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Abstract. Since the emergence of 3G cellular IP networks, internet us-
age via 3G data services has become ubiquitous. Therefore such network
is an important target for imposters who can disrupt the internet services
by attacking the network core, thereby causing significant revenue losses
to mobile operators. GPRS Tunneling Protocol GTP is the primary pro-
tocol used between the 3G core network nodes. In this paper, we present
the design of a multi-layer framework to detect fuzzing attacks targeted
to GTP control (GTP-C) packets. The framework analyzes each type
of GTP-C packet separately for feature extraction, by implementing a
Markov state space model at the Gn interface of the 3G core network.
The Multi-layered architecture utilizes standard data mining algorithms
for classification. Our analysis is based on real world network traffic col-
lected at the Gn interface. The analysis results show that for only 5%
fuzzing introduced in a packet with average size of 85 bytes, the frame-
work detects fuzzing in GTP-C packets with 99.9% detection accuracy
and 0.01% false alarm rate.
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1 Introduction

Connecting millions of people around the globe and providing exciting services
to end users, the demand of internet is ever rising [1]. Every effort has been made
to improve the user experience and to increase the Internet’s circle. Cellular net-
works provides only voice services but, with the advent of 3G technologies mobile
operators are providing data services with low broadband speed. The main rea-
son for the popularity of 3G network is its ability to provide greater bandwidth
with wide area coverage. Several data transmission techniques have been pro-
posed for better performance, e.g., WCDMA, TD/CDMA and CDMA2000 are
different Code Division Multiple Access techniques used for data transmission.
The first two techniques are based on General Packet Radio Service (GPRS) and
hence have the same core network architecture [2]. Our framework targets the
security of GPRS core network interface, i.e., Gn interface.

As compared to the widespread use of internet via cellular network there
is a huge threat to the security of the network. Attacks can come from inside



the cellular network [3]. These attacks can cause network degradation and even-
tually lead to Denial of Service (DoS) to end users. However, 3G networks
have some of their own security issues as addressed in [4] and [5]. Due to open
nature of IP in 3G networks, attackers can exploit vulnerabilities in their core
network nodes and protocols. Attacks on the core nodes of the 3G networks can
be launched by compromising different nodes of the architecture such as the
Serving GPRS Support Node (SGSN) and the Gateway GPRS Support Node
(GGSN) [6]. As explained in [7], an attacker can establish herself as a legitimate
3G network element by IP spoofing. Such attacks pose serious threat to mobile
user privacy by stealing user data such as IMSI number, billing information,
contact details, etc. An attacker can exploit protocol vulnerabilities by fuzzing
sensitive fields of packet headers [8]. GPRS Tunneling Protocol GTP is the main
communication protocol used in the core network. All user requests for internet
services are made through GTP.

In this paper, we have analyzed the GTP protocol vulnerabilities and pro-
posed an effective and efficient multi-layered framework for their mitigation.
Our analysis is based on real world GTP (v1) traffic collected at the Gn inter-
face. The main contribution of our work is a framework that can detect GTP-C
fuzzing attacks in real time. It consists of three main modules: i) Packet Byte
Analyzer (PBA), ii) Benign Packet Definition (BPD), and iii) Decision Module.
The fuzzing is detected by modeling the differences in byte sequences of normal
and fuzzed packets. We use Markov state-space model for extracting features.
The less discriminative features are then pruned by using an information theo-
retic measure known as Information Gain. Each incoming packet is fed to BPA
which performs the feature extraction and forwards them to the BPD module.
The BPD module uses the extracted feature set as input and represents each
packet as a feature vector. The decision module implements standard data min-
ing algorithms to classify the incoming packets as normal or malformed. The
rest of the paper is organized as follows. Section 2 gives a brief summary of the
related works. In Section 4, we report different statistics of our real world benign
dataset. Section 5 presents the architectural detail of the proposed framework.
Section 6 presents the experimental setup and results. Finally in section 7, we
conclude the paper with future directions of work.

2 Related Work

The attacks in the cellular networks are not unprecedented. Some known at-
tacks are directed towards Mobile Stations (MSs) [9] and [10] whereas, some
attacks try to disrupt the services in general as mentioned in [11] and [3]. [12]
presents a taxonomy of such 3G attacks. The attacks have been classified as
Cross-Infrastructure, which are directed from the internet to the cellular net-
works, and Single Infrastructure attacks which arise from within a cellular net-
work. In [13], Patrick et al. holds the opposite design philosophies of internet
and 3G networks responsible for making 3G networks vulnerable to Denial of
Service (DoS) attacks, and also demonstrates two more attacks supporting this



theory. The author highlights the fact that bandwidth is not the ultimate cause
of such attacks rather, it is the inflexibility of architecture of 3G networks that
makes these attacks practical.

