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Abstract

Community detection is an important task for identifying the structure and function of complex net-

works. The task is challenging as communities often show overlapping and hierarchical behavior, i.e., a

node can belong to multiple communities, and multiple smaller communities can be embedded within a

larger community. Moreover, real-world networks often contain communities of arbitrary size and shape,

along with outliers. This paper presents a novel density-based overlapping community detection method,

OCMiner, to identify overlapping community structures in social networks. Unlike other density-based

community detection methods, OCMiner does not require the neighborhood threshold parameter (ε) to

be set by the users. Determining an optimal value for ε is a longstanding and challenging task for

density-based clustering methods. Instead, OCMiner automatically determines the neighborhood thresh-

old parameter for each node locally from the underlying network. It also uses a novel distance function

which utilizes the weights of the edges in weighted networks, besides being able to find communities in

un-weighted networks. The efficacy of the proposed method has been established through experiments

on various real-world and synthetic networks. In comparison to the existing state-of-the-art community

detection methods, OCMiner is computationally faster, scalable to large-scale networks, and able to find

significant community structures in social networks.

1 INTRODUCTION

An important mesoscopic structure in social networks which can often be closely related to the functional

units of any system is the community. A community is defined as a group of nodes that share similar

properties or connect to each other via selected relations [62]. In a community, nodes are relatively densely

connected to each other, but sparsely connected to other dense groups in the network [15]. Due to increasing

popularity of online social networks (OSNs) and their applications, community mining research has received

a lot of attention in recent past and the field is still rapidly evolving. Numerous methods based on spectral

clustering [11, 46, 55], partitional clustering [33], mathematical programming [1], and latent space clustering

∗Corresponding author. E-mail: abulaish@ieee.org

1



[18] along with modularity-based algorithms [8, 37] and likelihood-based algorithms [7] have been developed

for community detection in social networks. Community detection in a network depends on various factors,

including whether the definition of community relies on global or local network properties, whether nodes

can simultaneously belong to several communities, whether link weights are utilized, whether outliers are

considered, and whether community definition allows for hierarchical structure.

The fact that nodes in a network can belong to more than one community, and a solution based on

k-clique percolation given by Palla et al. [38] have resulted in an increased attention towards the problem

of overlapping community detection in social networks. Although most of the methods consider overlap

of communities at boundaries, some methods allow central vertices of communities to overlap, making the

characterization of overlapping vertices unclear [15]. Here, We argue that a central vertex of a community

can also be a boundary vertex of another community during an overlap in a real-world network.

Besides overlapping communities, real-world social networks often show a hierarchical organization in

their community structure. In such cases, multiple smaller communities at lower levels form a larger com-

munity at a higher level, or a community at lower level may be a part of even larger communities at higher

levels. It thus becomes important to identify both overlapping community structures and their hierarchical

organization from such networks to provide an appropriate representation of communities. Hierarchical clus-

tering is a well-known technique used in social network analysis [52, 44] to naturally create a hierarchical tree

of partitions, called dendrogram. However, such method does not consider overlaps and produces all possible

partitions based on the similarity measure used, without stressing on the quality of identified community

structures. Recently, a class of community detection methods [27, 41], called multi-resolution method, has

started to evolve with a general property of having a tunable parameter to adjust the characteristic size

of communities to be detected. Varying the value of resolution parameter enables such methods to detect

community structures at varying levels of resolutions and thus form a hierarchical organization of community

structures for a network.

Considering the case of OSNs like Facebook, and Twitter, community structures have mostly been ana-

lyzed using traditional community detection techniques over un-weighted social graphs representing explicit

relations (friends, colleagues, etc.) of users. However, in order to identify functional communities in OSNs,

it is necessary to take users interaction data (posts, blogs, chats, comments, etc.) into consideration as well.

Through these interactions users gradually form social groups/communities based on shared values and in-

terests that are quite different from traditional communities formed on the basis of geographical locations

[54]. Analyses of Wilson et al. [56] and Viswanath et al. [51] on Facebook friendship and interaction data

reveal that most of the users interact only with a small subset of their declared social group. This high-

lights that only a subset of declared social group actually represents interactive relationships. Their results

demonstrate that a large part of interactions for majority of the users occur only across a small subset (as

low as 20%) of their declared social group (friends). On a 100% fraction line, it has been seen that nearly all

users can attribute all of their interactions to only 60% of their friends, and for majority of the users all their

interactions are reciprocated. Considering interaction degrees of the nodes in OSNs, likelihood of nodes to

link to other nodes of similar degree is more than the friend network. This means that nodes in interaction

network show more assortativity than the friend network, and places it close to known social networks.

These findings suggest that social network based systems should be based on activity network, rather than

on friend network. Activity network of OSNs can be treated as a weighted graph, and a community detection
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algorithm can exploit weighted links to identify communities in the network.

This paper proposes a density-based method, OCMiner, which is an extended and improved version of our

previously published work [2], to identify overlapping community structures in online social networks. It also

provides heuristics to automatically determine a good approximation for the input parameter η. However,

the current work is also different than our other previous work [3] which mainly aims to track evolution

of dynamic communities. The proposed method is along the lines of the SCAN [60], DENGRAPH [14], and

other recent density-based community detection methods like GSK [48] and CHRONICLE [22] that are based

on DBSCAN [13]. These methods find dense communities, and also detect outliers and hubs in networks. In

addition to these properties, OCMiner has the following features.

• OCMiner incorporates a novel distance function, which utilizes link weights of the interaction graph (if

available) of an underlying network; besides able to find communities in un-weighted networks.

• OCMiner does not need the neighborhood threshold ε (mostly difficult to determine for density-based

community detection methods) to be specified by the users manually. Instead, it automatically deter-

mines a local version of the same for each node locally from the underlying network using a simple but

effective approach. Moreover, it also provides a heuristic to find good approximation for the second

parameter μ (minimum-number-of-points) required for density-based community detection methods.

• Unlike related density-based methods, OCMiner finds overlapping community structures from social

networks using a density-based approach, which to the best of our knowledge is the first attempt to

do so.

• Tuning the only input parameter for OCMiner enables it to find hierarchical organization of overlapping

communities at different levels of granularity. This property places it in the multi-resolution class of

community detection methods.

• OCMiner is computationally faster and naturally scalable to large social networks.

The rest of the paper is organized as follows. Section 2 presents a review of the state-of-the-art techniques

for community detection in social networks. Section 3 defines distance function and presents the procedural

detail of OCMiner. Section 4 discusses the overlapping community detection characteristics of OCMiner.

Section 5 provides experimental setup and evaluation results. Section 6 discusses the input parameter η,

followed be the complexity analysis of OCMiner in section 7. Finally, section 8 concludes the paper with

future directions of work.

2 RELATED WORK

Traditional approaches for community identification in networks use graph partitioning methods that divide

vertices of a network into a predefined number of groups in such a way that the number of edges lying between

the groups is minimal. Kernighan-Lin algorithm [21] is one of the earliest known partitioning methods.

Partition-based clustering [34] is another technique extended for community detection in networks. Given a

set of nodes and a predefined value, k (number of clusters to be found), the problem is to divide the nodes

into k clusters that optimizes a given cost function. However, the main drawback of these methods is the

requirement of the number of clusters apriori [37].
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Hierarchical clustering is another well-known technique used in social network analysis [44, 52]. Starting

with a partition in which each node is in its own community or all nodes are in the same community, clusters

are merged or splited according to a topological measure of similarity between nodes. Some of the previously

proposed similarity functions in the context of social networks include jaccard, cosine, and topological overlap.

