
A Novel Snowball-Chain Approach for Detecting
Community Structures in Social Graphs

Jayati Gulati
Department of Computer Science

South Asian University, New Delhi, India
gulati.jayati@gmail.com

Muhammad Abulaish, SMIEEE
Department of Computer Science

South Asian University, New Delhi, India
abulaish@sau.ac.in

Abstract—Community detection in social networks has been a
widely explored problem to gain information about the dense
groups of user favoring some particular idea or topic, or
sharing common interests. Inspired from the process of snowball
sampling, this paper presents a novel community detection
approach, termed as snowball-chain (SbChain), for identifying
communities in social networks. SbChain follows a bottom-up
approach to find the most prominent nodes based on the degree
of overlapping neighbors and clustering coefficient, that may
form some cliques. The novelty of SbChain lies in a single
overlapping hyperparameter requirement, λ, to merge snowballs
to form a community. λ also helps in deciding the coarseness of
communities to be identified from the social graph. The proposed
approach is evaluated over different real-world and synthetic
benchmark datasets and compared with some state-of-the-art
methods in terms of the number of identified communities and
their modularity.

Index Terms—Social network analysis, Community detection,
Snowball sampling, Clique, Modularity.

I. INTRODUCTION

In recent times, there has been a monumental growth in
study of networks like the World Wide Web, online social
networks (e.g., Twitter and Facebook), metabolic net-
works, neural networks etc. [1]. These networks can be mod-
eled as complex graphs and analysis of the various dynamic
interactions among their entities might be beneficial to handle
various real-life applications. Community detection problem is
one of the core problems of the social network analysis, and it
mainly aims to find densely connected nodes from a network
that preferably form cliques [2]. A k-clique is a complete
graph having k number of vertices [3]. A community in a
network is represented by a set of nodes with high density
links among themselves and low density links among inter-
community nodes [4]. The nodes within a community may
have similar characteristics as compared to the nodes outside
the community.

Since community detection is a well-studied problem, a
number of community detection methods has been proposed
by different researchers [5]–[7]. Some of the well-known
methods include density-based approaches, hierarchical ap-
proaches, label propagation-based approaches, and random
walks-based approaches. In this paper, we propose a snowball-
chain-based approach, SbChain, to identify community from
social networks, where entities are represented as nodes and
their relations as edges, which are usually unweighted and

undirected in nature. The term snowball-chain used in this
paper is inspired from the snowball sampling technique [8],
in which a random sample of individuals is drawn from a finite
population; each of these individual then recommends another
k individuals, and this process goes on till the desired number
of samples are collected.

In our proposed approach, seed nodes are chosen based
on a certain criteria from the initial population. Thereafter,
these nodes find their best neighbors and merge with them to
form snowball-chains, which eventually lead to the formation
of communities. The aim is to find well-connected nodes,
as they are more likely to form dense groups. The proposed
approach is in line to the Label Propagation Algorithm (LPA)
[5], which re-labels a node based on the label frequency count
of its neighboring nodes. Like LPA, SbChain merges nodes
with their best neighbors to form snowballs. The snowballs
roll and grow by merging with their best suited neighbor
in every iteration, till an optimized cut is obtained by a
high modularity value. The novelty of SbChain lies in its
simple approach for finding communities, based on the local
and global clustering coefficients and common neighbors.
Moreover, it uses only a single hyperparameter λ, whose value
is determined empirically to set the level of coarseness of the
communities.

The rest of the paper is organized as follows. Section II
presents a brief review of the related works in the field of
community detection. Section III describes the preliminaries
used in the subsequent sections. Section IV presents the
SbChain approach and respective algorithms for community
detection. Section V presents the experimental setup and
evaluation results, followed by section VI, which presents the
complexity analysis of the proposed approach. Finally, section
VII concludes the paper with future directions of research.

II. RELATED WORK

Initial works on finding communities based on random
walk were Markov clustering [9], Walktrap [10], etc. Seed
set expansion [11] is a locally optimized random walk-based
algorithm to find overlapping communities. Initial seeds are
found in the seeding phase that are further expanded using
PageRank scheme. The proposed work in [12] is inspired
from [13], and it uses the structure of the network and edge
weights to find overlapping communities. It is a two-phase
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approach which starts with identifying communities using
random walks. If the probability of visiting nodes is higher,
then they tend to group together. Further, the clusters are
refined by calculating overlapping coefficient between each
pair of cluster and merging them.

