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Abstract—In this paper, we discuss the issue of features that
emerge during the prediction phase of a machine learning
model, termed as unseen features. Because unseen features are
absent from the vocabulary of the trained model, they are often
rejected during the preprocessing stage of the learning model in
standard machine learning approaches. We introduce the idea
of unseen features and a method for identifying and using them
for classification tasks. Because the dimension of feature vector
required for trained machine learning model is going to differ
upon incorporating unseen features of the testing data sample, it
is not practical to directly incorporate unseen features since they
only exist during the prediction phase of a machine learning
model. As a result, the feature space for the training set is
transformed to the embedding space which facilitates the use of
unseen features. The proposed approach is empirically evaluated
using standard metrics over three benchmark datasets in diverse
circumstances (natural and balanced datasets) and on various
text types – long-texts (aka structured texts) and short-texts
(aka unstructured texts) considering five distinct classification
algorithms. The experimental findings confirm the effectiveness
of using unseen features during a machine learning model’s
deployment phase. The proposed unseen features enhanced tech-
nique outperforms the conventional approaches in both balanced
class distribution and natural class distribution scenarios by a
significant margin of at least 10%.

Index Terms—Machine learning; Unseen features; Out-of-
distribution; Text classification

I. INTRODUCTION

In text classification problems, the words used to describe an
entity do alter with time. The terms that are currently available
and commonly used in the domain are input to the machine
learning model when it is trained for a specific problem.
When a machine learning model encounters new terms used
in a domain over time, it is unable to incorporate them
since the models have not previously encountered these words
during machine training. These new terms are disregarded
because they are ineffective for the classification process. In
this paper, we present a novel method for identifying and
managing features that emerge for the first time during a
machine learning model’s testing or deployment phase. When
a machine learning model encounters an unknown feature, the
model typically discards or ignores that feature. Since these
features were not present during the machine learning model’s
training phase, we term them as unseen features. We are the
first to identify and handle the issue of unseen features, to the

best of our knowledge. Unseen features are ignored because
they are currently thought to be of no consequence during
classification. However, they seem to be be useful in machine
learning, if we could put them to good use.

As the machine-learning model is trained, and it is deployed
in an application area for prediction. The deployed machine-
learning model have a fixed feature vector length; when a data
sample is assigned for classification during the deployment
phase, it needs to be converted to a feature vector of the
same length. Unseen features do not carry specific knowl-
edge associated with them; therefore, the deployed machine-
learning model cannot utilize such features directly. We have
used word embedding to utilize unseen features. The word
embedding space retains the contextual semantics of words
by representing them as dense vectors.

We have conducted in-depth experiments in two scenarios
(balanced class distribution and natural class distribution)
using both structured and unstructured types of texts on three
benchmark datasets – the IMDB movie review dataset, the
Chen et al. [1] dataset, and the Twitter US airline sentiment
dataset. We have employed five classification methods, such
as Support Vector Machines (SVM), Gradient Boosting (GB),
Random Forest (RF), Logistic Regression (LR), and Decision
Tree (DT) for classification tasks, and used precision, recall,
F1-score, and accuracy to assess the efficacy of the proposed
unseen features enhanced classification technique. The out-
comes of the performance evaluation point to the need of
applying unseen features during the deployment phase. The
performance evaluation findings also indicate that the pro-
posed approach is substantially more able than conventional
approaches to identify the minority class – whether it be a
positive or negative class.

The key contributions of this study can be summed up as
follows: (i) A technique for finding unseen features that a
machine learning model might encounter during testing or de-
ployment phase, (ii) A method for enhancing the classification
accuracy of machine learning models by incorporating unseen
features.

The remainder of the paper is structured as follows. A
comparative analysis of similar paradigms, including out-
of-distribution, outlier detection, anomaly detection, open-
set recognition, novelty detection, transfer learning, and on-
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line/incremental learning, is presented in section II. The
functioning and algorithmic details of the proposed unseen
features enhanced classification method is described in section
III. Datasets, evaluation metrics, experimental findings, and
analysis are presented in section IV. Finally, a conclusion
along with future direction of research is presented in section
V.

II. RELATED WORKS

In this section, we discuss closely related paradigms in
the existing literature. The proposed approach can be mis-
interpreted with concepts such as open-world learning, out-
of-distribution, outlier detection, anomaly detection, open-
set recognition, novelty detection, transfer learning, and
online/incremental learning. Each of the aforementioned
paradigms and the differences with the proposed approach are
discussed as follows.

In traditional machine learning scenarios we have data
from a particular task/ domain X along with its label Y ,
it is assumed that Ytest ⊆ Ytrain, or Ytest − Ytrain = ϕ,
such scenario is called as closed-world assumptions. This
assumption indicates that testing classes must be seen during
training phase of an approach. In approaches that follow close-
world assumption, if an instance of a new class appears during
the deployment phase, it will be arbitrarily assigned to any of
the classes known to the machine learning model [2].