Based on the sociological notion of betweenness centrality, Girvan and Newman [16] proposed a divisive

hierarchical clustering algorithm for community detection, which calculates the betweenness of all edges in

the network and removes the one with the highest betweenness value. The process continues until there is no

edge remaining or a stopping criterion is met. But, the method does not provide a measure to determine the

best split of communities in a network. Later on, Newman and Girvan [37] proposed modularity Q to measure

the quality of a division of a network into groups or communities. The idea of modularity Q is to compare the

number of links inside communities to the expected number of links in a random reference network containing

no community structure. High values of Q indicate network partitions in which more of the edges fall within

groups than expected by chance. Later, for many methods, modularity Q became an objective function

to be maximized leading to modularity optimization-based methods for community detection. Recently Li

[30] proposed a modularity based community detection method using a nonlinear programming method for

modularity optimization. Although modularity optimization methods have been proved to be highly effective

in practice for community evaluation in both weighted and un-weighted networks, Q measure suffers with

some major problems. Firstly, modularity requires information about the entire structure of the graph,

which is unrealistic in case of large networks like the World Wide Web. Secondly, modularity-based methods

have a resolution limit and may fail to identify smaller (possibly important) communities. As a solution to

the first problem, Clauset [6] proposed a measure for local community structure, called local modularity, for

graphs which lack global knowledge. Similarly, Radicchi et al. [40] proposed a divisive hierarchical method,

where links are iteratively removed based on the value of their edge clustering coefficient, which is a local

measure. This approach involves less computation than that of edge betweenness used in [16] and thus

yields a significant improvement in the complexity of the algorithm. Moreover, the stopping criterion of

the procedure depends on the properties of the communities themselves and not on the values of a quality

function like modularity. Sun et al. [50] introduce maximizing modularity-intensity as a solution for the

resolution problem of simple modularity measure to measure the cohesiveness of a network community.

Extending DBSCAN algorithm [13] to undirected and un-weighted graph structures, Xu et al. [60] proposed

SCAN (Structural Clustering Algorithm for Networks) to find clusters, hubs, and outliers in large networks

based on structural similarity, which uses the neighborhood of vertices as clustering criteria. CHRONICLE

[22] is a two stage extension of SCAN to detect dynamic behavior of communities in a dynamic network.

Similarly, considering only the weighted interaction graph of online social networks, Falkowski et al. [14]

extended DBSCAN algorithm to identify community structures.

The basic idea behind density-based clustering methods based on DBSCAN is that if the neighborhood

of a given radius ε of a node p (i.e., the set of nodes in a network each with a distance from node p less

than or equal to a specified threshold ε) contains more than μ nodes, then a new cluster with p as a core-

node is created. The process then iterates to find density-reachable nodes from this core-node and defines

a density-connected cluster using density-connectivity relations between the nodes [13]. Some important

features of density-based community detection methods include less computations, detection of outliers, and

natural scalability to large networks. However, they also suffer with some limitations. The main drawback
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of traditional density-based community detection methods is the requirement of the global neighborhood

threshold ε and minimum cluster size μ to be specified by the users. They are particularly sensitive to

ε parameter, which is difficult to determine apriori. As reported in [48], automatic determination of an

optimal value for ε parameter required by the density-based clustering methods (e.g., DBSCAN and SCAN) is a

long-standing and challenging problem. GSK method proposed in [48], which is based on an extension of the

cosine structural similarity of equation, reduces the number of possible values for ε significantly by considering

only the edge weights of a Core-Connected Maximal Spanning Tree (CCMST) of the underlying network.

Similarly, Huang et al. [19] proposed a two-stage parameter-free extension of density-based clustering SHRINK

by first finding smaller communities using the highest local structural similarity value of ε for a pair of

nodes and a constant value for μ, and then iteratively optimizing the modularity measure [37] upon joining

these smaller communities. In first stage, it uses a density-based approach to detect micro-communities

by considering dense pairs (i.e., pairs of nodes whose structural similarity is largest among their adjacent

neighbor nodes). In second stage, it iteratively joins micro-communities by considering the gain in modularity

[37]. Motivated by the fact that entities in a network can simultaneously belong to multiple communities, the

issue of detecting overlapping communities has received a lot of attention in recent past. The most popular

method for identifying overlapping communities is the Clique Percolation Method (CPM) proposed by Palla

et al. [38], which is based on the concept of k-clique, i.e., a complete subgraph of k nodes. As an enhanced

variation of CPM, Kumpula et al. [24] developed a Sequential Clique Percolation (SCP) algorithm, which

involves detecting k-clique communities by sequentially inserting edges of the underlying graph one by one,

starting from an initial empty graph. A different method combining spectral mapping, fuzzy clustering and

optimization of a quality function has been proposed in [63]. They have presented a possible embedding of

vertices of an arbitrary graph into a d-dimensional space using spectral mapping to utilize fuzzy c-means

algorithm on graphs for identifying overlapping communities. However, the eigenvector calculations involved

in their algorithm render it computationally expensive to use on larger networks. In [53], the authors first

partition a network into seed groups of overlapping community structures using existing spectral clustering

method. A locally optimal expansion process is then applied to greedily optimize Newman’s modularity [37]

measure. In [35], the authors presented an overlapping community detection method, MOSES, by combining

local optimization with overlapping stochastic block modeling using a greedy maximization strategy. Here

communities are created and deleted, and nodes are added or removed from communities, in a manner that

maximizes a likelihood objective function. Sun et al. [49] present a method based on fuzzy relational model

for clustering network structures into overlapping communities.

Besides overlapping communities, networks often show a hierarchical organization in their community

structures, where multiple smaller communities are embedded within larger communities or a community

may be a part of even larger communities. In order to provide appropriate information about the modu-

lar structure of a network, it is desirable to detect overlapping communities along with their hierarchical

organization. A two-stage algorithm, EAGLE, proposed by Shen et al. [45] for detecting overlapping and hi-

erarchical community structures in a network involves identifying all maximal cliques in the network, which

along with each subordinate vertex (single vertices that do not belong to any clique) are taken as an initial

set of communities. A dendrogram is then created in an iterative way using an agglomerative approach.

In second phase, a proper cut-point for the dendrogram is determined by finding the maximal value of an

extended modularity measure which also considers the number of communities to which a node belongs to.
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Reichardt and Bornholdt [41] have shown that it is possible to reformulate the problem of community

detection as a problem of finding the ground state of a spin glass model for detecting hierarchical and

overlapping community structures from complex networks. The energy of the spin system is equivalent to the

quality function of the clustering with the spin states being the group indices. This implies that edges should

connect vertices of the same spin state, whereas vertices of different spin states should be ideally disconnected.

A single parameter γ relates the weight given to missing and existing links in the quality function and

allows for an assessment of overlapping and hierarchical community structures. In [27], the authors have

proposed a method for simultaneously uncovering both hierarchical and overlapping community structures

based on local optimization of a fitness function. The method performs a local exploration of the network,

searching for the natural community of each node (community structure is revealed by peaks in the fitness

histogram). The procedure enables each node to be included in more than one module, leading to a natural

description of overlapping communities. Furthermore, the variation of a resolution parameter, determining

the average size of the communities, allows exploring hierarchical levels of the community structures in

a network. Along the line of the CPM [38], Kumar et al. [23] proposed a method, (HOC), to identify

hierarchical and overlapping communities by finding maximal cliques in the underlying network. However,

unlike CPM, HOC uses topological overlap criteria of equation 14 to define similarity between two arbitrary

nodes in a network. For HOC, if two nodes have their neighborhood topological overlap (equation 14) greater

than a threshold, α, they belong to the same community. The community detection framework, Infomap,

presented in [43] reformulates community detection as minimizing the description length of a random walk

across the network. The total description length consists of the length for encoding community transitions

and the length for encoding movements within communities. Infomap considers smaller description for the

trajectory of random walk to be more reasonable for defining a community partition. In [42], Infomap is

extended for networks with hierarchical community structure. In [28], the authors presented OSLOM which

locally optimizes the statistical significance of clusters defined with respect to a random graph generated

by a configuration model during community expansion. OSLOM is able to detect a hierarchical community

structure by reapplying the algorithm on intermediate super-networks of detected communities. Recently,

[59, 58] proposed an overlapping community detection method SLPA based on a label propagation approach.

Here, labels are propagated between nodes according to pairwise interaction rules. Each node is associated

with a memory which stores the received label(s). The probability of observing a label in a node’s memory

is interpreted as the membership strength. SLPA also considers the directed and weighted nature of networks

to find overlapping community structures. The methods proposed in [27], [23], [41], and [59, 58] can be

considered as instances of the class multi-resolution methods that generally have a freely tunable parameter

(resolution parameter) which allows to set the characteristic size of the clusters to be detected. This enables

them to extract communities at varying levels of resolutions and thus form a community hierarchy.