As the real-world data tends to lie in several groups, finding
overlapping communities becomes an important research area.
One of the common node based overlapping approach is
Clique Percolation Method (CPM) which forms communi-
ties from k-cliques [14]–[16]. Maximal union of adjacent k-
cliques forms communities. And two k-cliques are adjacent if
they have k − 1 nodes in common [15]. Other node-based
overlapping algorithm is reported in [17], where a fitness
function is calculated based on internal and external degrees
in a subgroup. The neighbors that contribute to the fitness
function are added to the subgroup, and those negating the
function are removed. Thus, a local maxima for each node
is obtained. Overlapping communities are also determined by
link-based strategies because links have a unique identity of
belonging to various communities [18]. The studies in [19],
[20] are based on Link Clustering (LC). In [19], LC calculates
the link similarity of the neighbor links and constructs a
transformation matrix, and hierarchical clustering technique is
applied to generate a dendrogram with partition density. The
maximum density value can be determined to decide the best
cut.

Over the years many hierarchy-based community detection
algorithms have been proposed by various researchers. New-
man and Girvan proposed an approach based on removing
the edges having high edge betweenness. The optimized
community cut was decided on the value of modularity Q [21].
A similar work by Newman in [22] is based on agglomerative
clustering, where the nodes that maximize the modularity are
combined together. Another work in [23], proposes global
maximization of modularity function by using spectral clus-
tering. The input graph is represented in the Euclidean space
and k-means clustering is applied to detect communities. A
local community detection approach in [24] starts by finding
the high degree node locally, termed as local degree central
node, and the degree of this node is either greater or equal to
the degree of its neighboring nodes.

Among the node similarity based approaches, a work in [25]
uses local information to find nodes similar to a seed node
from the degree of their common neighbors. The similarity
function finds the neighbor with maximum value and adds it to
the community of the given node. This maximum valued node
further finds its best neighbor until all of the nodes are visited.
Another work in [7] extends the above work by creating levels
of similarity function along with label propagation, called
the Stepping LPA-S. On one level, similarity is calculated
between nodes to form sub-networks with same labels. Further,
similarity of these sub-networks is calculated based on another
similarity function. Finally, sub-networks are combined to
form communities. The original Label Propagation Algorithm
(LPA) [5] proposed to change each node’s label to the most
frequently used label in its neighborhood. The process contin-
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Fig. 1: Growth of communities by SbChain approach

ues till all the nodes are updated and is verified by a modularity
cut.

Some recent studies in community detection [26] suggest
label propagation based on a benefit score of immediate
neighbors using boundary nodes. Also, a similar study in [27],
finds a preference network where the connected components
form communities. This network is built by finding prefer-
ence nodes using maximum common neighbors between a
selector node and its immediate neighbors or by using spread
capability, calculated by gossip algorithm in [28]. Another
similarity-based approach called Community Detection Algo-
rithm based on Structural Similarity (CDASS) is proposed in
[29]. The CDASS works in two phases; in the first phase, low
similarity edges are removed, causing the network to break
into several disconnected components. These communities are
later merged to form final communities. In the second phase,
best communities are identified from the final communities
based on an evaluation function, calculated using internal and
external edges, internal degree, and total degree.

III. PRELIMINARIES

A graph G(V,E) is defined as a set of n nodes
V = {vi, vj , ...vn} and and set of edges E = {eij =



TABLE I: Notations and their descriptions

Notation Description
N (vi) Set of immediate neighbors of a node vi
ki = |N (vi)| Degree of a node vi
aij Adjacency matrix value for nodes vi and

vj
LCC(vi) Local clustering coefficient of a node vi
Nbest(V) Best scoring neighbor set of a set V ⊆ V
s(n) A snowball containing n elements
N (s(n)) Neighbor set of a snowball s(n)

GCC(s(n)) Global clustering coefficient of a snowball
s(n)

(vi, vj)| vi, vj ∈ V & ∃ a link between vi and vj}. The aim is
to find the seed nodes which will grow to form snowballs, and
eventually lead to formation of communities. A list of symbols
used in this paper and their brief descriptions is presented in
table I.

