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Abstract 
 

Since web documents are not fully structured sources 
of information and in Internet almost everything, 
especially in the realm of search, is approximate in 
nature, it is not possible to utilize the benefits of a domain 
ontology straight away to extract information from such a 
document. One way of overcoming this problem is the 
postulation of a “fuzzy ontology” by adding a value for 
degree of membership to each term that is imprecise in 
nature. In this paper, we propose a fuzzy ontology 
generation framework in which a concept descriptor is 
represented as a fuzzy relation which encodes the degree 
of a property value using a fuzzy membership function. 
The fuzzy ontology framework provides appropriate 
support for application integration by identifying the most 
likely location of a particular term in the ontology. The 
applicability of the fuzzy ontology structure in retrieving 
and curating information from text documents to answer 
imprecise queries has been thoroughly experimented.  

  
Keywords: Semantic Web, Fuzzy ontology structure, 
Ontology enhancement. 

 
1. Introduction 
 

As envisaged by Berners-Lee, the Semantic Web (SW) 
[7] promises to make the Web a meaningful experience, 
and ontology [1] is increasingly being accepted as the 
knowledge-management structure that can eventually 
realize it. Ontologies represent domain knowledge in a 
structured and machine-interpretable form. Ontology 
represents a method of formally expressing a shared 
understanding of information. Ontologies are being 
increasingly used to support a great variety of tasks and as 
a structure to represent meaning of data ontologies are 
emerging as the main area of interest for the success of 
the SW paradigm. Though ontology plays a key role by 

defining concepts and relationships in an unambiguous 
way, one of the chief bottlenecks that crops up while 
designing domain-specific applications is that the 
ontology itself is a pre-defined structure with crisp 
concept descriptions and inter-concept relations. It is 
unlikely that all application developers will strictly adhere 
to the concept descriptors used in the ontology. Moreover, 
if the application involves text processing, it is absolutely 
unreal to expect that concept descriptions appearing 
within the text will be easily identifiable as ontology 
concepts. Besides, for most of the domains, other than the 
strictly technical ones like the medical domain, it is found 
that knowledge-modeling experts differ in their 
conceptualization of a domain. There may be ambiguity 
both in the set of concepts used to define a domain and 
also in the use of inter-concept relations. 

One way of overcoming this problem is the postulation 
of a “fuzzy ontology”, in which inter-concept relations 
can be represented as fuzzy relations rather than as crisp 
associations. Thus every inter-concept relation is viewed 
as a fuzzy association whose strength can be ascertained 
from application parameters. Thus rather than looking for 
exact concept descriptions, a fuzzy ontology based 
application identifies the most likely concept from the 
ontology. The fuzzy ontology also serves as an ideal tool 
for handling multiple ontology descriptions created for 
the same domain. Incorporating imprecision into the 
ontology structure itself helps in resolving ambiguities 
arising due to differences in user requirement 
specification and concept descriptions embedded in text 
documents.  

In this paper we have proposed the model for 
representing and generating a fuzzy ontology, which can 
be used for designing text-processing tools. The proposed 
framework exploits fuzzy logic and reasoning 
mechanisms to incorporate fuzzy membership functions 
into the rigid ontology structure. In the proposed design, a 
concept descriptor is represented as a fuzzy relation, 
which encodes the degree of a property value using a 



fuzzy membership function. The fuzzy concept 
descriptors could be either manually generated, or as we 
have shown, can be extracted through text mining. Other 
than concept descriptors, generic semantic relations 
extracted from text documents are also associated 
strengths and represented as a fuzzy relation. 
 
2. Related work on fuzzy ontology structure 
 

Though ontology is meant to represent knowledge in 
an unambiguous structured format, it is practically 
impossible to assume that all application developers will 
agree to any such unique structure. Enhancement of crisp 
ontology structures to a fuzzy ontology structure is 
viewed as a potential solution to this problem and has 
received attention from a number of research groups.  

Widyantoro and Yen [2] have shown how fuzzy 
membership values associated to ontology concepts, 
along with a concept hierarchy, can be used for intelligent 
text information retrieval. Starting with a set of manually 
tagged abstracts of papers from several IEEE 
Transactions, a fuzzy ontology is built on the collection of 
keywords. The abstracts are tagged based on their title, 
authors, publication date, abstract body, and author 
supplied keywords. The hierarchical arrangement of the 
terms in the newly generated ontology is dependent on 
their co-occurrence measures. The drawback of this 
system is its dependence on user judgment about the 
relevance of articles to user queries which is provided 
manually.  