Another major challenge related to the area of community analysis in social networks is tracking the

evolution of communities in dynamic social networks. The evolution of dynamic networks is mainly driven

by the addition of new nodes and links to the network. The mapping of the communities across a time-step

is traditionally performed by checking if any two communities across a time-step (identified individually for

each time-step separately) share any core-nodes. However, as pointed out in [31] the dynamic community

detection methods discussed so far have a common limitation that communities and their evolution are

studied separately. In this regard, Cazabet et al. [5] propose a robust overlapping community detection
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method iLCD which adapts an initially detected community structure to the changes occurring in a dynamic

network. However, it only considers the addition of new edges and nodes to the network and not the removal

and only identifies the Merge, Growth and Birth of communities. Similarly, Nguyen et al. [17] (AFOCS),

and Bhat and Abulaish [3] also aim to adapt a previous community structure to the dynamic changes in a

network including removal. It should be noted that in this paper, we do not aim to deal with the dynamic

nature of social networks and communities, instead we aim to propose an efficient parameter free density-

based overlapping community detection method and compare it with the current state-of-the-art methods

using rigorous experimental evaluations on a number of benchmark social networks.

3 PROPOSED METHOD

Along the lines of SCAN [60], DENGRAPH [14], and other recent density-based community detection methods

like GSK [48], and CHRONICLE [22], the proposed OCMiner is based on DBSCAN [13] method where a cluster is

searched by detecting the neighborhood of each object in the underlying database. The neighborhood of an

object p is based on the similarity or inversely the distance between p and other objects in the underlying

database. An object q belongs to the neighborhood of an object p if the distance between p and q is less

than or equal to a threshold ε. In a graph-based context, a node q belongs to the neighborhood of a directly

connected node p if the distance (structural) between p and q is less than or equal to ε. If the neighborhood

of a given radius ε of a point p contains more than μ objects, a new cluster with p as a core object is created.

The process then iterates to find density-reachable objects from these core objects and defines a density-

connected cluster using density-connectivity relations between nodes [13]. However, as pointed out in section

2, the main drawback of the traditional density-based community detection methods is their requirement of

a global neighborhood threshold, ε, and minimum cluster size threshold, μ, to be specified by the users. It

would be more appropriate to somehow dissolve the effect of these parameters or at least the effect of ε on

community structures discovered through density-based community detection methods to make them more

flexible. A similar attempt has been made in [19], and along this direction, OCMiner follows a density-based

approach for detecting overlapping community structures in social networks. The proposed method does not

require the global neighborhood threshold parameter ε to be set manually at the beginning of the process.

Instead, it uses a local representation of the neighborhood threshold which is automatically calculated for

each node locally from the underlying social network using a much simpler approach. Moreover, a local

version of μ is also computed for each node automatically using a global threshold η. The proposed method

thus requires only a single tunable parameter η to be set by the users.

3.1 PRELIMINARIES

This section presents the formal definition of a novel distance function which has been used in OCMiner

to determine the similarity of a node with its neighboring nodes in the network. It also discusses some

basic concepts related to the development of OCMiner. For simplicity, a set of notations has been used.

Table 1 presents the symbols and their brief descriptions. It should be noted that the proposed method

is designed to work on directed and weighted networks wherein the weight of an edge is considered as the

intensity of interactions (of any type) between the connected nodes. However, the method is generic and can

also be applied on un-weighted and un-directed networks through assigning a unit weight to each edge and
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considering each edge as a bidirectional edge having same weight. Mathematically, the interaction graph

of a social network is defined as GI = (V,Ew), where V is the set of nodes and Ew ⊆ V × V is the set

of weighted links between nodes. For un-weighted networks each link can be assigned a unit weight value

without altering the structural characteristics of the network.

Table 1: Notations and their descriptions

Notation Description

I−→p
Total number of out-going interactions of a node p (sum of the
weights of all the outgoing edges from p)

I−→pq
Number of interactions from node p to node q (weight of the edge
from p to q)

I←→pq
Number of reciprocated interactions (weight) between p and q:
min(I−→pq, I−→qp)

I←→p
Number of reciprocated interactions of a node p:∑

∀q∈Vp
min(I−→pq, I−→qp)

Vp Set of nodes with whom node p interacts

Vpq Set of nodes with whom both nodes p and q interact: Vp ∩ Vq

As mentioned earlier, an important component of density-based community detection methods is the

similarity/distance function used to decide whether a pair of nodes can belong to the same community

or not. For the proposed method, distance between two nodes is based on the average number of their

reciprocated interactions and their commonly interacted nodes. More specifically, if p and q are interacting

nodes and Vpq is the set of nodes with whom both p and q interact, then the similarity between p and q can

be determined using the amount of response from p to q and to the nodes in Vpq as well as the amount of

response from q to p and to the nodes in Vpq. The intuition here is that a pair of nodes whose interaction

reciprocity with each other and with a set of commonly interacted nodes in the network is higher than

the surrounding nodes (topological neighborhood) can be considered to be more related/close to each other

than the pair which does not show such a behavior. Therefore, distance function is formulated in terms of

”response”, which is defined as follows:

Definition 3.1 (Response) For a pair of interacting nodes p, q ∈ V , response of node q to the interactions

of node p is represented as ρ(p, q) and defined as the average of the per-user reciprocated interactions (link

weights) of q and the nodes of Vpq with p, if I←→pq > 0, otherwise 0. Mathematically, it can be defined using

equation 1, where Vpq and I←→pq have same interpretations as given in table 1.

ρ(p, q) =

⎧⎨
⎩

∑
s∈Vpq

(I←→ps)+I←→pq
|Vpq|+1 if I←→pq > 0

0 otherwise
(1)

The function ρ(p, q) gives the measure of a per-receiver average response (average reciprocated interactions)

of a node q and the set of common receivers of p and q to the interactions of node p. In equation 1, a higher

response from a node q to a node p represents more activity and hence more closeness of the two nodes with

each other. It is obvious from the definition that ρ(p, q) is an asymmetric function. However, instead of

defining an asymmetric directed response from a node q to a node p or vice versa and to ensure determinism
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in the detection process, responsiveness between two nodes p and q can be generally taken as the maximum

of their mutual directed-response, i.e., max{ρ(p, q), ρ(q, p)} or alternatively min{ρ(p, q)−1, ρ(q, p)−1}

Definition 3.2 (Distance) Distance between a pair of nodes p, q ∈ V is represented as Δ(p, q) and defined

as the minimum of the reciprocals of their respective mutual directed-response values normalized by their

respective total number of outgoing interactions in the interaction graph, provided ρ(p, q) > 0 and ρ(q, p) > 0,

otherwise it is assigned a value 1, as given in equation 2.

Δ(p, q) =

⎧⎨
⎩
min

{
ρ(p,q)−1

I−→p
, ρ(q,p)−1

I−→q

}
if ρ(p, q) > 0 ∧ ρ(q, p) > 0

1 otherwise
(2)

In simple terms, the distance function defined in equation 2 gives the minimum mutual reciprocal-response

between two nodes p and q in a social network. To normalize the distance in the range of [0, 1], mutual

reciprocal-response scores of both nodes p and q have been divided by their respective total count of outgoing

interactions I−→p and I−→q , respectively. Smaller values of Δ(p, q) represent higher response and thereby more

closeness between them.

Generally, density-based community detection methods estimate neighborhoods of nodes to mark the close

neighbors of each node p out of the nodes connected with p based on their distance from p. For this purpose,

they use a manually determined global neighborhood threshold, ε, in such a way that a node q is assigned

to the neighborhood of a node p only if the distance between p and q is less than or equal to ε. Instead

of manually setting a value for ε, we propose a function to automatically determine a local version of the

neighborhood threshold, termed as local-neighborhood threshold, for every node p from the underlying network

itself.

Definition 3.3 (Local-neighborhood threshold) For a node p ∈ V , the local-neighborhood threshold for

p is represented by εp and defined as the average per-receiver reciprocated interaction score of p with all its

neighbors, i.e., nodes with whom it has out-links. Formally, εp can be defined using equation 3, where
I←→p
|Vp|

represents the average number of reciprocated interactions between the node p and all other nodes in V to

whom it sends interactions, and the denominator I−→p represents the total count of outgoing interactions from

node p and normalizes the value of εp in the range of [0, 1].

εp =

⎧⎪⎨
⎪⎩

(
I←→p
|Vp|

)−1

I−→p
if |Vp| > 0 ∧ I←→p > 0

0 otherwise

(3)

Based on the distance function and local-neighborhood threshold discussed above, a local version of ε-

neighborhood, termed as local ε-neighborhood is defined as follows:

Definition 3.4 (Local ε-neighborhood) The local ε-neighborhood of a node p ∈ V is represented by Nε(p)

and defined as the set of nodes to whom p sends interactions and their distance from p (i.e., dist(p, q) equation

6) is less than or equal to εp, as shown in equation 4.

