SemEval 2015 [4] (DS-2), Riloff et al. [22]
(DS-3), Bamman and Smith [32] (DS-4), Ghosh and
Veale [33] (DS-5), Ling and Klinger [31] (DS-6), and

Twitter-280 (DS-7) datasets in terms of accuracy

5.2 Effect of Parameters

Parameter tuning plays an important role in deep
learning models. This section presents an analysis of
the effect of different parameters viz. number of GRU
hidden units, optimization algorithms, and activation
functions on the CAT-BiGRU model.

Fig. 8: Effect of different GRU hidden units (200, 256,
and 300) on the classification results of CAT-BiGRU

model over Ptácek et al. [30] (DS-1), SemEval 2015 [4]
(DS-2), Riloff et al. [22] (DS-3), Bamman and Smith
[32] (DS-4), Ghosh and Veale [33] (DS-5), Ling and

Klinger [31] (DS-6), and Twitter-280 (DS-7) datasets
in terms of f-score

Fig. 9: Effect of different GRU hidden units (200, 256,
and 300) on the classification results of CAT-BiGRU

model over Ptácek et al. [30] (DS-1), SemEval 2015 [4]

(DS-2), Riloff et al. [22] (DS-3), Bamman and Smith
[32] (DS-4), Ghosh and Veale [33] (DS-5), Ling and

Klinger [31] (DS-6), and Twitter-280 (DS-7) datasets

in terms of accuracy

5.2.1 Number of GRU Hidden Units

The number of hidden units is an important parameter
for the performance of any neural network-based model.
Although, we have considered a total number of 256
hidden units in our proposed CAT-BiGRU model, here
we analyze its performance by varying the number
of GRU hidden units. Figures 8 and 9 present the

classification results of CAT-BiGRU model for different
GRU hidden units (200, 256, and 300) in terms of
f-score and accuracy values, respectively across all

datasets. It can be observed that Riloff et al. [22] and
SemEval 2015 [4] provide significantly better results
in comparison to other datasets in terms of f-score
and accuracy values, respectively. On the other hand,
Twitter-280 provides the lowest performance. These
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results show that GRU with 256-hidden units perform
better across all datasets. These results also indicate
that the number of hidden units has a significant impact
on the performance of the CAT-BiGRU model.

5.2.2 Optimization Algorithms

Optimization algorithms can affect the performance of
a classification model. This section presents an analysis
of the performance of CAT-BiGRU model using two
different optimization algorithms – Adam and RMSprop
in terms of f-score and accuracy values over all datasets.

Both RMSprop and Adam are popular adaptive
stochastic algorithms to train neural network models.
RMSprop maintains per-parameter adaptive learning

rates, depending on the mean of the recent magnitudes
of the gradients in terms of weight. It is mainly suitable
for online and non-stationary problems. However,

it suffers with the sparse gradient problem and
lacks the bias-correction factor in the second-order
moment estimation. On the other hand, Adam does
not suffer with the sparse gradient problem, and it
also solves the bias-correction problem which helps
Adam to outperform RMSprop towards the end of
the optimization process where the gradients become
sparser. Moreover, Adam optimizes each parameter
individually with different and adaptive learning rates
(aka alpha) parameter. It includes other parameters
like beta1 and beta2 that measure the exponential
decay rate for the first-moment and second-moment
estimates, respectively to change the learning rate for
each weight of the neural network.

Fig. 10: Effect of different optimization algorithms
(Adam and RMSprop) on the classification results of
CAT-BiGRU model over Ptácek et al. [30] (DS-1),

SemEval 2015 [4] (DS-2), Riloff et al. [22] (DS-3),
Bamman and Smith [32] (DS-4), Ghosh and Veale [33]

(DS-5), Ling and Klinger [31] (DS-6), and

Twitter-280 (DS-7) datasets in terms of f-score

Fig. 11: Effect of different optimization algorithms
(Adam and RMSprop) on the classification results of

CAT-BiGRU model over Ptácek et al. [30] (DS-1),
SemEval 2015 [4] (DS-2), Riloff et al. [22] (DS-3),

Bamman and Smith [32] (DS-4), Ghosh and Veale [33]
(DS-5), Ling and Klinger [31] (DS-6), and

Twitter-280 (DS-7) datasets in terms of accuracy

Figures 10 and 11 present the effect of Adam and
RMSprop optimization algorithms on the classification
results of CAT-BiGRU model in terms of f-score and
accuracy values over all datasets. It can be observed

that Riloff et al. [22] and SemEval 2015 [4] provide
highest f-score and accuracy values, respectively for
Adam optimization algorithm. On the other hand,
Twitter-280 provides lowest f-score and accuracy
values for the Adam optimization algorithm. Overall,
it can be observed from these figures that the results
obtained using the Adam optimizer over all datasets are
comparatively better than the results obtained using
the RMSprop optimizer.