One of the foremost attempt to highlight the vulnerabilities of GPRS core
network is presented in [4]. In this work, the author has provided an overview of
attacks and flaws associated with GPRS architecture. The report also provides
recommendations to avoid such type of attacks. A more detailed categorization
of attacks against GPRS is followed in [8]. In this paper, the authors have listed
Overbilling attacks, misconfigured WAP’s exploits and a detailed list of GTP
risks. The paper proposes an alternative design for network architecture that
can be adopted by network operators. The authors also present Check point

Firewall product that can provide additional security.

Another important contribution in securing GPRS from attacks on the GPRS
core is presented in [6]. Dmitriadis et al. presents a threat model with regard
to GPRS core network, depicting nine possible attack groups, and also gives
a feasibility study of honeynets in 3G networks. The authors propose 3GHNET,
a honeynet, for the improvement of GPRS core network security. The authors
have compared the advantage of 3GHNET implemented GPRS network over an
unprotected network and used concepts from the game theory for comparison.

[2] presents a defense mechanism for GTP security threats. The authors pro-
pose an event-based description language for the detection of attacks directed
towards the GTP protocol. They have classified GTP security concerns as proto-
col abnormal attacks, infrastructure attacks and resource consumption attacks.
They have categorized the GTP protocol into GTP-C, GTP-U and GTP’, which
are GTP control plane, GTP user plane and GTP prime respectively and ana-
lyzed them separately to perform the decision on the basis of events generated.
The authors have tested their architecture on OpenGGSN emulator which is an
open source implementation of the core network nodes - SGSN and GGSN [14].
Our work is different from [2] as it aims at securing only the GTP-C category of
the GTP protocol from fuzzing attacks. GTP-C packets are most important for
the communication between the GSNs. The architecture of our scheme enables
us to further categorize the GTP-C packets and analyze them separately.

3 GPRS Architecture

GPRS is an extension GSM, in fact it has been overlaid on the already existing
GSM infrastructure [15]. To handle packet data, a Packet Control Unit(PCU) is
introduced at Base Transceiver Station(BTS). Besides that two GPRS support
nodes(GSNs) have been added to the structure. SGSN is connected with many
BTSs analogous to BSC, and serves to transfer data requests over the network.
Whereas GGSN facilitates to connect the network to external data network. Any
user that intends to send/receive data from external network has to register a
context with these two nodes(SGSN and GGSN). The different interfaces of
GPRS are shown in Figure 5.



Fig. 1. Architecture of GPRS

The next section is dedicated to the description of this interface, and depicts
how communication actually takes place on this interface. For the sake of brevity,
we have only considered GTPv1 specifications for the matter at hand.

3.1 Gn interface

Whenever a user needs to send/receive packet data from external network, it re-
quests the network to activate a PDP context. On receiving such a request, the
SGSN sends a Create PDP context Request message containing IMSI number
of the user,(Access Point NAme) APN and Tunnel Endpoint Identifiers (TEID)
for GTP-C and GTP-U plane, to GGSN. Once the GGSN receives this informa-
tion, it stores it for future correspondence and sends back Create PDP Context

Response containing information elements(IEs to indicate wether the context
was established successfully), End User Address field (which contains the IP ad-
dress assigned by the GGSN to the user) and TEID for both GTP-C and GTP-U
plane.

(a) Create PDP Context Request (b) Create PDP Context Response

Fig. 2. Context Establishment between SGSN and GGSN

Figure 2 demonstrates how a context is established between the two nodes,
and how do SGSN and GGSN recognize tunnels at their ends, both in User
and Control plane. When SGSN sends a Create PDP context Request to the



Table 1. Benign dataset summary

Type No. Avg. Size(Bytes) Description
Create PDP Request 1183681 197 Request for initiation of user session
Create PDP Response 3866 135 Response to the initiation request
Update PDP Request 555 85 Request to update the QoS, TFT etc parameters
Update PDP Response 684 95 Response to the update parameter request
Delete PDP Request 4317 60 Request for termination of user session
Delete PDP Response 3237 56 Response to the termination request