N ε(p) = {q : q ∈ Vp ∧ dist(p, q) ≤ εp} (4)
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For the proposed method, a local version of minimum-number-of-points threshold is also computed automat-

ically from the underlying network. However, it requires a global threshold, η, to be provided by the users as

a fraction value, i.e., 0 < η ≤ 1.

Definition 3.5 (Local minimum-number-of-points threshold) For a node p ∈ V , the local minimum-

number-of-points threshold is represented by μp and taken as the the number of nodes specified by the fraction

η of nodes to whom it has out-going interactions. Given a value of η, the value of μp for a node p can be

determined using equation 5.

μp = η × |Vp | (5)

It should be noted that the fraction η forms the only global parameter for the proposed method to be set

by the users. Besides determining local minimum-number-of-points threshold values, η is also used to set a

constraint, specified below, on the distance between two nodes while determining the local ε-neighborhood

for a node p, i.e., Nε(p).

Constraint 3.6 (Distance constraint) Distance constraint specifies that the distance between two inter-

acting nodes p and q can be measured by equation 2 only if the number of commonly interacted nodes of

p and q is greater than the number of nodes specified by the fraction η of the minimum of their respective

interacted nodes, minus one. Otherwise, distance between them is taken as 1. Formally, distance constraint

can be formalized as shown in equation 6.

dist(p, q)=

⎧⎨
⎩
Δ(p, q) if |Vpq| > (η ×min(|Vp|, |Vq|))− 1

1 otherwise
(6)

Definition 3.7 (Core node) A node p ∈ V having non-zero reciprocated interactions with other node(s) is

defined to be a core node with respect to a global percentage parameter, η, if its local ε-neighborhood, Nε(p),

contains at least μp (local minimum-number-of-points threshold for p) of its interacted nodes, as shown in

equation 7.

COREη(p)⇔ |N ε(p)| ≥ μp (7)

The concept of core node is important for defining community in a density-based context. The proposed

method uses the concept of core nodes to grow communities in a recursive manner based on the following

definitions.

Definition 3.8 (Direct density-reachability) A node q is direct density-reachable from a node p with

respect to a global percentage threshold, η, if p is a core node and q belongs to the local ε-neighborhood of p,

as shown is equation 8.

DirREACH η(p, q)⇔ COREη(p) ∧ q ∈ N ε(p) (8)
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Direct density-reachability is an asymmetric relation, i.e., if a node q is direct density-reachable from a node

p, then it is not necessarily true otherwise.

Definition 3.9 (Mutual-cores) Two nodes p and q are said to be mutual-cores if both p and q are core

nodes, and p belongs to the local ε-neighborhood of q, and q belongs to the local ε-neighborhood of p. In other

words, p and q are mutual-cores if p and q are direct density-reachable from each other, as shown in equation

9.

MutCORESη(p, q)⇔
DirREACHη(p, q) ∧DirREACHη(q, p)

(9)

Definition 3.10 (Density-reachability) A node q is density-reachable from a node p with respect to a

global percentage parameter, η, if there is a chain of nodes v1, v2, . . . , vn, where v1 = p and vn = q, such that

vi+1 and vi are mutual-cores for i = 1, 2, . . . , n− 2, and vn is direct density-reachable from vn−1, as shown

in equation 10.

DenREACHη(p, q)⇔
∃v1, . . . , vn ∈ V : v1 = p ∧ vn = q ∧
∀i ∈ {1, 2, . . . , n− 2}MutCORESη(vi, vi+1) ∧DirREACHη(vn−1, vn)

(10)

Density-reachability is asymmetric and transitive, and it is not necessary that two nodes belonging to the

same community will be density-reachable. They may belong to the same community because they are

density-reachable through some other nodes belonging to that community. This condition is formalized in

the following definition of density-connectivity.

Definition 3.11 (Density-connectivity) A node q is density-connected to a node p with respect to a global

percentage parameter, η, if there exists a node r such that both p and q are density-reachable from r, as shown

in equation 11.

DenCONNECT η(p, q)⇔
∃r ∈ V : DenREACHη(r, p) ∧DenREACHη(r, q)

(11)

Density-connectivity is a symmetric relation and for density-reachable vertices, it is also reflexive.

Definition 3.12 (Density-connected community) A non-empty set C ⊆ V is said to represent a density-

connected community with respect to a global percentage parameter, η, if all the vertices in C are density-

connected with each other, and C is maximal with respect to density-reachability, as given in equation 12

COMMUNITY η(C)⇔
1. Connectivity : ∀p, q ∈ C : DenCONNECT η(p, q)

2. Maximality : ∀p, q ∈ V : p ∈ C ∧DenREACHη(p, q)⇒ q ∈ C

(12)

Large real-world social networks are often found to contain noise or outliers, i.e., nodes that do not belong

to any community, and hubs, i.e., nodes that do not belong to a particular community but connect multiple

communities and thus play an important role in information brokerage and diffusion within a network and

across communities. After finding all possible density-connected communities from a network, OCMiner

considers the following definition to identify hubs and outliers in the networks.
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Definition 3.13 (Hubs and Outliers) An un-clustered node is considered as a hub if it has out-going

links to the primary-core nodes of more than one community thus connecting the primary-communities of

the respective core-nodes. Remaining un-clustered nodes that do not qualify as hubs are treated as outliers.

In this paper we do not aim to deal with hubs explicitly, rather all un-clustered nodes are considered as

outliers, unless explicitly specified.

3.2 COMMUNITY DETECTION PROCESS

This section presents the procedural detail of the proposed overlapping community detection method –

OCMiner. Initially, all nodes of a social network are un-labeled and marked as un-visited. For a given value

of the global percentage threshold, η, community detection process iteratively finds a density-connected

community by randomly selecting an un-visited node, say p, to grow a community using density-reachable

relationship of p with other nodes in the network. For each un-visited node p, it checks whether p is a core

node and if p qualifies the test, it finds all density-reachable nodes of p to identify its community. To do so,

it first computes a local-neighborhood threshold for p, εp, using equation 3. If εp is greater than zero, then

it uses the distance constraint specified in equation 6 and the distance function of equation 2 to determine a

local ε-neighborhood of p, Nε(p). If node p qualifies as a core node, its community list is appended with the

current community label and the community list of each node in Nε(p) is also appended with the same. We

use the term appended as the nodes belonging to Nε(p) including p can already be labeled by some other

community label(s) in some previous iteration(s). A node is assigned to a new community irrespective of

its previous community allotments, thus allowing a node to belong to multiple communities. Once a node

p is identified as a core-node, the following important steps are performed to identify a density-connected

community around it.

1. All un-visited mutual-core nodes of p in Nε(p) are appended with the current community label. They

are marked as visited and pushed to a stack to identify the density-reachable nodes of p. This step is

later repeated for each node in the stack for the current community to find the connected sequences of

mutual-core nodes starting from p. These connected sequences of mutual-core nodes form the Mutual-

core Connected Maximal Sub-graph (MCMS) of a community. All nodes in the MCMS of a community

are called the primary-core nodes of that community. However, if a core-node p does not show mutual-

core relation with any other core-node, then only the node p along with its Nε(p) forms a community

with p being its only primary-core node.

2. If a core-node q in Nε(p) is not a mutual-core of p, it is appended with the current community label,

however it is not pushed into the stack to grow the current community and its visited/un-visited status

is kept unaltered. Being a core-node, q may have been pushed to the stack in some previous iteration

based on its mutual-core relation with some primary-core node (other than p) of the current community

or some other community. In this case, the status of node q will currently be visited. Alternatively, it

may be pushed to the stack in some later iteration based on its mutual-core relation with a primary-

core node (other than p) in the current community or some other community. In this case, the status

of node q will currently be un-visited.
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3. Non-core nodes in Nε(p) are marked as visited and appended with the current community label. Such

nodes form boundary nodes for the community of p and are not pushed into the stack as they cannot

be used to grow a community.