5.2.3 Effect of Activation Functions

Like optimization algorithms, activation functions also
play a key role on the performance of the classification
model. In this section, we analyze the effect of different
activation functions (sigmoid and softmax ) on the
performance of CAT-BiGRU model. Both functions
are generally used in logistic regression and neural
networks. However, sigmoid is suitable for two-class
logistic regression, whereas softmax is suitable for
multi-class logistic regression.

Figures 12 and 13 visualize the effect of sigmoid and

softmax activation functions on classification results
of CAT-BiGRU model in terms of f-score and accuracy
values, respectively over all datasets. It can be observed
that Riloff et al. [22] and SemEval 2015 [4] provide
highest f-score and accuracy values, respectively for
sigmoid activation function over all datasets, whereas

Twitter-280 provides lowest f-score and accuracy
values for sigmoid activation function. It can be
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Fig. 12: Effect of different activation functions
(sigmoid and softmax ) on the classification results of
CAT-BiGRU model over Ptácek et al. [30] (DS-1),
SemEval 2015 [4] (DS-2), Riloff et al. [22] (DS-3),

Bamman and Smith [32] (DS-4), Ghosh and Veale [33]
(DS-5), Ling and Klinger [31] (DS-6), and

Twitter-280 (DS-7) datasets in terms of f-score

Fig. 13: Effect of different activation functions
(sigmoid and softmax ) on the classification results of
CAT-BiGRU model over Ptácek et al. [30] (DS-1),
SemEval 2015 [4] (DS-2), Riloff et al. [22] (DS-3),

Bamman and Smith [32] (DS-4), Ghosh and Veale [33]
(DS-5), Ling and Klinger [31] (DS-6), and

Twitter-280 (DS-7) datasets in terms of accuracy

observed from these figures that the classification
results of CAT-BiGRU model obtained using sigmoid
function is better than the results obtained using
softmax function over all datasets.

5.3 Effect of Sentic Computing Resources

SenticNet is a popular and common sense knowledge
base for concept-level sentiment analysis [52]. Apart
from common sense knowledge, it also considers
affective knowledge via biologically-inspired and
psychologically-motivated emotional categorization
model, wherein emotions are analyzed into
independent, but connected via affective dimensions

[54,56,59]. In this section, we present the effects of two
SenticNet-based sentic computing resources based on

Table 8: Effect of GloVe and sentic computing
resources (Amazon WE and AffectiveSpace) on the
classification results of CAT-BiGRU model over Ptácek
et al. [30] (DS-1), SemEval 2015 [4] (DS-2), Riloff et al.
[22] (DS-3), Bamman and Smith [32] (DS-4), Ghosh

and Veale [33] (DS-5), Ling and Klinger [31] (DS-6),
and Twitter-280 (DS-7) datasets in terms of f-score

Datasets GloVe
Amazon
WE

Affective
Space

DS-1 0.89 0.85 0.79
DS-2 0.92 0.86 0.81
DS-3 0.94 0.84 0.69
DS-4 0.85 0.80 0.75
DS-5 0.84 0.81 0.58
DS-6 0.85 0.82 0.81
DS-7 0.76 0.75 0.73

Table 9: Effect of GloVe and sentic computing
resources (Amazon WE and AffectiveSpace) on the
classification results of CAT-BiGRU model over Ptácek
et al. [30] (DS-1), SemEval 2015 [4] (DS-2), Riloff et al.
[22] (DS-3), Bamman and Smith [32] (DS-4), Ghosh

and Veale [33] (DS-5), Ling and Klinger [31] (DS-6),
and Twitter-280 (DS-7) datasets in terms of accuracy

Datasets GloVe
Amazon
WE

Affective
Space

DS-1 0.90 0.82 0.77
DS-2 0.93 0.87 0.79
DS-3 0.92 0.85 0.63
DS-4 0.86 0.83 0.76
DS-5 0.84 0.80 0.67
DS-6 0.84 0.81 0.75
DS-7 0.80 0.78 0.72

vector space model (word embedding) – Amazon word

embedding (Amazon WE) [53] and AffectiveSpace [50]
on the proposed CAT-BiGRU model.