Wallace and Avrithis [5] have extended the idea of 
ontology-based knowledge representation to include 
fuzzy degrees of membership for a set of inter-concept 
relations defined in an ontology. The membership of these 
relations are used to judge the context of a set of entities, 
the context of a user and the context of the query for the 
purpose of intelligent information retrieval. A fixed set of 
commonly encountered semantic relations have been 
identified and their combinations are used to generate 
fuzzy, quasi-taxonomic relations.  

Quan et al. [8] have proposed an automatic fuzzy 
ontology generation framework – FOGA. They have 
incorporated fuzzy logic into formal concept analysis to 
handle uncertainty information for conceptual clustering 
and concept hierarchy generation. However, the quality of 
clustering is dependent on assignment of meaningful 
labels to initial class names, attributes and relations. This 
is done manually and requires domain expertise. This 
system is also not designed to extract fuzzy relational 
concepts from unstructured or semi-structured text 
documents.  

  
3. Mathematical model of an ontology 
 

An ontology represents a model of a domain that 
defines the concepts existing in that domain, their 
properties and the relationships between them and is 
typically represented as a knowledge base.  For example, 
a plant ontology can specify relationship among various 
categories of plants like algae, legumes, ferns and so on, 
and also specify structural organization of plants in terms 
of parts and sub-parts like stems, leaves, cells etc. 
Definition (Ontology) – An Ontology Θ is defined as a 
triplet of the form Θ = (C, Ρ, ℜ ), where 

• C is a set of concepts defined for the domain. 
• Ρ  is a set of concept properties. A property p∈ Ρ is 

defined as a ternary relation of the form p(c, v, f), 
where c ∈ C is an ontology concept, ‘v’ is a property 
value associated with ‘c’ and ‘f’ defines restriction 
facets on v. Some of the restriction facets are – type 
(ft), cardinality (fc), and range (fr). The type facet ft 
may be any one of the standard data types that are 
supported by ontology editors. Thus ft ∈ {Boolean, 
integer, float, string, symbol, instance, class, …}. The 
cardinality facet fc defines the upper and lower limits 
on the number of values for the property. The range 
facet fr specifies a range of values that can be assigned 
to the property.  

• ℜ ⊆ C × C. ℜ is a set of binary semantic relations 
which can be either one-to-one, one-to-many, or 
many-to-many. ℜ is recursively defined as follows: 

a. A set of atomic relations is defined as ℜa = {≈, ↑, ↓, 
∇, ∆} which have the following interpretations: 

For any two ontological concepts Ci, Cj ∈ C  
∗ ≈ denotes the equivalence relation. Ci ≈ Cj ⇒ Ci 

is equivalent to Cj. The synonym relation of natural 
language is modeled in an ontology using the 
equivalence relation. For example, through 
WordNet [3] we obtain that the word “inn” is 
synonymous to “hotel”.  If two concepts Ci and Cj 
are declared equivalent in an ontology then 
instances of concept Ci can also be inferred as 
instances of Cj and vice-versa.  

∗ ↑ denotes the generalization relation. Ci ↑ Cj ⇒ 
Ci is a generalization of Cj. When an ontology 
specifies that Ci is a generalization of Cj, then Cj 
inherits all property descriptors associated with Ci, 
and these need not be repeated for Cj while 
specifying the ontology. ↓ is the inverse of ↑.  
Hence, Ci ↑ Cj ⇒ Cj ↓ Ci, i.e., Ci is a 
generalization of Cj implies that Cj is a 
specialization of Ci. The relations ↑ and ↓ 
correspond to the semantic relations “hypernym” 
and “hyponym” respectively of WordNet. These 
relations are usually denoted by an arrow super 



scribed with “is-a” or “kind-of”, where the 
arrow is directed from the specialized class to the 
generalized class. Ontologies can also 
accommodate multiple inheritances, whereby a 
concept can acquire properties through multiple 
paths of specialization. 