Algorithm 1: OCMiner(GI = (V,Ew), η)

/* GI = (V,Ew) is a social network with set V of nodes and set Ew of weighted edges

*/

/* η is the resolution threshold at which the community structure is to be identified

*/

1 begin
2 foreach un-visited p ∈ V do

/* select an un-visited node p */

3 currentID ← newCluster(); /* generate a new community ID */

4 Nε
(p) ← {q ∈ V |DirREACHη(p, q)}; /* determine the local neighborhood of p */

5 p.visited← true; /* mark p as visited */

/* check for the core property */

6 if COREη(p) then
7 repeat

/* repeat until the community cannot be further expanded */

8 p.PrimaryCommunity ← currentID; /* assign the current community ID to p

as its primary community */

9 p.CommunitySet.add(currentID); /* assign the current community ID to the

community membership set of p */

10 p.visited← true; /* mark p as visited */

11 foreach q ∈ Nε
(p) do

/* select a node q from p’s local neighborhood */

q.CommunitySet.add(currentID); /* assign the current community ID to

the community membership set of each node in p’s local neighborhood */

12 if not q.visited then
13 Nε

(p) ← {r ∈ V |DirREACHη(q, r)}; /* determine the local neighborhood

of q */

14 if MutCORESη(p, q) then
15 push(q); /* push the mutual-cores of p to the stack for growing

the community */

16 q.visited← true;

17 end

18 end

19 end

20 until (p← pop()) is empty ;

21 end

22 end

23 end

The steps through 1 − 3 are repeated for each node in the stack thus identifying a density-connected

community for each randomly selected un-visited node p in the social network. It is worthwhile to note that

if a core-node q, assigned to a community C, does not show a mutual-core relation with any primary-core

node of C, then q is called a secondary-core node of community C and C is called a secondary-community of
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q. Alternatively, if a core-node r is a primary-core node of a community C (i.e., r belongs to the MCMS of C)

then community C is called the primary-community of r. The whole process is repeated for each un-visited

node to find overlapping community structures in the network. On completion of the above process, the set

of labels assigned to a node represents with the set of community IDs to which it belongs to and un-labeled

nodes (if any) represent outlier nodes, i.e., they do not belong to any community as they do not show an

interaction behavior that is similar to a sufficient number of nodes in the network. The pseudo-code shown

in algorithm 1 presents the overlapping community finding process in a formal way.

4 OVERLAPPING COMMUNITIES

As mentioned earlier, OCMiner aims to identify overlapping community structures in a social network. It

does so by allowing a node q to belong to the ε-neighborhood of a core-node p irrespective of q’s previous

community assignments in a density-based context as discussed in section 3.2. Thus a node can belong to

multiple communities representing a node where multiple communities overlap. In the proposed context,

such a node can have one of the following properties.

• A node q belongs to multiple communities but it is not a core-node. It means that a non-core node q

belongs to the local ε-neighborhood of respective primary-core nodes of multiple communities. Being a

non-core node, q represents a boundary node of its assigned communities, indicating that its assigned

communities overlap at their boundaries. For example, in figure 1, two communities C1 and C2 overlap

at a non-core node ‘F’. Node ‘F’ could thus be considered of having a similar participation with both

the communities.

Figure 1: Overlapping communities sharing a non-core node ‘F’

• A node q belongs to multiple communities and is also a core-node. It means that a primary-core node

of one community is also a secondary-core for some other communities. This allows a community to

overlap at a central node with other communities besides overlapping at the boundary. For example,

in figure 2, two communities C1 and C2 overlap at a node ‘J’ which is a primary-core of community C1.

However, as the core-node ‘J’ also belongs to community C2 and does not show a mutual-core relation

with any primary-core of community C2, it forms the secondary-core of C2.

It should be noted that for a community structure identified by OCMiner on a particular network, a community

can have multiple primary-core nodes in its MCMS, but a core-node can be a primary-core node of only one

community. This is unlike the method proposed in [12], where an overlapping node can be a central node
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Figure 2: Overlapping communities sharing a core-node where the shared node ‘J’ is a primary-core of
community C1 and a secondary-core of community C2

of more than one community. Moreover, it is also unlike the method proposed in [27], where overlapping

nodes usually lie at the boundary of communities, whereas in the real-world networks they often are central

nodes of a community. For example, considering the associations between the dictionary words as a network,

Figure 3: Partial community structure detected by OCMiner from a word association network

the words sex and love form central nodes of their respective communities but they form boundary nodes

of other communities like gender, adultery, lust and so on. Figure 3 shows the overlapping community

structures discovered by OCMiner on the un-weighted word association network [36] around the words love,

sex, partner, and taboo. The figure implies that OCMiner significantly identifies the overlapping characteristics

of the central nodes of the communities in the word association network. Using the proposed method, if a

node p belongs to multiple communities, we can say that some primary-core nodes of the assigned overlapping

communities of p show a similar interaction behavior with p as they show with other nodes in their respective

local ε-neighborhoods.

It is often possible that two communities could overlap in such a way that majority of nodes (more than

50%) of one community (in some cases both the communities) are involved in the overlap between the two

communities. In such cases two overlapping communities can be merged to represent a single community as

implemented by [12]. In order to maintain uniformity for OCMiner, we reuse the threshold η to determine

the merging criteria as follows. After the main community detection process is completed, OCMiner merges
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two overlapping communities if the number of nodes, involved in the overlap between them, for the smaller

community C is more than or equal to the number of nodes specified by the fraction η of C’s candidate nodes.

For OCMiner this process is termed as post-merge and is applied after the main community detection process

(section 3.2) is completed. Moreover, it should be noted that post-merge is applied in all the experiments

performed in this paper.

Figure 4: Result of OCMiner without post-merge (at η = 62%) on Zachary’s network showing five overlapping
communities where communities C4 and C5 have a higher percentage of overlap with community C1

The result of OCMiner without using post-merge on weighted Zachary’s karate club network [61] identifies

five overlapping communities at η = 62% as shown in figure 4. In figure 4 the ground truth of the split of

the network into two communities is shown by the shape of nodes (squares and circles). The communities

identified by OCMiner, labeled from C1−−C5, are represented by dashed boundaries and node colors where

red color represents overlapping nodes. It can be seen in figure 4 that communities C4 and C5, which consist

of three nodes each, have majority of their nodes (more than 65%) overlap with nodes of a larger community

C1. Thus, communities C1, C4 and C5 can be merged to form a single community, as shown in figure 5.

On analyzing the results in figure 5, it can be seen that the communities C1 and C2 (represented by

dashed borders) identified by OCMiner almost perfectly match the ground truth (represented by node shape)

of the Zachary’s network with only two nodes labeled 25 and 26 being assigned to a separate overlapping

community C3. Moreover, node labeled 3 is classified as an overlapping node for the two main communities

identified by OCMiner. It means that the whole group could be thought of being held together by node

3. Analogously, a dispute between nodes labeled as 1 and 33 had resulted in the actual split of the club.

Moreover, node 3 is the only common neighbor of nodes 1 and 33 that also has highest number of neighbors

in both the actual communities. Thus, it can be concluded that the communities identified by OCMiner on

the Zachary’s network are meaningful and realistic.

5 EXPERIMENTAL RESULTS

This section presents the experimental results of OCMiner on many benchmark datasets including both real-

world and synthetic social networks. It also presents a comparison of OCMiner with six other state-of-the-art
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Figure 5: Result of OCMiner with post-merge (at η = 62%) on Zachary’s network, i.e., after merging highly
overlapping communities

community detection methods, as mentioned in section 2, followed by a brief analysis of the obtained results.

The scoring measures used to evaluate the community detection methods in question include – O-NMI,

an extension of Normalized Mutual Information (NMI) [10], implemented by Lancichinetti et al. [27] and

Omega [9], an extension of Adjusted Random Index (ARI) [20], both generalized for evaluating overlapping

community structures. Further details about these measures are given in Appendix-1. While comparing two

partitions using the scoring measures Omegaand O-NMI, a score of 1 represents an exact match between the

two partitions being compared. Thus for a community detection method to score better on these measures,

it is expected to yield a value closer to 1. We also provide some information related to the accuracy of the

identified overlapping communities and nodes by the various methods where required. The methods SHRINK

[19] and GSK [48] have been shown to perform better than SCAN [60] in their respective experiments. LFM[27]

and CFinder [38] (implementing CPM) perform better than EAGLE [45] in the experiments performed in

[57]. So, we do not compare our method with EAGLE and SCAN (requiring density parameters ε and μ). It

should also be noted that, GSK and MOSES [35] are parameter free methods and are not sensitive to any input

parameter. On the other hand CFinder requires an input parameter k to define the clique size. However,

[38, 26, 57] and our preliminary experiments confirm that CFinder yields best results at k = 4, and we use the

same in the experiments presented in this paper. LFM requires an input value for the resolution parameter α,

but is shown to perform best at α = 1 in [27, 57], and hence we use the same in our experiments. For SLPA

[59, 58] and OCMiner, we present the best results obtained by varying their respective input parameters;

however, for OCMiner, we have devised a way to estimate an optimal value for its input parameter and

presented the same later in this paper. All the experiments have been performed on an INTEL�i3 based

system with 4GBs memory.