Amazon WE is a sentic computing resource of

SenticNet which is based on word2vec model and
provides a 300-dimensional sentiment embeddings
generated from the Amazon product reviews, and that

also includes affective information. On the other hand,
AffectiveSpace is a 100-dimensional vector space
representation of AffectNet, which is a matrix of
affective commonsense knowledge and SenticNet is
built on it. In this section, both sentic computing
resources are used to evaluate the classification
results of our proposed CAT-BiGRU model, and also

compared with Twitter-specific GloVe embedding over
all datasets.
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Table 8 and 9 present the classification results
of CAT-BiGRU model using GloVe, Amazon WE, and
AffectiveSpace in terms of f-score and accuracy
values, respectively over all datasets. Interestingly,

the proposed CAT-BiGRU model using both sentic
computing resources provides good results in terms
of f-score and accuracy values over all datasets.

However, results obtained using Amazon WE is better in
comparison to AffectiveSpace. Based on these results
it can be inferred that inclusion of sentic computing
resources in CAT-BiGRU model can boost its accuracy
for detecting SDS.

6 Conclusion and Future Work

SDS is a special category of sarcasm which is mainly
used as an effective tool for product campaign and
marketing. In this paper, we have proposed a novel

CAT-BiGRU model for SDS detection. The proposed
model consists of an input, embedding, convolutional,
BiGRU, and two attention layers, and it is evaluated
over seven datasets from different perspectives.
Experimental results of CAT-BiGRU are promising and
significantly better in comparison to various neural
network-based baselines and state-of-the-art methods.

One of the main aims of this novel SDS detection
technique is to enhance the SDS-based marketing
strategy. We plan to develop a full-fledged web-based

tool to read user-supplied inputs and provide SDS
score, polarity value, different forms of visualization,
and various levels of emotion using biologically-inspired
and psychologically-motivated SenticNet-based sentic
computing resources like The Hourglass of Emotions

[55] as output. The tool could be useful for
both marketing management team and end-users
for analysis, recommendation, and extraction of
information about the latest trend in SDS-based
advertisements of a product or brand. In addition,

extending the proposed approach of SDS detection

in multilingual data that can be operational on
multimodal platforms seems one of the interesting
future directions of research.

Acknowledgment

Supported by Visvesvaraya PhD Scheme, MeitY, Govt.
of India. ‘MEITY-PHD-555’.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of
interest.

Ethical Approval

This article does not contain any studies with human

participants or animals performed by any of the

authors.

References

1. Bouazizi M, Ohtsuki T. Opinion mining in twitter how to
make use of sarcasm to enhance sentiment analysis. In:
Proceedings of the IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining
(ASONAM), Paris, France, August 25–28, 2015; pp.
1594–1597.

2. Abulaish M, Kamal A, Zaki MJ. A survey of figurative
language and its computational detection in online social
networks. ACM Transactions on the Web. 2020;14(1): pp.
1–52.

3. Bouazizi M, Ohtsuki T. A pattern-based approach for
sarcasm detection on twitter. IEEE Access. 2016;4(1):
pp. 5477–88.

4. Ghosh A, Li G, Veale T, Rosso P, Shutova E, Barnden
J, Reyes A. Semeval-2015 task 11: sentiment analysis
of figurative language in twitter. In: Proceedings of
the 9th International Workshop on Semantic Evaluation
(SemEval), Denver, Colorado, June 4–5, 2015; pp.
470–478.

5. Stieger S, Formann AK, Burger C. Humor styles and
their relationship to explicit and implicit self-esteem.
Personality and Individual Differences. 2011;50(5): pp.
747–50.

6. Kamal A, Abulaish M. Self-deprecating humor detection:
a machine learning approach. In: Proceedings of the
16th International Conference of the Pacific Association
for Computational Linguistics (PACLING), Hanoi,
Vietnam, October 11–13, 2019; pp. 1–13.

7. Kamal A, Abulaish M. An LSTM-based deep learning
approach for detecting self-deprecating sarcasm in
textual data. In: Proceedings of the 16th International
Conference on Natural Language Processing (ICON),
Hyderabad, India, December 18–21, 2019; pp. 1–10.

8. Joshi A, Bhattacharyya P, Carman MJ. Automatic
sarcasm detection: a survey. ACM Computing Surveys.
2017;50(5): pp. 1–22.

9. Zhang M, Zhang Y, Fu G. Tweet sarcasm detection
using deep neural network. In: Proceedings of the 26th
International Conference on Computational Linguistics
(COLING), Osaka, Japan, December 11–17, 2016; pp.
2449–2460.
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