
A Web Content Mining Approach for Tag Cloud Generation

 Muhammad Abulaish Tarique Anwar
Center of Excellence in Information Assurance Center of Excellence in Information Assurance

 King Saud University, Riyadh, Saudi Arabia King Saud University, Riyadh, Saudi Arabia

 mAbulaish@ksu.edu.sa tAnwar.c@ksu.edu.sa

ABSTRACT
Tag cloud, also known as word cloud, are very useful for quickly
perceiving the most prominent terms embedded within a text
collection to determine their relative prominence. The effectiveness
of tag clouds to conceptualize a text corpus is directly proportional
to the quality of the keyphrases extracted from the corpus.
Although, authors provide a list of about five to ten keywords in
scientific publications that are used to map them into their
respective domain, due to exponential growth in non-scientific
documents on the World Wide Web, an automatic mechanism is
sought to identify keyphrases embedded within them for tag cloud
generation. In this paper, we propose a web content mining
technique to extract keyphrases from web documents for tag cloud
generation. Instead of using partial or full parsing, the proposed
method applies n-gram technique followed by various heuristics-
based refinements to identify a set of lexical and semantic features
from text documents. We propose a rich set of domain-independent
features to model candidate keyphrases very effectively for
establishing their keyphraseness using classification models. We
also propose a font-determination function to determine the relative
font-size of keyphrases for tag cloud generation. The efficacy of
the proposed method is established through experimentation. The
proposed method outperforms the popular keyphrase extraction
system KEA.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning – concept learning,
knowledge acquisition.

General Terms
Algorithms

Keywords
Information Extraction; Web Content Mining, Keyphrase
Extraction; Tag Cloud Generation, Feature Extraction.

1. INTRODUCTION
Due to exponential growth in textual data on the World Wide Web
(WWW) a substantial amount of research efforts have been
directed towards applying web content mining along with natural
language processing to identify key snippets from texts and use

them to generate tag cloud to conceptualize the underlying text
corpora. Sinclair and Cardew-Hall [1] conducted an experiment to
compare the usefulness of tag cloud and traditional search interface
in terms of finding relevant information, and found that where the
information-seeking task required specific information, participants
preferred the search interface and conversely, where the
information-seeking task was more general, participants preferred
the tag cloud. Thus, we may infer that tag cloud could be a useful
tool for quickly perceiving the most prominent terms embedded
within a text collection to determine their relative prominence and
thereby to get an overall perception about the entity represented by
the collection. Since a document may contain a large number of
words, considering all of them for tag cloud generation would not
be an effective solution, rather an automatic technique to identify
only representative keyphrases is sought.

 Keyphrases that generally contain one or more words (a.k.a.
keywords) provide a brief summary of a document’s contents. Due
to existence of large documents collection in the form of digital
libraries, text databases, and textual contents on the WWW the
value of such summary information increases. Besides tag cloud
generation, keyphrases are useful for various applications such as
document retrieval [3], document summarization [2,10], thesaurus
construction [8], and document categorization and clustering [4,7].
Keyphrases are also very useful for digital libraries and Web
search engines. In digital libraries, the keyphrases of a scientific
paper can help users to get a rough sense of the paper [5], whereas
in Web search the keyphrases of a web page can serve as metadata
for indexing and retrieving web pages for user supplied queries [6].
In addition, keyphrases can help users to comprehend the content
of a collection without navigating through pile of documents.
Keyphrases are also helpful to expand user queries, facilitate
document skimming by visually emphasizing important phrases;
and offer a powerful mean of measuring document similarity that
can be exploited to group them into different categories.

Keyphrases are usually chosen manually, which is a labor-
intensive task. In scientific publications, generally authors assign
keyphrases to documents they have written, whereas professional
indexers often choose phrases from a predefined controlled

vocabulary relevant to the domain at hand. Since, many documents
do not have manually assigned keyphrases, the development of a
tool to automatically assign keyphrases to the documents would
have a potential use. Moreover, the identification and extraction of
keyphrases may be useful for inferring new facts and indexing text
corpora for efficient query processing over text documents.

In this paper, we have proposed a web content mining system
based on supervised machine learning approach to identify feasible
keyphrases from text documents for tag cloud generation. Instead
of applying full or partial parsing on text documents, which is an
inefficient process for longer sentences, the proposed method

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
iiWAS’11, 5–7 December, 2011, Ho Chi Minh City, Veitnam.

Copyright 2011 ACM 978-1-4503-0784-0/11/12…$10.00

applies n-gram technique to generate candidate keyphrases and
refines them using a set of heuristic rules. For each candidate
phrase, various lexical and semantic features are identified from
text documents and used to build binary classification models for
classifying candidate keyphrases of a new document as a
keyphrase or as a non-keyphrase. Identified keyphrases are ranked
according to their probabilistic values generated by the
classification models which facilitates the users to select top few
keyphrases (if the whole list is very large) for tag cloud generation.
We have also defined a font-size determination function to map the
weights of the selected keyphrases to their respective font size for
displaying tag cloud. The novelty of the proposed method lies in its
keyphrase extraction process and font-size determination function.
Some of the distinguishing features of the proposed method can be
summarized as follows:

• Instead of using parsing techniques, which is an inefficient
process for longer sentences and generally misleads in
presence of noise, the proposed method uses n-gram
technique to identify candidate keyphrases.