For a given graph G, the process starts by arranging nodes
in non-increasing order of their respective local clustering
coefficient, LCC1, as given in equation (1).

LCC(vi) =
2× | { ejk ∈ E | vj , vk ∈ N (vi) } |

ki(ki − 1)
(1)

The nodes are picked-up one-by-one (in order). If vi is
the first selected node, then its best matching node de-
noted by Nbest(vi) from N (vi) should fulfil two criteria: (i)
Nbest(vi) should have the maximum value of LCC among
N (vi), and (ii) the cardinality of overlap between N (vi) and
N (Nbest(vi)) should be maximum among neighbors of vi, i.e,
N (vi), given by equation (2).

weight =
|N (vi) ∩N (Nbest(vi))|

min
{
|N (vi)|, |N (Nbest(vi))|

} (2)

Further, seed nodes combine to form snowballs. The score
and neighbor sets of the snowballs are updated as they grow.
These snowballs grow in every iteration and eventually form
communities.

Definition 1. (Seed node). A node vi ∈ V is said to be a seed
node if it works as a attractor in the first round of snowball
formation.

A seed node follows non-redundant node startegy, i.e., once
a seed node vi finds its best neighbor Nbest(vi), then both, vi
and Nbest(vi) are not allowed to join any other node in the
current iteration. This strategy results in disjoint communities.

Definition 2. (Snowball). A snowball s(n) is a connected
component formed by enumerating nodes as a set, where n
is the number of nodes contained in it. It is formed either by
combining a seed node vi with Nbest(vi) or by combining two
or more snowballs.

It is important to note that there may exist one or more
snowballs with a similar value of n, however they can be
differentiated by their respective set of elements. It can be seen

1For an undirected graph each edge is counted twice, hence there exists a
factor of two in the numerator.

from fig. 1, a snowball s(2) is formed by joining a seed node
v1 with v2 = Nbest(v1) in the first iteration. In the second
iteration, s(2) joins another node v3 to form s(3) represented
by equation (3).

s(3) = s(2) ∪ {v3} = {v1, v2, v3} (3)

The neighbor set and the score of a snowball are updated as
per the definition 3 and 4, respectively.

Definition 3. (Neighbors of a snowball). The neighbor set
of a snowball represented by N (s(n)) is the combined set of
neighbors of the nodes comprised by the snowball s(n), i.e.,
v1, v2, ..., vn, given by equation (4).

N (s(n)) = N (v1) ∪N (v2).... ∪N (vn) (4)

Definition 4. (Score of a snowball). The score of a snowball
represented by GCC(s(n)) is the global clustering coefficient
calculated by considering the subnetwork formed by the nodes
v1, v2, ..., vn and their immediate neighbors. It is calculated
by equation (5).

GCC(s(n)) =
3 ×Number of triangles
Total number of triplets

(5)

Fig. 1 shows the changing GCC value for snowballs with each
iteration. A snowball keeps expanding till its weight, given
by equation (2) is greater than or equal to the overlapping
parameter λ value.

Definition 5. (Community set). A set of community may
comprise of single nodes or snowballs or both, which cannot
be further combined with each other and have maximum
modularity value among all the iterations.

IV. PROPOSED APPROACH

In this section, we present the functional details of the pro-
posed snowball-chain-based community detection approach,
SbChain. This approach works well for a network which
is undirected and unweighted. It starts in a bottom-up manner
by finding the nodes that may be a part of cliques, and keeps
adding nodes to grow the cliques to form snowballs. The
snowballs keep expanding until convergence, i.e., when the
community set of an iteration is same as the communities
identified in the previous iteration. The set with largest mod-
ularity value forms the final set of communities.