5.1 RESULTS ON REAL-WORLD NETWORKS

We have used six well-known static real-world network benchmarks to evaluate the performance of OCMiner

and compare it with other state-of-the-art methods based on the O-NMI and Omega scores obtained as shown
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in figure 6. The six networks include the Zachary’s network [61] which is a weighted interaction network

between 34 members of a Karate club that split into two communities, the NCAA College football network

[16] which is a social network consisting of 115 college football teams divided into eleven conferences and

five independent teams, the Dolphin network [32] which is an un-directed and un-weighted social network

of frequent associations between 62 Dolphins consisting of two communities, the US political books network

is a network of 105 books about US politics1 sold online by Amazon, a collaboration network [4] of 241

physicians, and a primary school interaction network of students [47]. For all six real-world networks, the

ground truth community structures are known and are used to calculate the performance scores. Moreover,

we also present information about the outliers and overlapping nodes detected by the methods in figure 7.

It can be observed that the method CFinder does not produce any results for the primary school networks

as this network is dense (5899 edges between 236 nodes) which increases the complexity for CFinder’s clique

percolation approach. On the other hand, OCMiner finds community structures which closely match the

ground truth for this network, indicating that it has no problems with networks containing dense cliques.

Figure 6: Experimental results on static real-world benchmarks.

As can be seen from figure 6 in general, for each of the six real world networks used, OCMiner performs

better that all other methods in question on majority (four) of the networks and also performs comparable

to the better performing methods GSK and LFM on other (two) networks. This is because OCMiner gets the

O-NMI and Omega score closer to 1 for most the networks used here and also provides a relatively better score

as compared to the other methods in aggregate. In general, on the real-world benchmark networks,

5.2 RESULTS ON SYNTHETIC NETWORKS

Lancichinetti and Fortunato [26] have proposed a synthetic network generation method that can generate a

class of artificial networks, usually referred to as LFR-benchmarks. They have claimed to reflect the impor-

tant aspects of real networks and can be used as benchmarks for testing community detection algorithms. We

have used their method to generate various synthetic networks for our experiments through varying various

1http://www.orgnet.com/
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Figure 7: Outliers and overlapping nodes detected by the various methods on real-world networks

parameters required for the generation of networks. A description of the available parameters can be seen

in their original paper [26]. Here, we only mention the important characteristics for each type of benchmark

generated. For the synthetic networks generated, the number of nodes is set to 5000 and two different ranges

for the community sizes S, 10−50 nodes (small) and 20−100 nodes (big) have been used. The average degree

< k >= 10 and the maximum degree is kmax = 50, however for the directed networks the average degree

< k >= 20 so as to simulate reciprocation of interactions between nodes as shown by real world interaction

networks. The exponents of the degree and community size distributions for all LFR-benchmarks are set to

τ1 = 2 and τ2 = 1. Other special parameters and properties that are specific to different kinds of generated

networks have been mentioned in the following sections. Moreover, each point of the resulting line graphs

mentioned in the following sub-sections corresponds to an average over 50 realizations of the benchmark.

5.2.1 LFR-Benchmarks with Disjoint Communities

In this sub-section we aim to show that firstly, the proposed community detection method OCMiner identifies

significant community structures even when the underlying network contains disjoint community commu-

nities. Secondly, we aim to compare the performance of OCMiner with the state-of-the-art parameter free

density-based methods GSK and SHRINK that can use both jaccard based and cosine based similarity metrics.

The metric used to generate the following results for these to methods was the one that yielded the best

results, i.e., the cosine based measure.

To generate un-weighted and un-directed LFR-benchmarks, the topology mixing parameter, μt, is varied

between the range 0.1 − 0.6, with a step size of 0.05. Figure 8 gives a performance comparison of OCMiner

with two other related density-based community detection methods – GSK and SHRINK, based on the Omega

and O-NMI scores on the generated un-weighted and un-directed LFR-benchmarks with disjoint communities.

The networks used in figures 8a and 8b have community size ranging between 10 − 50 nodes, whereas in

figures 8c and 8d, the community size ranges between 20−100 nodes. The parameter η for OCMiner is varied

between 25% − 35% to get the best results. Figures 8a and 8c show Omega scores, and figures 8b and 8d

show the O-NMI scores. As the mixing parameter μt increases, it becomes difficult to identify community

structure; however, OCMiner performs better than GSK and SHRINK on this benchmark.
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Figure 8: Experimental results on un-weighted and undirected LFR-benchmarks with disjoint communities

5.2.2 LFR-Benchmarks with Overlapping Communities

To evaluate the performance of OCMiner for detecting overlapping communities, LFR-benchmarks have been

generated by varying the number of community memberships of an overlapping node from 3−8, and keeping

the fraction of overlapping nodes fixed at 10%. Community size for all LFR-benchmarks with overlapping

communities is relatively large, ranging between 20−100. It should be noted that for LFR-benchmarks with

overlapping communities, density-based methods including SHRINK and OCMiner tend to label a majority of

overlapping nodes as outliers. In fact, they actually qualify as hubs (nodes connecting multiple communities

but belonging to none). SHRINK allows to mark a hub as an overlapping node by assigning it to each

community which it connects. Similarly, OCMiner (besides identifying actual overlapping nodes) also finds

hubs (as discussed earlier in section 3.1) and treats them as overlapping nodes. Here, CFinder is considered as

it has shown to be out-performed on LFR-benchmarks by SLPA in [58]. Moreover, GSK is also not considered

as it does not find overlapping communities. We compare the results based on the Omega and O-NMI scores

as the ground truth community structure for these networks is known. We also provide information on the

characteristics of overlapping nodes detected by the various methods, using FScore accuracy measure given

by equation 13.

FScore =
2 ∗ precision ∗ recall
precission + recall

(13)
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In equation 13, precision and recall relate to the fraction of true overlapping nodes out of the overlapping

nodes detected and the fraction of true overlapping nodes detected as the same, respectively. An FScore value

close to 1 for a community detection method means that the method shows higher accuracy in identifying the

actual overlapping nodes of a network as the same. We also compare the ratio of the average memberships

of the overlapping nodes detected in a particular network, Od
m, by the community detection methods in

question with the actual memberships of the overlapping nodes Om in the respective networks. A value

close to 1 for this ratio on a network means that the method closely identifies the actual memberships of the

detected overlapping-nodes from the underlying network. We generate three types of networks and present

the results as follows.

3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Om

O
−N

M
I

OCMiner
LFM
SHRINK
MOSES
SLPA

(a)

3 4 5 6 7 8

0.4

0.5

0.6

0.7

0.8

0.9

1

Om

O
m

eg
a

OCMiner
LFM
SHRINK
MOSES
SLPA

(b)

3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Om

FS
co

re

OCMiner
SLPA
LFM
MOSES
SHRINK

(c)

3 4 5 6 7 8
0.2

0.4

0.6

0.8

1

1.2

Om

O
d m

/O
m

OCMiner
LFM
SHRINK
MOSES
SLPA

(d)

Figure 9: Experimental results on un-weighted and un-directed LFR-benchmarks with overlapping commu-
nities

Un-directed and Un-weighted Networks: For these LFR-benchmarks, we set the topology mixing

parameter μt = 0.1, and rest of the parameters are same as discussed earlier. Figure 9 shows a comparison

of the results of various methods using four scoring measures mentioned earlier for overlapping communities.