• The proposed method does not use any domain-dependant
feature and consequently it can be applied on texts
pertaining to any domain for keyphrase identification.

• The proposed method outperforms the well-known
keyphrases extraction algorithm – KEA.

• The proposed font-size generation function accepts min
and max font sizes from the user and generates a relative
distribution of font sizes for the selected keyphrases over
this range.

The remaining part of the paper is structured as follows. The
following section presents a brief review of the existing methods
for keyphrase extraction from text documents. In section 3, we
present the functional detail of the proposed method. The
performance evaluation of the proposed system is presented in
section 4. Finally, section 5 concludes the paper with possible
enhancements of the proposed method.

2. RELATED WORK
In this section, we present an overview of the recent research
efforts that have been directed towards the problem of keyphrase
extraction and its applications to various domains including tag
cloud generation. In most of the cases, keyphrase extraction is
viewed as a supervised machine learning task where the training
examples are text documents with manually tagged keyphrases.
Turney [12] proposed a keyphrase extractor, called GenEx, which
design is based on a set of parameterized heuristic rules that are
fine-tuned to the training corpus using a genetic algorithm. On
comparison of GenEx with the standard machine learning
technique called bagging which uses a bag of decision trees for
keyphrase extraction, it is found that GexEx performs better than
the bagging procedure. Turney [11] also proposed an approach;
called “Extractor”, which uses a set of nine features including
phrase position, phrase frequency, phrase length, etc. to score a
candidate phrase. The feature set is calculated after stemming the
phrases using Lovins stemmer.

Frank et al. [13] proposed a keyphrase extraction system, KEA1,
which uses naïve Bayes learning method to induce a probabilistic
model from the training corpus. A classification model is learned
on a set of training documents with exemplar keyphrases for the
purpose of identifying keyphrases from new documents. Besides
other features, KEA uses two important features such as position of

1 http://www.nzdl.org/Kea/

the first appearance of phrases and their tf-idf. Here tf corresponds
to the frequency of a phrase into the document and idf is estimated
as the ratio of the number of documents containing the particular
phrase and the total number of documents in the training corpus. In
both systems, KEA and Extractor, candidate keyphrases are
identified by splitting text documents into small chunks of
maximum three words based on the presence of phrase boundaries
like punctuations, brackets, etc. The phrases beginning or ending
with a stop-word are filtered out from the candidate list. Frank et
al. [13] compared the performance of the KEA with GenEx and
found that performance of KEA is comparable to it. Moreover,
they claim that training naïve Bayes learning technique is quicker
than training GenEx, which employs a special purpose genetic
algorithm for training. Due to simplicity and decent accuracy, KEA
is more popular and used in different applications. For example,
the Keyphind system proposed by Gutwin et al. [9] to support
keyphrase-based search uses KEA in background to identify
keyphrases in text documents.

Medelyan and Witten [16] proposed KEA++, an improved version
of KEA, in which they defined four features including two already
defined in KEA – tf-idf score, position of the first occurrence of a
phrase, length of a phrase in words, and node degree. The node
degree represents the number of thesaurus links that connect the
term to other candidate phrases. Like KEA, a supervised learning
method using naïve Bayes classifier is used to learn the KEA++
model. The reported precision, recall, and f-measure values are
28.3%, 26.1% and 25.2% respectively.

Medelyan et al. [17] presented another method with a slightly rich
set of features for topic indexing with Wikipedia. Firstly, for the
purpose of candidate selection, they devised a formula to score
Wikipedia articles corresponding to each n-gram from the
collection and then selected the highest scoring article to represent
as index term for the corresponding n-gram. The collection of
index terms is regarded as the set of candidate phrases. Finally,
they defined five features, out of which first three are the same as
those defined in KEA++, the fourth one uses Wikipedia but same
as the last feature in KEA++, and the remaining one, a novel one
using Wikipedia. In this work too, they used naïve Bayes classifier
for classification. On evaluation, the average f-measure value
defined in terms of consistency is found to be 30.5%.

Medelyan et al. [18] also presented an algorithm “Maui” in which
they used nine features including five lexical features and four
Wikipedia based features. On experimentation, they found that
when considering all these nine features for classification the
bagged decision tree yields better result than naïve Bayes. But, at
the same time, when considering the first three lexical features
only, naïve Bayes classifier performs better than bagged decision
tree classifier.