GGSN as shown in Figure 2(a), it advertises a TEIDS and an IPS address
for User plane and a TEIDS and an IPS(subscript S is used for SGSN) for
Control plane to the GGSN, to be used in future by the GGSN when ad-
dressing the specified tunnel at SGSN. SGSN uses the same parameters(the
TEIDS/IPS that it advertised) to discern between different tunnels operat-
ing at SGSN. Similarly, when GGSN responds with a Create PDP context

Response message as shown in Figure 2(b), it advertises a TEIDG and IPG

for User plane as well as for the Control plane to the SGSN, which are to be
used in future by the SGSN when addressing a specific tunnel at GGSN. The
GGSN uses these parameters to discern between different tunnels operating at
GGSN. Also, the port numbers are fixed for both Control and User plane data.
Similar to the Create PDP Context Request/Response messages, Delete PDP

Request/Response messages also exist, which are used to delete an active tun-
nel. Since the payload of user is tunneled through the Gn interface, it becomes a
natural choice for analysis when it comes to anomaly/intrusion detection in the
core network. A compromised SGSN or GGSN can host attacks to other criti-
cal systems, such as the Mobile Switching Center (MSC), home location register
(HLR), visitor location register (VLR) and other SGSN/GGSN nodes of the net-
work. Such attacks directly affect crucial information such as subscriber identity
database residing in the HLR, charging/ billing gateways (CG/BG), handoff
operations which involves VLR etc.

4 Dataset

In this section we describe the benign and malformed GTP dataset that we have
used in this study. We also give a brief description of our fuzzing algorithm used
to generate malformed GTP packets.

4.1 Benign Traffic

Our benign dataset consists of real world GTP-v1 traffic collected at the Gn

interface. The traffic was logged at GPRS core network node, during the peak
usage hours of the day. All type of GTP packets were captured however, our anal-
ysis is based on only GTP-C packets, which are responsible for the creation and
deletion of user sessions between the GSNs. Table 1 provides different statistics
of the data set. The total number of PDP contexts shows the number of GTP
tunnels created, updated or deleted between the SGSN and the GGSN. It is



obvious that there are unequal number of requests and responses, which is due
to window censoring phenomenon [16]. This means that user sessions initiated
during the data logging period are not torn down before the end of the logging
process.

4.2 Fuzzed Dataset

We performed fuzzing of each type of GTP-C packet separately. The format of
the GTP packets is shown in Figure 3. For fuzzing, we have employed standard
bit-fuzzing technique used for other IP-based protocols, i.e., for 1% fuzzing a
bit is randomly selected from a packet and is inverted. Similarly for n% fuzzing,
we select n% bits randomly from a packet and invert them. In this way, we
have generated 24 different fuzzed datasets for each GTP-C packet category
corresponding to 2%, 5%, 10% and 20% fuzzing of each n-gram where, n varies
from 1 to 6.

Fig. 3. GTP packet format

Our fuzzed dataset consists of packets with fuzzed fields such as message

type field. Fuzzing this type of field changes the message type, for example, from
Create PDP Context Requestmessage(message type=0x10) to some other mes-
sage type, which may result in a message type that is not recognizable by the
GGSN or in a message type that GGSN is not expected to receive. In addi-
tion, there are some information elements following the mandatory header in
the message that are more apposite for fuzzing. This is because each type of
packet uses the extension header information elements differently. More specifi-
cally, the information elements(IEs) are divided into TV (Type, Value) or TLV
(Type,Length,Value) format. Figure 4 shows details of the formatting of such
IEs. Our fuzzed dataset include packets with fuzzed TV-formatted IE’s because
when we fuzz such a field, the length of the fuzzed field may increase from that of
the expected length known to the GGSN, making the IEs following it to be un-
readable. The fuzzed packet dataset also contains fuzzed values of TLV-formatted
IEs fields, end user address, access point name (APN), protocol configuration
options (PCO) and GPRS serving node (GSN) address IEs. Table 2 describes
the possible impact of fuzzing different fields of GTP packet.