Figures 9a and 9b show that considering O-NMI and Omega scores, SLPA performs better than the other

methods, however, results of OCMiner are comparable to that of SLPA for two measures. Figure 9c compares

the FScores of various methods on un-directed and un-weighted benchmarks and shows that for FScore,

OCMiner performs better than the other methods, however in this case, results of SLPA are comparable to that
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of OCMiner. Figure 9d compares the ratio of the average membership of overlapping nodes detected by various

methods with the actual memberships of the overlapping nodes, Od
m/Om, on different networks. It shows

that SHRINK performs better on this measure (with the ratio close to 1) for the current benchmark than all

other methods, followed by OCMiner and SLPA, respectively. However, considering all four scoring measures,

it is OCMiner and SLPA that perform better than the other methods, and their results are comparable to

each other on the current benchmark.
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Figure 10: Experimental results on weighted and un-directed LFR-benchmarks with overlapping communities

Un-directed and Weighted Networks: For weighted LFR-benchmarks with overlapping communities,

the mixing parameter for weights μw and topology μt have the relation μw = μt = 0.3, and rest of the

parameters are same as discussed earlier. For this benchmark, we have not generated results for MOSES as

it does not take links weights into consideration. Figure 10 shows a comparison of the results of various

methods using all four scoring measures used in this paper for overlapping communities. It is clear from the

figure that OCMiner performs better than all other methods for all four scoring measures, followed by SLPA.

Directed and Weighted Networks: For the case of weighted and directed LFR-benchmarks with over-

lapping communities, the mixing parameter for weights, μw, and topology, μt, have the relation μw = μt =

0.1, and rest of the parameters are set as discussed earlier. For this benchmark, we have generated results

only for OCMiner and SLPA as among the methods in question only these two consider both directed and
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weighted nature of networks. Figure 11 shows the comparison of the results of these two methods using

four scoring measures. It can be observed from this figure that OCMiner performs better than SLPA on all

scoring measures for the current LFR-benchmark. From the results obtained on the synthetic networks
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Figure 11: Experimental results on weighted and directed LFR-benchmarks with overlapping communities

with overlapping communities, in general, it can be concluded that OCMiner performs better than the other

related methods, especially when the edge weights are available, i.e., when the networks are weighted.

5.3 RESULTS ON AMAZON CO-PURCHASE NETWORK

To evaluate the performance of OCMiner on a large social network, we have used the Amazon2 co-purchase

data which was collected on crawling Amazon website by [29]. It contains product metadata and review

information about 548, 552 different products (Books, music CDs, DVDs, and VHS video tapes). The

products are assigned to various categories by Amazon and we consider the ones based on subjects(books),

styles(Music), and genres(DVDs and VHS movies) resulting in a total of 13, 684 highly overlapping product

categories. We form a directed network between the products by creating a directed edge from a product

to each of its co-purchased products. We filter out isolated nodes and nodes that have their in-degree or

out-degree equal to 0. This results in a directed network of 234, 083 nodes with 828, 737 directed edges.

Here we present results only for OCMiner, CFinder and SLPA as among the methods used in this paper,

2www.amazon.com
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only these three consider the directed nature of edges in a network. Figure 12 shows the size distribution

of the communities detected by the three methods on the Amazon co-purchase network wherein OCMiner

finds 41, 559 communities with 40, 074 overlapping nodes, CFinder finds 22, 613 communities with 11, 241

overlapping nodes and SLPA finds 35, 369 communities with 45, 171 overlapping nodes. Figure 12 shows
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Figure 12: Size distribution of communities identified on directed and un-weighted Amazon product co-
purchase network

that CFinder and SLPA tend to find communities with relatively smaller size (less than 100 nodes) while

as OCMiner finds a significant number of communities with size greater than 100. Although, the nodes

in the network are already grouped into categories, these categories cannot be considered as the ground

truth community structure for the network as the co-purchase relations are not shown exclusively within

the product-categories, but include a large number of cross-category relations. However, it is acceptable to

consider that a community of products based on co-purchase relations can contain many products which

represent a product-category or subset of a product-category. In this regard, for the Amazon network, we

consider a community detected by a method as significant if more than 50% of its nodes form a subset of

any product-category specified by Amazon. Figure 13a shows the fraction of nodes assigned to communities

by the three methods and figure 13b shows the fraction of significant communities detected by the three

methods on the Amazon co-purchase network. From 13a, it can be observed that CFinder marks 46% of

the nodes as outliers, OCMiner marks 6% of nodes as outliers, and SLPA finds no outliers. SLPA aims to

assign each node in the underlying network to a community and does not consider finding outliers. However,

24



SLPA CFinder OCMiner
0

0.2

0.4

0.6

0.8

1

Methods

Fr
ac

tio
n 

of
 C

lu
st

er
ed

 N
od

es

(a) Structure detected

SLPA CFinder OCMiner
0

0.2

0.4

0.6

0.8

1

Methods

Fr
ac

. o
f s

ig
ni

fic
an

t c
om

m
un

iti
es

 

(b) Significant structure detected

Figure 13: Amount of (a) structure, and (b) significant structure detected by SLPA, CFinder, and OCMiner

on Amazon product co-purchase network

real-world networks often contain noise and outliers and identifying such nodes is often desirable. On the

other hand CFinder marks too many nodes as outliers while OCMiner finds a small percentage of outliers.

Based on the significance of the communities from figure 13b, for OCMiner and CFinder, 80% of the detected

communities are significant which is more than 77% as detected by SLPA. Thus, considering both the amount

of structure found in the network and the significance of communities detected by the three methods, it can

be concluded that OCMiner and SLPA perform comparable. However, stressing on the fact that large real-

world networks contain outliers and detecting them is often desirable, OCMiner performs better than both

of them as CFinder marks too many nodes as outliers, whereas SLPA does not find outliers.

6 HEURISTIC FOR ESTIMATING η

Traditional density-based community detection methods like SCAN [60], DENGRAPH [14], CHRONICLE and so on

require two input parameters ε (distance threshold) and μ (minimum points) with high sensitivity towards

ε. OCMiner on the other hand requires only a single parameter, η, relating to the μ (minimum points)

of traditional methods, to be set by the users for detecting overlapping community structures in a social

network. The value of η basically defines the size characteristic of the overlapping communities to be

detected. Smaller values of η yield larger communities, whereas larger values yield smaller communities. It

means that for OCMiner η can be tuned to detect overlapping community structures at different levels of

size characteristics from social networks thus naturally forming a hierarchical representation of overlapping

community structures. This feature assigns OCMiner to the multi-resolution class of hierarchical community

detection methods. The demonstration of hierarchical overlapping community structure results obtained by

OCMiner on the un-directed and un-weighted social network of frequent associations between 62 Dolphins in

a community living off Doubtful Sound, New Zealand is shown in figure 14. From figure 14, it is clear that at

η = 50%, OCMiner exactly finds two communities that almost perfectly match the ground truth (represented

by leaf-node shape and color in the dendrogram) of the Dolphin network. Node labeled as ‘PL’ is identified

as an overlapping node between the two identified communities and node labeled as ‘SN100’ is the only node

to be misclassified. Increasing the value for η from 50% to 60% breaks one of the two communities into three

smaller communities thus resulting in a total of four communities with no outliers. Similarly, at η = 70%
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Figure 14: Color coded dendrogram representation of a hierarchical and overlapping community structure
discovered by OCMiner from Dolphin network

OCMiner identifies seven smaller communities in the Dolphin network along with many isolated nodes which

represent outliers.

However, besides hierarchical community structure, it is mostly required to determine community struc-

ture (at a single level) which is closest to the underlying community structure of a network. Thus for

OCMiner, it is desirable to find an optimal value for η which reveals the best possible community structure

for a network. Based on our experimental results on many real-world and synthetic networks, we observe that

an optimal value of the input parameter η can be given by equation 15, where Θmean represents the mean

of the topological overlap (equation 14, where Ni represents the number neighbors of node i in the network)

taken over all pairs of nodes between which there exists an edge in the underlying network (first rounded-up

to two decimal places then truncated to one decimal place). And Θstd represents the standard-deviation of

the topological overlap shown by the nodes around Θmean in the network.

Θ =
|Ni ∩Nj |

min(|Ni |, |Nj |) (14)

η = Θmean +Θstd (15)

Table 2 compares the values of parameter η at which OCMiner shows the best results (preferred range) for

each real-world network against the value estimated by equation 15 for the same network. From table 2 it

can be seen that for all real-world networks used in this paper, the value of η determined for OCMiner using
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Table 2: Significance of the values of η for OCMiner estimated using equation 15

Network Parameter η
Preferred range Estimated value

Karate 0.62-0.65 0.62
Football 0.5-0.6 0.54
Dolphin 0.5-0.55 0.5
Pol-books 0.6-0.65 0.61
School 0.6-0.66 0.64

Physicians 0.25-0.35 0.28
Amazon 0.4-0.45 0.41

equation 15 falls within the range of values at which OCMiner yields the best results. A Similar behavior

was shown on the synthetic networks too. Based on these results, we claim that OCMiner can automatically

find good approximations for its input parameter η and generate meaningful community structures from

social networks. Moreover, by tuning the constant c in equation 15 with a step size of 0.15, a hierarchical

community structure for a given network can also be generated.