A number of research efforts have also been diverted towards
exploiting keyphrases or key terms to generate tag clouds. In [25],
Kuo et al. proposed a tool PubCloud to summarize results returned
by search engines in the form of tag clouds and to allow the
navigation from tag clouds to the results. Terms to act as tags in the
cloud are extracted from the contents by applying simple
information retrieval techniques including stop-word removal and
relative phrase frequency values. This tool is developed for use
with PubMed database, which stores biomedical literatures and it is
well tested on it. Song et al. [26] proposed a graph-based clustering
technique to predict tags for recommendation by learning from
existing tagged documents. In CourseCloud [24], Koutrika et al.
used clouds to summarize results of keyword searches over
structured data in the form of a course database and to guide users

to refine their searches. In [23], Schrammel et al. did a lot of
analysis for proper arrangement of tags in the cloud to make it
effective for search tasks and also to attract the attention of a user
towards the most relevant terms. They found semantically
clustered tag clouds to be the most suitable arrangement. Kaser and
Lemire [22] worked for the effective visualization of clouds using
algorithmic approaches to improve the display of tag clouds.

Compared to the previous works, our approach uses a rich set of
domain-independent features for automatic keyphrase extraction.
In addition to tf-idf, phrase position, etc., we introduce few novel
statistical features, e.g., semantic relatedness of individual words of
a candidate phrase, positional weight, and so on. We also present a
novel application of the extracted keyphrases and their learned
weight to generate tag cloud to conceptualize underlying text
documents collection.

3. PROPOSED WEB CONTENT MINING

METHOD
In this section, we present the functional detail of the proposed web
content mining method for keyphrase extraction and tag cloud
generation, which follows an algorithmic approach to identify
keyphrases in text documents. The proposed method identifies
keyphrases and generates tag cloud using following five ordered
subtasks – document pre-processing, candidate phrase

identification, feature extraction, model learning and keyphrase
identification, and tag cloud generation. Further detail about each
of these subtasks is presented in the following sub-sections.

3.1 Document Pre-processing
This section presents the document pre-processing process, which
is a first step towards identifying keyphrases in text documents.
This process takes text documents as input and generates n-grams
after proper tokenization of text documents. The tokenization and
n-gram generation processes are explained in the following sub-
sections.

3.1.1 Tokenization
Tokenization is a process to decompose texts into small size
chunks. The tokenizer is implemented to work on different file
formats including portable document format (pdf). Since we are
concerned only with textual contents, all the images and their
labels are excluded while converting pdf documents into text
documents. Similarly, for web documents, the HTML tags are
filtered out before further processing. Thereafter, the tokenizer
divide the text into record-size chunks which boundaries are
decided using the appearance of punctuations like comma,
semicolon, full stop, inverted comma, opening or closing brackets,
exclamation mark, question mark and so on. The chunks so
generated are then used to generate n-grams.

3.1.2 N-gram Generation
An n-gram can be defined as a sequence of n consecutive words
from text documents. Depending on the size of window, it can be a
1-gram containing single word if the window-size is one, 2-gram
containing two consecutive words if the window-size is two, and
so on. On analysis, we observed that in rare cases the manually
assigned keywords (as in case of scientific papers) to a document
consist of more than three words. In most of the cases it is a double
word phrase, and in other cases it is either a single word or a triple
word phrase. Hence, in our method the value of n is constrained to
3, i.e., we generate all possible 1-, 2-, and 3-grams from the chunks
output by the tokenizer. While generating n-grams, the position of
first occurrence, the position of last occurrence, and the frequency
of each n-gram is captured and stored with it in a structured format.

Some of the 1-, 2-, and 3-grams along with their first occurrence
position (fop), last occurrence position (lop), and frequency counts
(freq), generated from the following sentence is shown in table 1.

“populations in developing countries are growing so quickly that

the land and water are unable to sustain them”

Table 1. N-grams along with their first and last occurrence

positions and frequency counts

N-grams fop lop freq

1-grams

Populations 0 0 1

In 1 1 1

Developing 2 2 1

Countries 3 3 1

Are 4 13 2

2-grams

populations in 0 0 1

in developing 1 1 1

developing countries 2 2 1

countries are 3 3 1

3-grams

populations in developing 0 0 1

in developing countries 1 1 1

developing countries are 2 2 1

Table 2. Candidate phrases obtained after applying filtering

rules on the n-grams of table 1

N-grams fop lop freq

1-grams

Populations 0 0 1

Developing 2 2 1

Countries 3 3 1

2-grams

developing countries 2 2 1

3-grams

populations in developing 0 0 1

3.2 Candidate Phrase Identification
In this phase, all possible n-grams (hereafter, we say phrases) are
analyzed and cleaned to determine the set of candidate phrases.
This is implemented as a two-step process – i) phrase processing,
and ii) phrase filtering. During processing phase, in addition to
removal of apostrophes, the words in a phrase starting or ending
with numeric values are processed to drop the numeric
constituents, whereas during filtering phase a set of heuristic rules
is applied to filter-out phrases that are obviously not a candidate
for keyphrase. Some of the heuristic rules used by the candidate
phrase identification module are as follows:

• Filter out a single-word phrase which is a member of the set
of stop-words.

• Filter out a multi-word phrase starting or ending with a
stop-word. In order to reduce redundancy, we have opted to
drop whole phrase instead of removing the stop-words from
them (i.e., phrase cleaning). For example, if we clean the 2-
gram “populations in” of table 1 by removing the stop-
word “in”, we will get the phrase “populations”, which is
already an 1-gram in that table. So, we have opted for
dropping instead of cleaning.