Table 2. Fuzzed fields and possible results of fuzzing

Fuzzed Field Explanation Result
Message Type Allows 255 different message types values Invalid message type

IE Contain packet specific information DoS/Dependent on Device Vulnerability
IE length Contains the length of IE Buffer overflow/System Crashes

End User Address Address of the Mobile Station DoS/Dependent on Device Vulnerability

Fig. 4. Information element formats

5 GTP Malformed Packet Detection Framework

In this section, we present the architectural detail of the proposed intrusion de-
tection framework, which consists of a bi-directional detection module at the
Gn interface. Figure 5 shows the architecture of the proposed framework for
detection of malformed GTP packets. GTP protocol is used by most of the
3G transmission techniques including WCDMA and TD/CDMA, which employ
the GPRS core network architecture. So for simplicity we consider the GPRS
network for explanation of the proposed framework. SGSN is connected with
many Base Transceiver Stations (BTSs), and serves to transfer data requests
over the network. Whereas GGSN facilitates to connect the network to external
data network. The architecture secures the control plane of the GTP protocol
by employing a parallel design. The parallel architecture has two main advan-
tages. Firstly, it reduces the processing overhead by the simultaneous analysis
of different GTP control packets and secondly, it allows a deeper level of inspec-
tion by analyzing each packet type according to its use of extension headers as
explained in section 4.2. The detection framework perform byte-level analysis of
the incoming GTP-C packets and classify them as normal or malformed. The
proposed framework consists of three main modules - Packet Byte Analyzer,
Benign Packet Definitions, and Decision module. A detailed description of these
modules appears in the following sub-sections.

5.1 Packet Byte Analyzer

The PBA module acts separately for each type of GTP control packet. Its in-
puts are the validated GTP packets. The validation process is done through an
input interface, which checks input packets for explicit errors like invalid mes-
sage type. For each packet, it performs a byte-level analysis. The module uses a
windowing methodology for the collection of important discriminating features.
It implements a sliding window of n bytes. Given a byte sequence Ps, of a packet
P , sliding a window of size n = 1, we get Ps =< Φ1, Φ2, ..., Φi, .. >, where Φi



Fig. 5. Architecture of proposed framework for GTP fuzzing attacks

represents the ith byte of P . Similarly for n = 2 the representation becomes
Ps =< Φ1|Φ2, Φ2|Φ3..., Φi−1|Φi, .. >, where the symbol | represents a string con-
catenation operator. This relation explains the tradeoff that exists between the
amount of information and the size of the training data. Therefore, a thorough
analysis for the selection of the window size is necessary for better performance.
Accordingly, we model the byte sequences so that analysis can be performed with
varying window size. For this, we use discrete time Markov chain. We consider
the position of the window (size = n) as a state which changes in accordance
with the window slides. Therefore, for a representation Ps if S = s0, s1, ..., sk
is the set of possible states, then the position to state mapping function can
be described as: (f : pi → sj ∈ S) where, pi ∈ P =< p0, p1, ..., pm >. So for
two consecutive window positions the mapping functions are (f : pi → sx) and
(f : pi+1 → sy). The transition between two states is represented as sxy and
that the transition probability as τxy. This gives a state transition probability
matrix calculated as F : S × P → τ(S) where, F is a transition function. The
PBA computes τ(S) for each packet and outputs the probability matrix which
is used by the decision module.

5.2 Benign Packet Definitions

This module is used to model incoming data into an n-dimensional feature space
where, n represents the number of features identified by PBA module. n varies
for different types of control packets depending on the number and size of the
packet type. During training phase the PBA calculates transition probabilities
of the training dataset. Each transition probability is considered as a potential
feature which can help in discriminating normal packets from malformed packets.
So, during training phase six different feature vector sets are created one for each
packet type.



5.3 Decision Module

The decision module implements three classifiers: Decision tree (J48), Näıve
Bayes (NB) and inductive rule learner (Jrip). The module takes τ(S) as an input
from the PBA and on the basis of training dataset residing in the respective
BPD and generates the output for output filter. A brief description of the three
classifiers used is presented in the following paragraphs.

Decision Tree (J48) Decisions trees are usually used to map observations
about an item to conclusions about the items target value using some predic-
tive model [17]. They are very easy to understand and are efficient in terms of
time especially on large datasets. They can be applied on both numerical and
categorical data, and statistical validation of the results is also possible. We use
C4.5 decision tree (J48) that is implemented in WEKA. We do not utilize binary
splits on nominal attributes for building trees. The confidence factor for pruning
is set to 0.25, where lower values lead to more pruning. The minimum number
of instances per leaf is set to 2. The number of folds of training data is set to 3,
where one fold is used for pruning and the rest are used for growing the tree.

Näıve Bayes (NB) Näıve Bayes is a simple probabilistic classifier assuming
näıve independence among the features, i.e., the presence or absence of a fea-
ture does not affect any other feature [18]. The algorithm works efficiently when
trained in a supervised learning environment. Due to its inherent simple struc-
ture it often gives very good performance in complex real world scenarios. The
maximum likelihood technique is used for parameter estimation of Näıve Bayes
models. We have neither used kernel estimator functions nor numeric attributes
for supervised discrimination that converts numeric attributes to nominal ones.