∗ Ci ∇ Cj ⇒ Ci has part Cj. ∆ is inverse of ∇. 
Hence Ci ∆ Cj ⇒ Ci is a part of Cj. In an ontology, 
a concept which is defined as aggregation of other 
concepts is expressed using the relation ∇. The 
“has-part” relation is equivalent to the “holonym” 
relation of WordNet.   

b. If ℜ1, ℜ2 ∈ ℜ be any two relations defined 
between concept-pairs in Θ and ο denotes a 
composition operation, then ℜ1 ο ℜ2 is a valid 
relation. 

 
4. The fuzzy ontology model 
 

We now explain how the ontology structure is 
extended to accommodate fuzzy descriptions and 
relations. Traditionally concepts are described in an 
ontology using a <property, value, constraints> 
framework. The fuzzy ontology structure is created as an 
extension to the standard ontology structure. In this 
structure, property descriptors are accompanied by 
qualifiers along with values for defining a concept. The 
proposed fuzzy ontology structure stores concept 
descriptions in a <property, value, qualifier, constraints> 
framework, where the value and the qualifier are both 
defined as a fuzzy set. This framework allows defining 
the property-value of a concept with differing degrees of 
fuzziness, without actually changing the concept 
description paradigm. Such concept descriptions can be 
termed as imprecise concept descriptions.  

Mathematically, a fuzzy ontology (ΘF) can be defined 
as follows. 
Definition (Fuzzy Ontology) – A Fuzzy Ontology, ΘF, is 
a quadruple of the form 
ΘF = (C, ΡF, ℜF, M), where: 

• C has same interpretation as mentioned in section 3. 
• ΡF is a set of fuzzy concept properties. A property pf ∈ 

ΡF is defined as a quadruple of the form pf (c, vf, qf, 
f), where c ∈ C is an ontology concept, ‘vf’ represents 
fuzzy attribute values and could be either fuzzy 
numbers or fuzzy quantifiers, ‘qf’ models linguistic 
qualifiers and are hedges, which can control or alter 
the strength of an attribute value and f is the restriction 
facet on vf. 

• ℜF is a set of fuzzy inter-concept relations between 
concepts. Like fuzzy concept properties, ℜF is defined 

as a quadruple of the form ℜF (ci, cj, t, qf), where ci, 
cj ∈ C are ontology concepts, ‘t’ represents relation 
type, and ‘qf’ models relation strengths and are 
linguistic variables, which can represent the strength 
of association between concept-pairs <ci, cj>.  

• The choice of fuzzy numbers or fuzzy quantifiers for 
values is dictated by the nature of the underlying 
attribute and also its restriction facets. The complete 
range of values over which an attribute can take values 
defines the universe of discourse M. The universe of 
discourse is decomposed into a collection of fuzzy 
sets. Each fuzzy set is defined over a domain that 
overlays part of the universe of discourse.  
Since the essence of fuzzy sets is to be able to control 

the degree of imprecision rather than bind a single 
membership function to a definition, we propose the use 
of application-specific fuzzy-membership functions for 
fuzzy quantifiers and qualifiers. Though the membership 
functions themselves change depending on the nature of 
the domains, their role in modifying fuzzy attribute values 
remains unchanged across applications. For appropriate 
fuzzyfication of concept descriptions each attribute is also 
associated with a qualifier set which is a collection of 
hedges. Since the qualifiers associated to different 
properties are usually different, hence the hedge sets are 
also different though may be overlapping. To maintain 
uniformity of using concept descriptions, every value is 
always assumed to be accompanied by a qualifier. Hence 
to model values without a qualifier, we have used the 
qualifier “null”. For every qualifier set, we have included 
the value “null” to indicate the absence of any qualifier. 

An interesting aspect of modeling attributes as fuzzy 
sets is that with an underlying set of numeric values, one 
can associate different fuzzy quantifier sets to represent 
different aspects of the same attribute. For example, a 
single price value can be interpreted as being “close to” or 
“far away” from another value of price, and at the same 
time can also be interpreted as “cheap” or “expensive.” 
Moreover, hedges can also be applied to create new fuzzy 
sets with different meanings. Thus modeling an attribute 
as a fuzzy set allows a single attribute to contribute to 
different types of imprecision in concept description. 