• Drop the phrases containing special characters like /, \\, %,
etc. as they can never be a keyphrase. Like previous rule,
we have opted phrase removal instead of phrase cleaning to
reduce redundancy.

• Drop the phrases consisting only characters other than
English letters (e.g., 93%), as they are meaningless
individually.

• Filter out a phrase starting or ending with non-acronym
words containing three or less letters as such words are
generally not used as a keyphrase.

All the phrases retained after applying the above-mentioned
filtering rules are compiled as a list of candidate phrases. After
applying the above-mentioned rules on the phrases, presented in
table 1, the list of candidate phrases is shown in table 2. For each
candidate phrase a list of feature set, as explained in the following
sub-section, is generated which is then used to establish its
keyphraseness using classification systems.

3.3 Feature Extraction
The input to this component is the list of candidate phrases
generated during candidate phrase identification process. In order
to characterize a candidate phrase, we have identified a set of nine
lexical and statistical features. Here, we present a brief detail about
all the features identified to characterize candidate phrases.

The feature extraction process takes the list of candidate phrases as
input and outputs feature vectors for them. Since, most of the
features are defined as a function of phrase frequency, we have
applied stemming to remove the suffix from a phrase and consider
all variations to increase its frequency count. For stemming, we
have used the Porter stemmer [14], which uses heuristic rules to
remove or transform English suffixes. Besides stemming, it also
applies case-folding – a property by which it converts the whole
phrase into the lower-case letters. In this way, while calculating
features values, two different phrase with same stem and in
whatever case (upper-case or lower-case) they are, considered as
the same phrase.

Relative Phrase Frequency (Frel): We assume that the importance
of a phrase is directly proportional to its frequency count. So, we
count the number of times a phrase occurs in a document and then
normalize the count by dividing it with the maximum frequency of
any candidate phrase and use the value as a feature termed as
relative phrase frequency. The relative phrase frequency of a
phrase p is calculated using equation 1 in which f represents the

frequency count of p and max{fi} is the maximum value among the
frequencies of all the phrases.

������� � 	
��	�
�� (1)

Cumulative Weight (Wcum): If a phrase frequency is not very
high, but frequency of the individual words of the phrase is very
high, we consider this phrase as an important one. So, based on the
frequency of the individual words of a phrase p, we calculate its
cumulative weight using equation 2 in which tf�ti� represents the
frequency count of term ti and length(p) is the number of words in
phrase p.

������� � ���� �1 � �
� ����!"#$�%�
�&' ((2)

Positional Weight (Wpos): Phrases occurring either at the
beginning or at the end of a document are generally considered as
important. So, a positional weight (more weight if occurrence is at
either end and lower weight for middle) is assigned to a phrase to
reflect its positional importance. The positional weight of a phrase
p is calculated using equation 3 where, pos is the position of first
occurrence of the phrase and s is the size of the document in terms
of words.

�%*+ �	
,--
.
--/ 01 1 ��232250 , 7
	��2	 8

22									
		01 1 ��232250 �

13225 , 7
	��2 � 22
9 (3)

Length (L): A phrase with a larger length in terms of words is
considered to be more important than a phrase with smaller length
provided their frequency count is same. So, we have taken the
length, L, of a phrase as a feature which is calculated by counting
the number of words in it.

Relatedness: This feature is used to reflect the relatedness among
the individual consecutive words of a multiword phrase. For a
single-word phrase, the value of relatedness feature, R�w�, is
calculated using equation 4 in which f�w� represents the frequency

of w and s is the size of documents. For a phrase containing two
words w1 and w2 the relatedness feature, R�w1,	w2� is calculated

using equation 5, where P�w1�, P�w2� and P�w1,w2� are defined

by equations 7 and 8, and for a phrase containing three words w1, w2, and w3, it is calculated using equation 6, where P�w1�, P�w2�, P�w3�, P�w1,w2� and P�w1,w2,w3� are defined by equations 7, 8
and 9. In equations 7, 8 and 9, f�w1�,	f�w1,w2� and f�w1,w2,w3� are
the frequencies of co-occurrences of the words inside the
parentheses.

?�@� � ���� A1 �
�@�2 B (4)

?�@', @�� � ���� C1 � D�@', @��D�@'�D�@��E (5)

?�@', @�, @F� � ���� C1 � D�@', @��D�@'�D�@��E
� C1 � D�@�, @F�D�@��D�@F�E
� ���� C1 � D�@', @�, @F�D�@'�D�@��D�@F�E

(6)

D�@'� �
�@'�2 (7)

D�@', @�� �
�@', @F�2 (8)

D�@', @�, @F� �
�@', @F, @F�2 (9)

Capitalization: Any phrase occurring in a text document as its
first letter in uppercase is considered as an important word. So, we
have devised a formula to assign a capitalization weight, Cap, to
each phrase with this property, which is calculated by equation 10,
where N�Uw�	 is the number of words with its first letter in upper

case, L is the length of the phrase and f is the frequency of the
phrase in the document.