In open-world scenario, a machine learning model can deal
with those instances that appear during deployment phase
for the first time. In this scenario there is possibility of
distribution shift as in this case Ytest − Ytrain ̸= ϕ. The
approach that handles such kind of situation is called open-
world classification. Our approach is different from the open-
world classification problem, because our approach is able to
identify those features that appear for the first time during
deployment phase i.e. it is a feature-level approach, whereas
in open-world scenario, instances that belong to different tasks
are identified and addressed, i.e., it is task-level approach. In
conventional approaches, when features that appear for the
first time during deployment phase, i.e., are not present in
train vocabulary, are discarded or ignored.

Because of open-world scenario there is a possibility of
distribution shift in either of the independent or dependent
variables or both. If the distribution shift is in independent vari-
able, i.e., there is distribution shift in X , it is called as covariate
shift. However, if the distribution shift is in dependent variable,
i.e., there is distribution shift in Y , it is called as semantic
shift. Based on the classification of distribution shift presented
by Yang et al. [3], there are five types of distribution shift
– anomaly detection, outlier detection, open-set recognition,
out-of-distribution, and novelty detection. Anomaly detection
can be both in semantic shift and covariate shift, i.e., the test
instances can be from the different distributions or belong to
different classes. In outlier detection, the aim is to identify
those instances that are significantly different from the rest of
the instances present in data distribution. Both covariate shift
and semantic shift can occur in outlier detection.

In conventional machine learning, when an instance that
belongs to different class appears during deployment phase, it
is assigned arbitrarily to one of the known classes; in order to
address this issue, open-set recognition is proposed. In open-
set recognition aim is to correctly assign a test instance to
either the of ”known know classes” or ”unknown unknown
classes”. No covariate shift occurs in open-set recognition. In
out-of-distribution setting, the aim is to detect test instances
that belong to different classes or from different domains.
Both covariate shift and semantic shift can occurs in out-of-
distribution setting. In novelty detection, an instance that does
not belong to in-train-distribution classes is identified, i.e., in
novelty detection, an instance of a new class is identified.
Covariate shift does not occur in novelty detection.

The problem that we want to address in this paper is
different from the one addressed by the sub-categories of
distribution shift because we address problem at the feature-
level.

In transfer learning, a machine learning model trained for
one domain/task (source domain) is applied for classification
in a different but related task (target domain). In literature,
usually, the source domain has numerous instances of labeled
data, and the target domain has fewer instances of labeled data.
Some well-known transfer learning approaches are [4], [5],
and [6]. The proposed unseen features enhanced approach is
different from the transfer learning-based approaches because
of the utilization of unseen features.

In online/incremental learning, a machine learning model
is trained continuously on the incoming sequential data and
produces an updated model. The proposed unseen features en-
hanced approach differs from the online/incremental learning-
based approaches because once the proposed machine learning
model is deployed, it is not trained/updated further.

III. UNSEEN FEATURES ENHANCED TEXT
CLASSIFICATION APPROACH

In a supervised machine learning approach,
training data along with its label, i.e., Dt =
{(x1, y1), (x2, y2), (x3, y3), . . . , (xN , yN )} is required to
train machine learning approach and produce a predictive
function. In training data Dt, the training instances
{x1, x2, x3, . . . , xN} are denoted by X ∈ RN×S and
class label instances {y1, y2, y3, . . . , yN} are denoted by
Y ∈ RN×C , S is the number of features, N is the number
of training instances, and C is the number of classes. The
predictive function f(X) predicts an output Y for an input
X . Here, X is an independent variable, and Y is called
dependent variable. X is comprised of a number of features
that appeared in the training phase of the machine learning
model.

Conventional machine learning approaches, specifically text
classification approaches, maintain a vocabulary of unique
features that appears in the training phase, also called feature
space. After a machine learning model is trained on a classifi-
cation task, it is deployed in its corresponding application area.
When the deployed model is faced with features that appeared
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Fig. 1. Workflow of the unseen features enhanced text classification approach

for the first time or those that are absent in the model’s
feature space are neglected and will not be incorporated in the
classification task. We call such features unseen features. The
overall framework of the unseen features enhanced approach
is presented in Figure 1. The functionality of each module is
described in the following subsections.

A. Preprocessing

In preprocessing step, each data instance is cleaned from
noise or unwanted chunks present in the data. The unwanted
chunks can be in the form of special symbols or punctuations,
extra spaces, digits, HTML tags, URLs, etc. The unwanted
chunks are required to be removed from the data as they
negatively affect the classification task and will deteriorate
system accuracy. Further, each data sample may also contain
contractions that are required to be expanded to their full
form. Furthermore, the text in a data sample is converted to
lower cases to avoid duplication, as the same word written in
different cases will be counted as a separate feature. Next,
the data instances go through a filter of stopwords. These
are the most common words in the English language that are
frequently used and do not provide valuable insights; therefore,
they do not help the classification task and are removed.
The Natural Language Toolkit (NLTK) is used to remove
stopwords. There are 179 stopwords present in NLTK. Further,
the data sample goes through the tokenization step. Each data
sample is converted to a tokenized vector using the NLTK word
tokenizer.