7 COMPARISON OF RUNNING TIME

Considering the time complexity, the main part of OCMiner involves analyzing the local neighborhood of each

node in the network, and for each node this cost is proportional to its out-degree. Thus the total cost for

this step is O(deg(p1)+ deg(p2)+ . . .+ deg(pn)), where deg(pi), i = 1, 2, . . . , n is the out-degree of each node

pi in the underlying network. For a complete graph of n nodes, the degree of each node is n−1, leading to a

worst case complexity for this step as O(n2). However, in general, real-world networks show sparser degree

distributions, resulting in an O(n) average case complexity. In reality, OCMiner also involves a post-merge

step (whose complexity depends on the number of identified overlapping communities with relatively many

common/overlapping nodes) and the heuristics for estimating η (whose complexity depends on the number

of edges in the networks). This makes it difficult to provide a true computational analysis of the method.
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Figure 15: Computation time required by the various methods on different synthetic and real-world networks
of varying sizes
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In this regard, figure 15 compares the running time required by the various methods used in this paper to

find community structure on a range of synthetic and real-world networks of different sizes to provide a rough

computational view of the methods. The networks used for figure 15a are LFR-synthetic networks generated

with the average degree < k >= 10 and maximum degree < k >= 50 by varying the number of nodes from

5, 000 to 200, 000. On the other hand, networks used for figure 15b represent some real-world networks which

include the word association network [36] with more than 7, 000 nodes, Facebook New Orleans friendship

Network [51] with more than 60, 000 nodes, Amazon co-purchase network [29] with approximately 250, 000

nodes, and MathSciNet co-authorship network [39] with approximately 400, 000 nodes. Figure 15a shows

that for the range of synthetic networks, LFM, OCMiner and MOSES (to some extent) perform comparable to

each other and better than the other methods. However, considering the large scale networks with more

than 100, 000 nodes, OCMiner performs better than the other methods. Similarly, results shown on the real-

world networks (figure 15b) reveal that OCMiner performs faster than the other methods on both small and

large networks. From these results, we conclude that OCMiner is faster than the state-of-the-art methods

considered in this paper, and applicable to very large scale networks.

8 CONCLUSION AND FUTURE WORK

This paper has presented a novel density-based method, OCMiner, to identify overlapping community struc-

tures in social networks. Unlike other density-based methods for which the neighborhood threshold needs

to be set by the users, the proposed method determines the neighborhood threshold for each node locally

from the network itself. OCMiner is designed to detect communities in networks that represent important

functional modules in the real-world networks like, protein-protein interaction modules and gene regulatory

modules in biological networks, meaningful social groups in social networks like friendship circles, groups

of people sharing common interests or activities, gang modules in criminal networks, work groups within

organizations, and so on. OCMiner allows for communities to overlap which represents the fact that nodes in

real networks can belong to multiple functional groups. It is suitable for detecting overlapping community

structures and outliers in large-scale social networks. Our experimental results have shown that community

structures identified by OCMiner on some of the well-known benchmark networks are significant and in gen-

eral better than the state-of-the-art methods considered in this paper. OCMiner takes both the weighted and

directed nature of networks into consideration besides finding community structures in un-weighted and un-

directed networks. It means that OCMiner can find community structures in both un-weighted/un-directed

friendship networks as well as directed/weighted interaction network in case of online social networks where

information on topological community structures (based on friendship and/or interactions) can aid in activ-

ities like recommendations, etc. OCMiner also enables to explore the hierarchical community structure of a

network by varying the input parameter η. Since the proposed method is relatively faster, it can also be used

to analyze the dynamic nature of communities for analyzing the evolving friend and interaction relations of

users by considering smaller time windows of an evolving network. We aim to work along this direction in

addition to incorporating an evolutionary community visualization technique in the near future. Moreover,

we also aim to provide an in-depth analysis related to the significance of edge weights of networks (if any)

for the purpose of community detection as soon as related datasets are prepared or made available.

In [25], the authors have shown how communication reciprocity, communication interaction average, and
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clustering coefficient of the nodes in online social networks can be used to differentiate spammers from normal

users. The interactions of spammers are least often reciprocated and the communication interaction average

of spammers is close to zero as most of the spam are simply ignored or discarded by recipients. Even if

the recipient is interested in the subject described in a spam, the usual action is to follow a hyperlink in

the spam instead of replying to the email. Furthermore, the neighbor accounts of spammers are unlikely to

exhibit friends-of-friends relationships and thus show low clustering coefficients. As discussed earlier, OCMiner

considers only reciprocated interactions of nodes in a social network. It takes the average interaction of a

node p with its neighbors to determine its local neighborhood threshold and considers only those neighbors

of p as its community members with whom its interaction behavior is same or better than the average. In

this view, OCMiner can be useful to label spam nodes in online social networks among the detected outliers,

and thus it can help at the initial phases of determining spammers’ profiles in an online social network.
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APPENDIX-1

Adjusted Random Index (ARI):

ARI [20] is a measure to compare two disjoint partitions (C1 and C2) of a set of n nodes of a network and

is given by equation 16, where ru(C1, C2) (the unadjusted rand index) is the fraction of pairs that belong to

either same community or to different communities in both partitions C1 and C2 given by equation 17, and

re(C1, C2) is the expected value of the same fraction in the null model given by equation 18.

ARI (C1 ,C2 ) =
ru(C1 ,C2 )− re(C1 ,C2 )

1 − re(C1 ,C2 )
(16)

ru(C1 ,C2 ) =
|s(C1 ) ∩ s(C2 )|+ |d(C1 ) ∩ d(C2 )|

N
(17)
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re(C1 ,C2 ) =
|s(C1 )||s(C2 )|+ |d(C1 )||d(C2 )|

N 2
(18)

In equations 17 and 18, s(C) is the set of node pairs that belong to same community in C, d(C) is the set

of node pairs that belong to different communities in C, and N = n(n − 1)/2 is the number of all possible

pairs of n nodes of the network.

Omega:

ARI measure has been generalized to an Omega measure for comparing overlapping partitions in [9] and given

by equation 19.

ω(C1 ,C2 ) =
ωu(C1 ,C2 )− ωe(C1 ,C2 )

1 − ωe(C1 ,C2 )
(19)

Unlike disjoint communities, overlapping communities can have a node pair which occurs in more than one

community and thus the sum of equation 17 and the products for equation 17 have to run over all possible

values till the maximum number mmax = max(m(C1,m(C2)) of communities in the two partitions. It means

that for equation 19, ωu(C1, C2) is given by equation 20 and ωe(C1, C2) is given by equation 21.

ωu(C1 ,C2 ) =
1

N

mmax∑
j=0

|tj (C1 ) ∩ tj (C2 )| (20)

ωe(C1 ,C2 ) =
1

N 2

mmax∑
j=0

|tj (C1 ).tj (C2 )| (21)

In equations 20 and 21, tj(C) is the set of node pairs that occur j times together in a community of partition

C.

Normalized Mutual Information (NMI):

NMI [10] is another measure used to compare two disjoint partitions (C1 and C2) of a set of n nodes of a

network, given by equation 22, where H(X) and H(Y ) are the entropies of the random variables X and Y

associated with the partitions C1 and C2, respectively, and H(X,Y ) is a joint entropy.

NMI (X : Y ) =
H (X ) + H (Y )− H (X ,Y )

(H (X ) + H (Y ))/2
(22)

Lancichinetti et al. [27] on the other hand defined a normalization of the variation of information as given

in equation 23 which is interpreted as the average relative lack of information to infer X given Y , and vice

versa.

V
′
norm(X ,Y ) =

1

2

(
H (X |Y )

H (X )
+

H (Y |X )

H (Y )

)
(23)
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Overlapping-NMI (O-NMI):

Based on equation 23, Lancichinetti et al. defined a normalized mutual information measure for overlapping

partitions as shown in equation 24.

O-NMI(X |Y ) = 1 − 1

2

(
H (X |Y )

H (X )
+

H (Y |X )

H (Y )

)
(24)
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