  Fuzzy qualifiers are used in fuzzy models to 
dynamically create new fuzzy sets and change the 
meaning of linguistic variables. This enables the 
modification of existing fuzzy sets temporarily to provide 
different meaning to the underlying linguistic variable. 
Most of the applications consider linguistic qualifiers as 
those elements that modify the value of a fuzzy number. 
However, modeling qualifiers become more complex 
when the fuzzy quantifier set is itself graded. For 
example, the weather domain uses three values hot, cold, 
and cool to model the weather condition in terms of 
temperature. In this case, fuzzy modeling of the 



temperature can be achieved by the membership table 
shown in Figure 1. As we can see, the weather value 
“cool” can be interpreted to be as “cold” to some extent, 
and vice versa, where the extent is defined by the fuzzy 
membership values. An interesting thing to observe is that 
since “cool” and “cold” are basically intensity variations 
of the same temperature, where “cool” is an intensified 
version of “cold”, thus the weather which is “very cold” 
can be considered to be “cool” with a higher membership 
value than the weather which is simply “cold”. Thus in 
this case we want that rather than working as an 
intensifier, which hardens or reduces the membership 
value for “cold” to “cool”, the intensifier “very” should 
increase the membership value of “cold” to “cool”. 
Obviously, this is a special situation occurring due to the 
gradation among the fuzzy quantifiers themselves. 

To take care of all such situations, we have adopted a 
generalized approach to model fuzzy quantifier and 
qualifier sets. In this scheme both fuzzy quantifiers and 
fuzzy qualifiers can be modeled as graded sets, with the 
similarity between two variables defined as a function of 
their relative positions in the set. This allows us to control 
and combine the effects of qualifiers over quantifiers in a 
more context dependent way. The next section presents 
detailed description of the modeling scheme with specific 
references to domains indicating the types of values for 
which a particular modeling is suitable. 
 
4.1 Encoding domain knowledge using concept 
descriptors 
 

Since the proposed fuzzy ontology structure has been 
integrated with text information retrieval applications, and 
text abounds in vague descriptions, the qualifier sets for a 
domain has been extracted through text-mining. Thus, 
each domain yields a set of qualifiers, which are then 
modeled as hedges for that domain. These qualifiers are 

later on used for further information retrieval. As we have 
discussed earlier, the role of a modifier for a domain does 
not remain static. Rather it is defined as a function of both 
the qualifier and the value it is trying to modify. In case of 
matching a pair of <value, qualifier> tuples, the overall 
effect is to be determined as a function of the distance 
between the qualifiers, and the value pairs. When values 
match, but qualifiers do not match the overall aim is to 
always decrease the precision of an associated value. 

Qualifier sets are modeled as graded sets. A graded set 
is an ordered collection of elements. The similarity 
between two objects in the graded set is defined as a 
function of their relative positions within the set. The 
position of “null” is selected depending on the nature of 
qualifiers used. For most of the qualifier sets, “null” 
occupies a central position, with dilution hedges occurring 
towards its left and intensification hedges occurring 
towards its right. However, if a domain includes only 
intensification hedges then “null” is located as the first 
element in an ascending ordered set. Similarly, for a set of 
only dilution hedges, “null” occupies the extreme right 
position in an ascending ordered set.  Figure 2 shows the 
modeling of a sample qualifier set for the domain of 
values from weather.  

We now show how the fuzzy memberships are 
computed for qualified variables. Fuzzy memberships for 
qualified variables are computed using composition of the 
fuzzy membership values for the variables and the 
qualifiers. The similarity between two qualified variables 
<qi, vi> and <qj, vj> is expressed as a fuzzy 
membership function denoted by ),(),( jjiviq vqµ . 

Since qualifiers are modeled as graded sets, fuzzy 
membership functions for these sets can be designed 
using their relative positions within the set. The distance 
between two qualifiers in the collection reflects their 
degree of dissimilarity. The distance between the qualifier 
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qi at position i and the qualifier qj at position j 
within a set is defined by using equation 1. 

)1...(..............................),( jiqqd ji −=  

The fuzzy membership function for the qualifier set is 
then defined as given in equation 2.  
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where, MAX = max {d(qi, qj), ∀ qi, qj ∈ Q, where Q is 
the qualifier set}. f is commutative in nature. Figure 2 
shows the fuzzy membership functions derived for the 
qualifier sets for temperature property of weather. 