A. SbChain Algorithm

The SbChain algorithm begins with finding the initial set
of neighbors and local clustering coefficient (eq. (1)) for each
node which is represented as a set. These 〈nodes, values〉
pairs are added to N (0) and scoreList(0), respectively, where
superscript (0) represents the zero iteration, as shown in step 4
and 5 of the Algorithm 2. The maximum number of iterations
for this algorithm is set to the number of nodes in the network.
However, it never runs for maximum iterations as it converges
when the community set formed in consecutive iterations are
identical. As each iteration i begins, nodes (or snowballs)



Algorithm 1: BestNeighbor(V, N, scoreList)
Input : A set V containing one or more nodes,

neighbor list N and a scoreList both
containing 〈keyList, value〉 pairs

Output: Best scoring neighbor set Nbest(V) of V and
its weight

1 maxScore← 0, maxWeight← 0
2 Vi ← Ø
3 foreach v ∈ N [V] do
4 foreach key in scoreList.keys do

// key is a set of one or more nodes

5 if v is a part of key then
6 Vi ← key
7 go to 10
8 end
9 end

10 weight[Vi]←
∣∣N [V]∩N [Vi]

∣∣
min

{∣∣N [V]
∣∣,∣∣N [Vi]

∣∣}
11 if scoreList[Vi] > maxScore and

weight[Vi] > maxWeight then
12 maxScore← scoreList[Vi]
13 maxWeight← weight[Vi]
14 Nbest(V)← Vi
15 end
16 end
17 return Nbest(V),maxWeight

Algorithm 2: SbChain(G,λ)
Input : A graph G(V,E) and overlapping parameter

λ
Output: Community set C and its modularity Q

1 foreach vi ∈ V do
2 N (vi)← Neighbor(G, vi)
3 LCC(vi)← LocalCC(G, vi)
4 Append 〈{vi},N (vi)〉 into N (0)

5 Append 〈{vi}, LCC(vi)〉 into scoreList(0)

6 end
7 maxQ← 0
8 m← |E|

represented by Vj are sorted in non-increasing order of their
scoreList(i−1) values. For each set Vj in the current iteration,
its best neighbor is calculated by Algorithm 1. It is pertinent
to note that best neighbor Nbest(Vj) can be a single node or a
snowball formed by a set of nodes, hence it is represented as a
set Vk. Next, the current node set Vj and its best neighbor Vk
are checked for non-redundant node strategy, i.e., if they are
already a part of a snowball formed in the current iteration,
then their further processing is stopped.

It is important to note that if a node, Vk or its best neighbor,
Vj , have cardinality as one, they are merged without any
overlapping parameter (λ) consideration. For the generated
snowball, s(n), its neighbor set and score values are updated

Algorithm 2: SbChain(G,λ)(Contd.)

9 for i← 1 to |V | do
10 scoreList(i) ← Ø
11 Arrange scoreList(i−1) in non-increasing order
12 foreach Vj ∈ scoreList(i−1).keys do

// Vj is a set of one or more nodes

(keys)

13 〈Vk, weight〉 ← BestNeighbor(Vj , N (i−1),
scoreList(i−1)) // Vk is the best

neighbor of Vj
14 if Vj ∈ scoreList(i).keys OR

Vk ∈ scoreList(i).keys then
15 go to 12

16 if |Vj | > 1 AND |Vk| > 1 then
17 if weight ≥ λ then
18 go to 21
19 else
20 go to 12

21 n← |Vj ∪ Vk|
22 s(n) ← Vj ∪ Vk
23 N (s(n))← N (i−1)[Vj ] ∪N (i−1)[Vk]

// updated neighbors and scores of a

snowball

24 Append 〈s(n),N (s(n))〉 into N (i)

25 Append 〈s(n), GlobalCC(G,N (s(n))〉 into
scoreList(i)

26 foreach
Vj ∈ scoreList(i−1).keys− scoreList(i).keys do

27 Append 〈Vj , N (i−1)[Vj ]〉 into N (i)

28 Append 〈Vj , scoreList(i−1)[Vj ]〉 into
scoreList(i)

29 comm list← scoreList(i).keys
30 Q←Modularity(m, comm list, E)
31 if maxQ < Q then
32 maxQ← Q

33 if scoreList(i).keys = scoreList(i−1).keys then
34 go to 35

35 return comm list,maxQ

as given by step 24 and 25, respectively. The score for
s(n) is calculated by the global clustering coefficient of the
subnetwork comprising s(n) and N (s(n)), given by equation
(5). However, if the current node set and its best neighbor,
both are snowballs then the overlapping parameter (λ) is used
as shown in step 17. This is an external parameter which
decides the minimum percentage overlap that should exist
between N (s(n)) and N (Nbest(s

(n))) (here Vj = s(n) and
Vk = Nbest(s

(n))), so as to combine them in the current
iteration. The weight from step 13 is the ratio of number of
common neighbors to minimum number of neighbors of the
two sets. If this weight is greater than the provided threshold



TABLE II: Statistics of datasets

Dataset #Nodes #Edges #Communities
Karate 34 78 2
Dolphin 62 159 2
Polbooks 105 441 3
Football 115 613 12

of λ, then the nodes are combined to grow the community.
Else, the iteration continues with other nodes or snowballs to
find their best scoring neighbor.