��I% � ∑K�LM�N
 (10)

TF-IDF: It combines the frequency of a phrase in a particular
document with its inverse document frequency. This score is high
for rare phrases that appear frequently in a document and therefore
are more likely to be significant [15]. It is calculated using
equation 11, where Nd	is the number of documents in the corpus in
which the phrase exists and C is the total number of documents in
the corpus.

O�-QR� �
2 S A1 ���� KTU B (11)

Lifespan: It determines the extent of a phrase in a document. A
phrase occurring either at the beginning or at the end position will
get more score as compared to those that occur far from the
beginning and end. It is defined by equation 12 in which Pf	 and Pl
represent the positions of the first and last occurrences of the
phrase P	respectively.

N] � D� 1 D̂2 (12)

Keyphraseness: It quantifies how often a candidate phrase appears
as a keyword in the training corpus. If a candidate phrase already
exists in the set of keywords of the training set, it has a good
chance of being a keyphrase in the document. So, we give more
score to this phrase as compared to those not existing in the
keyword set of training documents. It is defined by equation 13,
where NPM�G,kw�	 is the number of perfect matches in 1, 2 & 3-
grams of candidate phrases with the keywords, and Nm	 is the
number of matches occurred.

c � ∑Kde �f, g@�K� (13)

3.4 Model Learning and Keyphrase

Identification
In the previous section, we have discussed various features
identified for each candidate phrase to learn classification systems.
In this section, we discuss the classification models used to identify
keyphrases from text documents. From training dataset, we have
extracted the previously mentioned features using n-gram and
statistical techniques and then trained four different classification
models namely naïve Bayes, Decision Tree (C4.5), Multi-Layer

Perceptron (MLP), and RIPPER to establish the effectiveness of
the proposed feature set to discriminate keyphrases from non-
keyphrases. From classification results, we calculate true positives
TP (number of actual keyphrases classified as keyphrase), false

negatives FN (number of actual keyphrases classified as non-
keyphrase), false positives FP (number of non-keyphrases
classified as keyphrase), and true negatives TN (number of non-
keyphrases classified as non-keyphrase). By using these values, we
calculate the standard performance measure “accuracy” as defined
in equation 14. We have applied 10-fold cross validation for
evaluating the performance of the classifiers, i.e., the dataset is
divided into 10 smaller subsets, out of which 9 subsets are used for
training and one subset is used for testing. This process is repeated
10 times. The accuracy values of the different classifiers are shown
in table 3. It can be observed from the results presented in table 3
that the accuracy of the C4.5 and MLP is highest, and the accuracy
of the RIPPER is the next highest, but in terms of true positive
values MLP is lowest and C4.5 is highest. Although, the accuracy
of the naïve Bayes classifier is lowest, the difference is not very
significant, but on the other hand it achieved highest true positive
value. Hence, the C4.5 and Naïve Bayes are the obvious choice to
use for the classification purpose.

hiijklim	 � no � npno � qp � qo � np (14)

Table 3. Classification accuracy values for proposed feature set

Classifier TP FN FP TN Accuracy (%)

Naïve Bayes 17 625 24 78454 99.180

C4.5 8 8 33 79071 99.948

MLP 0 0 41 79079 99.948

RIPPER 6 7 35 79072 99.947

3.5 Tag Cloud Generation
Searching for relevant information from vast collections of digital
data is a common activity and the problem of retrieving this critical
information was found long ago [20]. However, the rapid growth
of internet has enlarged its domain from digital libraries to the Web
itself [21], and still a lot of efforts are being made to retrieve a
precise as well as informative collection. One way to present a
voluminous textual data retrieved for a search query is by using tag
clouds [24, 25]. A tag cloud can be said as a collection of main
topical terms mined from the voluminous contents and presented
pictorially as a cloud of terms emphasizing them according to their
relevance. It enables the reader to identify context of the retrieved
text data and quickly determine if it is of interest or not. The most
general way to generate tags for the content is to simply rank the
single words in terms of their frequency after filtering out the
common stop-words. However, in our approach we have applied a
machine learning scheme to mine topical terms intelligently, which
are presented in the form of a cloud of tags with varying sizes
highlighting the most relevant ones. The complete process is
summarized as below:

• For each candidate phrase, a set of nine feature values are
calculated from text contents.

• The trained classification model is applied to determine the
keyphraseness of the candidate phrases.

• Positively classified keyphrases are ranked primarily
according to their probability of being positive and
secondarily according to their tf-idf values to break the ties.

• Top n (user given parameter) phrases pi, i = 1, 2, …, n are
declared as tags and for each pi the corresponding tf-idf

value is considered as weight ω(pi)

• For each tag pi, the weight ω(pi) is used to calculate its font
size using equation 15 in which Fmax and Fmin represent the
maximum and minimum font size respectively supplied by
the user.

• Finally, tags are displayed with their sizes as calculated,
positioning the larger ones towards the cloud center and
moving outwards gradually with comparatively smaller
sizes.