In order to compute the fuzzy membership of 
compositions, we have taken the dilution or 
intensification aspects of both the qualifiers and values 
into account. An element ti is a dilution with respect to 
another element tj in the graded set if i<j in the ordered 
set {ti, tj}. Conversely tj is an intensifier with respect 
to ti. This information is encoded in terms of a function 
as given in equation 3. 
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The elements ti and tj can represent a pair of qualifiers 
qi and qj or a pair of values vi and vj. The composite 
fuzzy membership function is defined as shown in 
equation 4. 
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Figure 3 shows the composition of fuzzy quantifiers and 
qualifiers for the temperature property of weather 
concept. 

We now present the fuzzy modeling mechanism to 
handle numeric attributes. For example, in the weather 
domain the temperature property may be expressed at 
multiple levels of granularity. While at the lowest level 
they may comprise of numeric values, for describing long 
term weather conditions usually linguistic variables like 
hot, cold, cool etc. are used and each numeric value can 
be mapped into these linguistic variables by using fuzzy 
membership functions. Figure 4 shows the modeling of 
temperature values by using these fuzzy sets. 

Moreover, numeric attributes can also be expressed as 
fuzzy numbers, which simply represent fuzzy numeric 
intervals over the domain of particular variable. Fuzzy 

numbers are generally represented using bell-shape, 
triangular or trapezoidal membership function along with 
a fuzzy quantifier defined over the numeric domain with 
appropriate fuzzy functions. A subset of hedges known in 
the domain of fuzzy set theory like, few, somewhat, small, 
average, more or less, many, very, high etc. can also be 
used directly on crisp numbers to convert them into fuzzy 
sets through the process called approximation [4].  
 

 
 

 

Figure 5. A fuzzy number “around 25” to 
represent the value of temperature 
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Figure 3. Composition of fuzzy quantifiers and 
qualifiers for temperature 
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Figure 6.  A curated Weather database (partial) from 
text documents 

A bell-shape membership function to represent a fuzzy 
number “around 25” to represent the temperature value is 
shown in figure 5. Fuzzy numbers are generally 
represented through two principal attributes – a central 
value and a degree of spread around the value. The degree 
of spread is also called the expectancy (e) of the fuzzy 
number. When e=0, the fuzzy number is a single point 
and correspond to a normal scalar value. As the 
expectancy increases, the number becomes fuzzier. 
 
5.   Application of fuzzy ontologies  
 

The proposed fuzzy ontology structure has been 
integrated with a text mining and query processing 
application. Starting with a seed ontology in which some 
domain concepts are defined, more concepts and concept 
descriptors are extracted from free-form text documents 
of the domain. Concept descriptions not encountered 
earlier are fuzzified through manual intervention, where 
the knowledge-engineer chooses the appropriate set of 
hedges, membership functions etc. and the requisite 
ontology is thereafter enhanced automatically. The 
knowledge extracted about domain instances are also 
curated into a database, which is then used for query 
processing. 

Figure 6 shows a partial snapshot of a weather 
database about different countries of the world that has 
been created using the proposed fuzzy-ontology based 
text mining with web documents. This database is used to 
answer queries like “Which country has weather similar 
to Andorra”, and the answers would be Australia and 
Albania, in that order.  

The fuzzy ontology structure is also ideally suited for 
handling non-uniformity in domain descriptions. We 
illustrate this through an example. The concept 
publication  defined in WordNet states that a publication 

is a kind of book, while [6] defines a publication as 
synonymous to book. The associated properties are also 
different and often non-overlapping. While none of them 
can be assumed to be wrong, our proposal is to convert 
each ontology into a fuzzy ontology where the relations 
are weighted to indicate the uniformity of the relations 
across ontologies. The weighting scheme is based on a 
simple weight-propagation mechanism, similar to that 
defined in [6]. Thus the relationship between book and 
publication is associated with a weight of 0.8 rather than 
1, to indicate that it is not a consistent definition across 
ontologies. 
 
6. Conclusion 
 

In this paper we have presented a fuzzy ontology 
generation framework in which concept descriptors and 
inter-concept relations are represented as fuzzy relations. 
This work has been integrated with a text-mining system 
such that, starting with a seed ontology a domain 
ontology can be extended with new knowledge extracted 
from text documents. The proposed ontology structure is 
also suitable to resolve the inconsistencies in concept 
descriptions and inter-concept relations present across 
multiple ontologies that define the same domain. 
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