All the values of scores and neighbor set of the combined
snowball are updated for the next iteration. For the node set
that remained unchanged, their scoreList and N are copied
from the previous iteration to the current iteration as shown
in step 26. The algorithm converges when the community
structure remains unchanged for two consecutive iterations and
returns the set of communities with the highest modularity
value.

V. EXPERIMENTAL SETUP AND RESULTS

In this section, the experimental setup and evaluation results
are presented to establish the efficacy of SbChain approach.
A comparative analysis of SbChain with some of existing
state-of-the-art methods in terms of the modularity is also
presented. Modularity (Q), as defined by equation (6), is used
as a measure to decide the final cut of the community in a
bottom-up approach being followed by the SbChain. The
total number of edges are m, aij is the value of adjacency
matrix entry for nodes vi and vj , ki and kj represent the degree
of nodes vi and vj , respectively. Kronecker delta function
δ(ci, cj) equals 1, if both the nodes vi and vj lie in the same
community, otherwise it is set to 0. The range of values of Q
is [−1, 1]. A positive value of Q indicates higher number of
observed edges than the expected number of edges considering
the random connections.

Q =
1

2m

∑
ij

[
aij −

kikj
2m

]
δ(ci, cj) (6)

The proposed approach is evaluated over four real-world
datasets described in table II and over computer-generated
datasets using Lancichinetti-Fortunato-Radicchi (LFR) bench-
mark.

A. Real-World Networks

Table II briefly describes the datasets2 used in the exper-
iment. The results of modularity identified by the proposed
approach are mentioned in table III and compared with
Stepping LPA-S and LPA [7].

1) Zachary’s karate club: This dataset is described in [30],
built around a split of the instructor and administrator of
the club, forming two disjoint communities. The results from
SbChain approach identifies two communities, with three
nodes misrepresented at a allowed threshold of 60% for two
snowballs to combine.

2http://www-personal.umich.edu/∼mejn/netdata/

TABLE III: Performance evaluation results of SbChain, LPA,
and Stepping LPA-S over real-world networks

Dataset Approach Modularity (Q) λ∗

Karate
LPA 0.3573 -
Stepping LPA-S 0.3715 -
SbChain 0.3523 0.6

Dolphins
LPA 0.4868 -
Stepping LPA-S 0.3787 -
SbChain 0.4347 0.66

Polbooks
LPA 0.5117 -
Stepping LPA-S 0.4967 -
SbChain 0.4978 0.63

Football
LPA 0.5897 -
Stepping LPA-S 0.5754 -
SbChain 0.4791 0.52

∗Overlapping parameter used in SbChain

2) Dolphin social network: An undirected social network
of bottlenose dolphins, having links depicting frequent as-
sociations between them [31]. There are three communities
identified by the proposed approach as compared to two in the
original dataset. But the modularity value is strikingly high as
compared to Stepping LPA-S. Also, the modularity value is
comparable to that of LPA with allowed overlap of 66%.

3) Books about US politics: The nodes represent books
about US politics available on Amazon.com. The edges exist
between the books that are frequently co-purchased by the
same customers [32]. There are three communities in the
original network, and the proposed algorithm also identifies
three communities with a higher value of modularity than
Stepping LPA-S and an allowed overlap of 63%.

4) American college football: A network of football games
amongst American colleges during regular season Fall 2000
[33]. The original communities were twelve in number, and
SbChain identifies thirteen communities with a moderate
value of modularity with 52% of granted overlap.

It can be seen that the devised technique performs fairly well
on Dolphin and Polbooks dataset as compared to Stepping
LPA-S, though its performance is not comparable to LPA.
However, it should be noted that high modularity values
do not necessarily ascertain results closer to ground-truth
communities. As an example, in Karate dataset, Stepping
LPA-S predicts three communities with Q as 0.3715, whereas
SbChain predicts two communities (which is the ground-
truth reality) with Q as 0.3523. This is because modularity
favors dense groups, which may lead to splitting of networks
and formation of a large number of communities.