Table 4. Top 20 keyphrases (tags), their weights and font-sizes

Tags (pi) W(Pi) F(Pi) Tags (pi) W(Pi) F(Pi)

Resource
management

0.00098 13
Farming
systems

0.00465 42

Upland areas 0.00099 13 Systems 0.00000 5

Southeast Asia 0.00069 10 Forest 0.00103 13

Information 0.00000 5 Trees 0.00190 20

Information kit 0.00026 7
Soil
conservation

0.00059 10

Organized 0.00000 5 Conservation 0.00138 16

Agroforestry 0.00541 48 Participants 0.00000 5

Agricultural 0.00000 5 Plant 0.00146 17

Development 0.00000 5
Farm
household

0.00151 17

Farming 0.00000 5 Upland 0.00017 6

 Figure 1. A sample tag cloud visualization of the tags shown in

table 4

We have performed our experiment on a set of large-sized
agricultural documents consisting of 20 documents for learning the
model and 5 other documents for testing our results. After
extracting the most promising keyphrases from test documents they
are weighted by their tf-idf values and font sizes are calculated
using equation 15. Table 4 shows top 20 keyphrases considered as
tags in the cloud along with their tf-idf values and calculated font
sizes using maximum and minimum font size as 48 and 5,
respectively. Figure 1 shows the generated tag cloud. On observing
this cloud, we can see that the terms with larger sizes are brought
into notice earlier than those that are comparatively smaller. This
effect makes us realize the relevance of these highlighted terms in
the context, by going through which we can easily chose to move
inside the document for more details or switch on to other as per

our requirement. Moreover, the size of this cloud can be enlarged
further to accommodate more terms in it to have a broader review
of the content. It can be set proportional to the depth of review we
need to have.

����� � ���Ir 1 ���!� S C ω���� 1 mintωu�vwxmaxtωu�vwx 1 mintωu�vwxE � ���! (15)

4. PERFORMANCE EVALUATION
In this section, we present the comparative performance evaluation
results of the proposed keyphrase extraction method. We have
compared the efficacy and correctness of the proposed method
with KEA proposed by Frank et al. [13]. For evaluation of the
experimental results, we have used standard information retrieval
metrics – precision, recall, and f-measure. Precision (π) is defined
as the ratio of true positives among all retrieved instances; recall
(ρ) is defined as the ratio of true positives among all positive
instances; f-measure, also called f1-measure (F1) is the harmonic
mean of recall and precision. From the classification results, we
calculate the true positives (TP), the false positive (FP), and false
negatives (FN) and by using these values we calculate the values of
precision, recall and f1-measure using equations 16, 17, and 18
respectively.

�{|}727�~	��� � ODOD � �D (16)

{|}���	��� � ODOD � �K (17)

-�|�2�{|	��'� � 2 S � S �� � � (18)

For evaluation, we have used an agricultural dataset which has
been also used by KEA for training and testing. On training set, we
have applied our method to identify candidate keyphrases and
generate feature vectors for each of them. A feature vector consists
of one value for each of the features discussed earlier in this paper.
Once, the feature vector is generated for all candidate phrases, we
use the naïve Bayes classifier, implemented as a part of WEKA2
(Waikato Environment for Knowledge Analysis) machine learning
software to learn the classification model. We have applied 10-fold
cross-validation to test the learned model.

The trained classification model is applied on the KEA test
documents to extract keyphrases from them. The extracted
keyphrases are arranged in decreasing order of their class
probability values generated by the classification model in which
the topmost phrases are the most promising keyphrases for the
document. We have calculated the values of precision, recall and
f1-measure on the test documents and compared the results with
KEA. For each document in this set, the list of author-assigned
keywords is used to calculate the values of true positives, false
positives, and false negatives. An extracted keyphrase which is a
member of the list of author-assigned keywords is considered as
true positive, and the one which is not a member is considered as
false positive. Similarly, a phrase in the list of author-assigned
keywords which is not recognized by the system as a keyphrase
contributes for false negatives. Since the number of author-

2 http://www.cs.waikato.ac.nz/ml/weka/

assigned keywords (generally available for scientific publications)
are not same for all documents we have defined different cut-offs
to consider that many phrases from the top of the list of extracted
keyphrases. On analysis, we found that generally a document
contains less than 10 author-supplied keywords. Hence, the cut-off
values are taken as 3, 5, 7, and 9 and for each of them we have

calculated the values of precision (π), recall (ρ), and f1-measure
(F1).