Inductive Rule Learner (Jrip) We chose rule based learners due to their
inherent simplicity that results in a better understanding of their learner model.
Jrip, performs quite efficiently on large noisy datasets with hundreds of thou-
sands of examples.The algorithm works by initially making a detection model
composed of rules which are improved iteratively using different heuristic tech-
niques. The constructed rule set is used to classify the test cases.

6 Experiments and Results

In this section we evaluate the performance of the proposed GTP-C fuzzing
detection framework. We measure the performance on the basis of detection rate.
We have carried out the standard Receiver Operating Characteristics (ROC)
analysis to evaluate the detection accuracy of our system. We report area under
the ROC curve (AUC) of three data mining algorithms: decision tree (J48),
Näıve Bayes (NB) and inductive rule learner (RIPPER).
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Fig. 6. Average AUC at 2, 5, 10 and 20% fuzzing rate showing peaks at n = 4

Our experiments are based on two sets of analysis. In the first set we deter-
mine the optimum value of n for best average detection accuracy. We perform
ROC analysis for window sizes of 1 to 6. For generalization we averaged the AUCs
of the three classifiers and using their AUC averages we calculated detection ac-
curacy for all categories of packets. In Figure 6, the overall average detection
accuracy for different levels of fuzzing is shown. The figure shows that in most
cases window size of 4 gives the best performance in terms of AUC. Increasing
the size of n increases the number of features and hence the dimensionality of
the data set, thereby exhibiting the curse of dimensionality. Whereas, fea-
tures extracted at smaller values of n, due to simplicity, do not have sufficient
discriminative abilities.

In the second set of experiments, to select the most discriminative fea-
tures, we have used standard feature selection method. We employ information-



(a) Create PDP Request (b) Create PDP Response

(c) Update PDP Request (d) Update PDP Response

(e) Delete PDP Request (f) Delete PDP Response

Fig. 7. Normal probability plot of different types of GTP-C packets

theoretic measure for feature ranking. Information gain is one such measure to
calculate the discriminative ability of a feature.

IG(Y ;X) = H(Y )−H(Y |X)

Where (IG ∈ [0, 1]) and H(X) and H(Y ) are the entropies of a given at-
tribute X and a class attribute Y . We perform feature quantification to support
the notion of introducing feature selection. Figure 7 shows the normal proba-
bility plot of the information gain of the extracted features. It can be observed



that for smaller values of n the IG values of almost all of the features are very
low. However for larger values of n some features exhibit significantly large IG
values. But as we increase the value of n the curse of dimensionality increases.
Therefore our analysis show that n = 4 is most suitable in terms of detection.

After determining the suitable value of n, i.e., 4 we improve the results by
selecting features of high IG values, which results in reduced number of features.
The analysis include all types of control packets for the value of window size 4.
Table 3 gives detection accuracies (DA) and false alarm rate (FA) for different
levels of fuzzing rate (FR). In this figure, we can see that 2% fuzzing is most
difficult to detect for some type of packets. The difficulties arrive when the packet
size is small. For example in Delete PDP Request/Response packets the average
sizes are 60 and 56 bytes respectively. So even for 5% fuzzing the number of bits
fuzzed will be 3, which makes it difficult to detect. Packets with fuzzing rate
as low as 2% have a very low threat level and can be considered as minor bit
errors. However, when the packet size increases as in the case of Create PDP
Request/Response the number of bits fuzzed are relatively larger and have a
higher threat level. It can be seen from the results that the detection accuracy
for packets with higher threat level is as high as 99.9% whereas, the false alarm
rate is as low as 0.1%.

7 Conclusion and Future Work

In this paper, we have presented an efficient data mining framework for detection
of fuzzing attacks directed towards 3G core networks using the control packets
of the GTP protocol. The results show that the Markov chain model for feature
selection combined with standard classification algorithms is a good technique
for detection of fuzzing attacks. The analysis done for n = 4 shows that it is
most suitable for efficient detection of fuzzing attacks with fuzzing rate of 5%
or more whereas, performance results are also satisfactory in most of the cases
where fuzzing rate is less than 5%. Currently, we are working on exploring some
other data mining techniques to identify features resulting in improved detection
accuracy for lower fuzzing rates (1% and 2%). The future work also includes a
thorough analysis of the processing overheads of the proposed framework to
make it deployable in a real environment.
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