Figures 2-5 represent the visualizations produced by appli-
cation of SbChain on four real-world datasets. The Karate
dataset is shown to produce two communities, Dolphin dataset
is identified to have three communities. While Polbooks and
Football have three and thirteen communities, respectively,
detected by SbChain approach. Also, fig. 6 shows the
comparison between the modularity values generated by LPA,
Stepping LPA-S and SbChain in real-world datasets.

http://www-personal.umich.edu/~mejn/netdata/


Fig. 2: Visualization of identified communities from Karate
dataset using SbChain approach

Fig. 3: Visualization of identified communities from Dolphin
dataset using SbChain approach

Fig. 4: Visualization of identified communities from Polbooks
dataset using SbChain approach

Fig. 5: Visualization of identified communities from Football
dataset using SbChain approach

Fig. 6: Visualization of the evaluation results of SbChain,
LPA, and Stepping LPA-S over real-world datasets based
on modularity values

B. LFR Benchmark Networks

As discussed in [34], Lancichinetti-Fortunato-Radicchi
(LFR) benchmark networks are used to generate synthetic
datasets. Various parameters used for generation of LFR
datasets are mentioned in table IV. µ represents the connec-
tions with neighbors in other communities and is set within the
range of [0.1, 0.4], varied at a step size of 0.05. The modular
structure of a community becomes fuzzy when µ > 0.5, hence
we consider values of µ till 0.4. The modularity (Q), identified
and actual communities are shown in table V.

VI. COMPLEXITY ANALYSIS

This section presents the best-case and worst-case time
complexity analysis of SbChain approach. In the best-case,
all nodes combine with their best neighbor to form snowballs
in each iteration. Hence, each iteration is left with half the
number of nodes from the previous iteration. Therefore, the
number of iterations is log2n. The number of nodes that are
processed in these log2n iterations are n + n

2 + n
4 + ... + 1,



TABLE IV: Parameters used in LFR dataset

Parameter/Representation Value
Number of nodes/N 1000
Average degree/〈k〉 20
Minimum community size/cmin 20
Maximum community size/cmax 100
Maximum degree/kmax 50
Community size distribution exponent/β 1
Degree distribution exponent/γ 2
Mixing parameter/µ [0.1,0.4]

TABLE V: Performance evaluations results on LFR bench-
mark networks

µ Q #Identified #Actual λ
0.1 0.7115 21 21 0.51
0.15 0.7115 21 21 0.51
0.2 0.4963 17 20 0.5
0.25 0.4259 17 18 0.495
0.3 0.7272 20 20 0.5
0.35 0.2835 19 19 0.47
0.4 0.2952 18 19 0.45

forming a geometric progression with sum as n. Hence, the
best-case time complexity of SbChain is O(n). In the worst-
case, only a single pair of nodes merge in each iteration.
Therefore, the total number of iterations required to process
n nodes is n. And, the total number of nodes processed in n
iterations would be n+n−1 + ....+ 1, resulting is worst-case
time complexity as O(n2).

VII. CONCLUSION AND FUTURE WORK

Inspired from the snowball sampling technique, this paper
proposes a simple snowball-chain approach (SbChain) for
detecting community structures in social networks. The nov-
elty of the proposed approach lies in the requirement of a
single overlapping hyperparameter (λ), which is used to merge
two snowballs to grow community structures. λ controls the
coarseness of the communities to be identified from the social
graph, i.e., a higher λ value will split the communities faster
and result in small dense communities. Similarly, a low λ value
would produce larger communities with low cohesion. This
parameter is determined empirically, as the number of nodes
and edges in a network play an important role in selecting the
value of λ.

The evaluation results of SbChain on real-world networks
are comparable (and even better in some cases) with two
existing state-of-the-art community detection methods. It also
works fairly fine over the LFR-benchmark networks. The
proposed approach can be extended to work equally well over
the directed and weighted networks. Also, the approach can
be extended to find communities in multi-attributed graphs
that generally model both structural and textual information
available in online social media. In line to [18], the SbChain
can also be extended to detect overlapping communities by
allowing a node to join multiple communities.
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