Table 5. Comparison result of the proposed method with KEA

Cut-off

Point

Proposed Method KEA

TP FP FN π/ρ/F1 TP FP FN π/ρ/F1

Document – 1

Top-3 1 2 8 0.33/0.11/0.17 1 2 8 0.33/0.11/0.17

Top-5 3 2 6 0.6/0.33/0.43 1 4 8 0.20/0.11/0.14

Top-7 3 4 6 0.43/0.33/0.37 1 6 8 0.14/0.11/0.12

Top-9 3 6 6 0.33/0.33/0.33 1 8 8 0.11/0.11/0.11

Document – 2

Top-3 2 1 8 0.66/0.20/0.31 1 2 9 0.33/0.10/0.15

Top-5 3 2 7 0.60/0.30/0.40 2 3 8 0.40/0.20/0.27

Top-7 3 4 7 0.43/0.30/0.35 2 5 8 0.29/0.20/0.24

Top-9 3 6 7 0.33/0.30/0.31 2 7 8 0.22/0.20/0.21

Document – 3

Top-3 2 1 2 0.67/0.50/0.57 2 1 2 0.67/0.50/0.57

Top-5 2 3 2 0.40/0.50/0.44 2 3 2 0.40/0.50/0.44

Top-7 2 5 2 0.29/0.50/0.37 2 5 2 0.29/0.50/0.37

Top-9 2 7 2 0.22/0.50/0.31 2 7 2 0.22/0.50/0.31

Document – 4

Top-3 1 2 6 0.33/0.14/0.20 1 2 6 0.33/0.14/0.20

Top-5 2 3 5 0.40/0.29/0.34 1 4 6 0.20/0.14/0.16

Top-7 2 5 5 0.29/0.29/0.29 1 6 6 0.14/0.14/0.14

Top-9 3 6 4 0.33/0.49/0.39 1 8 6 0.11/0.14/0.12

Document – 5

Top-3 1 2 16 0.33/0.06/0.10 1 2 16 0.33/0.06/0.10

Top-5 1 4 16 0.20/0.06/0.09 1 4 16 0.20/0.06/0.09

Top-7 1 6 16 0.14/0.06/0.08 3 4 14 0.43/0.18/0.25

Top-9 2 7 15 0.22/0.11/0.15 5 4 12 0.56/0.29/0.38

Macro-Average

Top3 7 8 40 0.47/0.15/0.23 6 9 41 0.40/0.13/0.20

Top5 11 14 36 0.44/0.23/0.30 7 18 40 0.28/0.15/0.20

Top7 11 24 36 0.31/0.23/0.26 9 26 38 0.26/0.19/0.22

Top9 13 32 34 0.29/0.28/0.28 11 34 36 0.24/0.23/0.23

The comparison result of our method with KEA is presented in
table 5. Figures 2, 3, and 4 present a visual perception of the results
shown in table 5. It can be seen in table 5 that for all cut-offs the
average precision, recall, and f-measure values of our method is
greater than that of the KEA. Moreover, it can be observed from
figures 2 and 3 that precision values are monotonically decreasing,
whereas the recall is monotonically increasing. In other words, if
we increase the value of n, where n is the number of top-ranked
phrases considered as keyphrases, the false positives are increasing

since the average number of author-assigned keywords across all
the test documents are approx. 5. This is why the value of precision
is decreasing with increasing value of n. Similarly, for increasing
value of n the false negatives are decreasing which results in
increased recall value. Both of the methods – the proposed one and
the KEA, follow the same trend but for all cut-off values our
method outperforms KEA.

Figure 2. Precision of the proposed method and KEA

Figure 3. Recall of the proposed method and KEA

Figure 4. F-measure of the proposed method and KEA

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented a web content mining method
based on supervised machine learning approach to mine
keyphrases from text documents for tag cloud generation. Instead
of applying full or partial parsing on text documents, which is
generally not feasible for complex sentences, our method applies n-
gram technique for candidate phrase generation and refines them

0

0.1

0.2

0.3

0.4

0.5

Top-3 Top-5 Top-7 Top-9

P
re

ci
si

o
n

No. of keyphrases

Proposed

KEA

0

0.1

0.2

0.3

0.4

0.5

Top-3 Top-5 Top-7 Top-9

R
ec

a
ll

No. of keyphrases

Proposed

KEA

0

0.1

0.2

0.3

0.4

0.5

Top-3 Top-5 Top-7 Top-9

F
-m

ea
su

r
e

No. of keyphrases

Proposed

KEA

using a set of heuristic rules. Thereafter, each phrase is converted
into a vector of feature values generated from text documents using
NLP and statistical analysis. We have also defined a font-size
determination function to map the weights of keyphrases to their
respective font sizes for visualization of tag cloud. Since different
persons may select different set of keyphrases from same
documents evaluation of the quality of extracted keyphrases is a
challenging task. Therefore, our future work will be focused on
evaluation of the extracted phrases with a more robust measure.
Moreover, we are trying to explore some more features that can use
the structural relation (synonyms, antonyms, etc.) of phrases in the
text to reflect the context or environment of phrase occurrence.

6. REFERENCES
[1] Sinclair J. and Cardew-Hall, M. 2008. The folksonomy tag

cloud: when is it useful? Journal of Information Science,
34(1), 15–29.

[2] Zha, H. 2002. Generic Summarization and Keyphrase
Extraction using Mutual Reinforcement Principle and
Sentence Clustering. In Proceedings of the 25th Annual
International ACM SIGIR Conference on Research and

Development in Information Retrieval, 113–120.

[3] Jones, S. and Staveley, M. S. 1999. Phrasier: A System for
Interactive Document Retrieval using Keyphrases. In
Proceedings of the 22nd Annual International ACM SIGIR

Conference on Research and Development in Information

Retrieval, 160–167.

[4] Han, J., Kim, T. and Choi, J. 2007. Web Document Clustering
by using Automatic keyphrase extraction. In Proceedings of
the 2007 IEEE/WIC/ACM International Conferences on Web

Intelligence and Intelligent Agent Technology, 56–59.

[5] Gutwin, C., Paynter, G., Witten, I. H., Nevill-Manning, C. and
Frank, E. 1999. Improving Browsing in Digital Libraries with
Keyphrase Indexes. Decision Support Systems, 27(1-2), 81–
104.

[6] Li, Q., Wu, Y.B., Bot, R. and Chen, X. 2004. Incorporating
Document Keyphrases in Search Results. In Proceedings of
the 10th American Conference on Information Systems, New
York.

[7] Jonse, S. and Mahoui, M. 2000. Hierarchical Document
Clustering using Automatically Extracted Keyphrase. In
Proceedings of the 3rd International Asian Conference on

Digital Libraries, Seoul, Korea, 113–120.

[8] Kosovac, B., Vanier, D. J. and Froese, T. M. 2000. Use of
Keyphrase Extraction Software for Creation of an AEC/FM
Thesaurus. Journal of Information Technology in

Construction, 5, 25–36.

[9] Gutwin, C., Paynter, G. W., Witten, I. H., Nevill-Manning, C.
G. and Frank, E. 1999. Improving Browsing in Digital
Libraries with Keyphrase Indexes. Journal of Decision

Support Systems, 27, 81–104.

[10] Kupiec, J., Pedersen, J. and Chen, F. 1995. A Trainable
Document Summarizer. In Proceedings of the SIGIR, ACM

Press, 68–73.

[11] Turney, P. D. 2000. Learning Algorithm for Keyphrase
Extraction. Journal of Information Retrieval, 2(4), 303–36.

[12] Turney, P. D. 1999. Learning to Extract Keyphrases from
Text. National Research Council, Institute for Information
Technology, Technical Report ERB-1057.

[13] Frank, E., Paynter, G. W., Witten, I. H., Gutwin, C. and
Nevill-Manning, C. G. 1999. Domain-specific Keyphrase
Extraction. In Proceedings of the 16th International Joint
Conference on Artificial Intelligence, San Mateo, CA.

[14] Porter, M. F. 1980. An Algorithm for Suffix Stripping,
Program, 14(3), 130–137.

[15] Salton, G., & McGill, M. J. 1983. Introduction to Modern

Information Retrieval. McGraw-Hill, New York, NY.

[16] Medelyan, O. and Witten, I. H. 2006. Thesaurus-Based
Automatic Keyphrase Indexing, In Proceedings of the 6th
ACM/IEEE-CS Joint Conference on Digital Libraries, New
York, USA, 296–297.

[17] Medelyan, O., Witten, I. H. and Milne, D. 2008. Topic
Indexing with Wikipedia. In Proceedings of AAAI Workshop
on Wikipedia and Artificial Intelligence: an Evolving
Synergy, Chicago, USA. 19–24.

[18] Medelyan, O., Frank, E., and Witten, I. H. 2009. Human-
Competitive Tagging using Automatic Keyphrase Extraction.
In Proceedings of the International Conference of Empirical
Methods in Natural Language Processing (EMNLP),
Singapore, 1318–1327.

[19] Fensel, D., Horrocks, I., Harmelen, F. van, McGuinness, D. L.
and Patel-Schneider, P. 2001. OIL: Ontology Infrastructure to
Enable the Semantic Web, IEEE Intelligent Systems, 16(2),
38–45.

[20] Maron, M. E. and Kuhns, J. L. 1960. On Relevance,
Probabilistic Indexing and Information Retrieval, Journal of
the ACM, 7(3), 216–244.

[21] Aula, A., Jhaveri, N. and Kaki, M. 2005. Information search
and re-access strategies of experienced web users, In
Proceedings of the 14th international conference on World

Wide Web (WWW’05), 583–592.

[22] Kaser, O. and Lemire, D. 2007. TagCloud Drawing:
Algorithms for Cloud Visualization, In Proceedings of the
16th International Conference on World Wide Web

(WWW’07), Canada.

[23] Schrammel, J. Littner, M. and Tscheligi, M. 2009.
Semantically structured tag clouds: an empirical evaluation of
clustered presentation approaches, In Proceedings of the 27th
International Conference on Human Factors in Computing

Systems, 2037–2040.

[24] Koutrika, G., Zadeh, Z. M. and Garcia-Molina, H. 2009. Data
clouds: summarizing keyword search results over structured
data, In Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database

Technology, 391–402.

[25] Kuo, B. Y. Hentrich, T., Good, B. M. and Wilkinson, M. D.
2007. Tag clouds for summarizing web search results. In
Proceedings of the 16th International Conference on World

Wide Web (WWW’07), 1203–1204.

[26] Song, Y., Zhuang, Z., Li, H., Zhao, Q., Li, J., Lee, W. and
Giles, C. L. 2008. Realtime automatic tag recommendation. In
Proceedings of the 31st Annual International ACM SIGIR

Conference on Research and Development in Information

Retrieval (SIGIR '08), Singapore, 515–522.