B. Feature Representation

Each tokenized instance of the dataset must be converted
to a numerical representation that the machine understands.
Various representation schemes can be used to convert textual
data into a numerical representation or encoding. Bag of word
representation is the widest-used representation scheme in
which a vocabulary of all unique features is formed, and then
each feature is counted in the corpus. In such a manner, for
a single instance present in the dataset, a vector of the length
of vocabulary is created, in which features that appear in this
instance are encoded by its count. For features that do not

appear in this instance are encoded by zero. One-hot encoding
is another representation scheme that is very similar to the
Bag of words representation scheme except that instead of the
count of a feature, it uses the presence or absence of that
feature; if a feature is present in the sample, encoded by 1
else it is encoded by zero.

In the TF-IDF representation scheme, the shortcoming of
the bag of words approach is handled. In the bag of words,
each feature present in a sample is treated equally, whereas,
in the TF-IDF scheme, those features that are important in
the sample are weighted according to their importance. Word
Embedding is a vector space-based representation in which the
context and semantics of words are preserved. In this scheme,
those words that are closely related or frequently co-occur are
represented with similar representations. There are different
implementations of word embedding such as word2vec [7],
GloVe [8], BERT [9], Fastext [10], ELMO [11], XLNet [12],
GPT [13]. In the proposed approach, word embedding is used
as the feature representation scheme for the tokenized data
sample.

C. Unseen Feature Detection

In order to detect unseen features during the deployment
phase, the features space associated with training data Ftr =
{∀fi ∈ Vtr}, Vtr is the vocabulary of training data, and feature
space associated with the testing data sample Fte are used.
Both Ftr and Fte are compared, features that appear for the
first time in the deployment phase are Ot, i.e.,

Ot = {∀fi ∈ {Fte −Ftr}, |fi ∈ Fte, fi /∈ Ftr} (1)

Ideally, features identified using equation (1) are discarded
in standard machine learning. We incorporate unseen features
during the deployment phase as described in section III-D.

D. Incorporating Unseen Features

Unseen features do not carry specific knowledge associated
with them; therefore, the deployed machine-learning model
cannot utilize such features directly. The deployed machine
learning model have a fixed feature vector length; when a data



TABLE I
STATISTICS OF THE DS2.

Domain # Positive # Negative # Neutral Proportion of
Instances Instances Instances Negative Instances

Alarm Clock 624 274 102 30.51
Baby 762 150 88 16.45
Bag 809 110 81 11.97
Cable Modem 845 121 34 12.53
Dumbbell 764 146 90 16.04
Flashlight 816 108 76 11.69
Gloves 796 127 77 19.50
GPS 739 179 82 13.76
Graphics Card 797 136 67 14.58
Headphone 704 187 109 20.99
Home Theater System 644 261 95 28.84
Jewelry 791 110 99 12.21
Keyboard 693 203 104 22.66
Magazine Subscriptions 672 247 81 26.88
Movies TV 829 101 70 10.86
Projector 733 186 81 20.24
Rice Cooker 764 175 61 18.64
Sandal 835 115 50 12.11
Vacuum 717 203 80 22.07
Video Games 718 190 92 20.93

sample is assigned for classification during the deployment
phase, it needs to be converted to a feature vector of the
same length. In the proposed approach, word embedding
associated with Ot is used to utilize unseen features during the
classification task. Prior to assigning the testing data sample to
the deployed model for the classification task, it is converted
to its document-vector representation as per section III-E.

E. Document Representation using Embedding

In order to encode a tokenized document during the training
phase, the word embedding vector associated with each token
is extracted from word embedding W|VW|×l, here, VW is the
vocabulary of word embedding, and l is the dimension of latent
space. To encode document d, average of the word embedding
W|VW|×l associated with words that appear in the document d
is computed and assigned to the encoded feature vector Ed.

Ed =

∑|d|
j=1 W|VW|×l[wj ]

|d|
(2)

In equation (2), wj denotes feature/word present in document
d and |d| denotes the size of the document or number of words
that appeared in document d. Equation (2) is used to convert
each document in training data i.e., dn ∈ Dt to a numerical
vector form during the training phase. The dimension of vector
Ed is l. Further, the encoded vector Ed is used to train the
machine learning model.

During the deployment phase of the machine learning
model, to encode tokenized testing data sample dt, equation
(2) is used. In the deployment phase, unseen features Ot

are also incorporated into its document vector representation.
Further, the document-vector representation of the testing data
sample is assigned to the deployed classifier for classification.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, we present the experimental setup of the pro-
posed approach. We also discuss datasets used in experiments.
Further, we present the experimental results and analysis.

A. Datasets and Experimental Setup

We have conducted extensive experiments on three bench-
mark datasets used in text classification specifically for the
task of sentiment classification – IMDB movie review dataset
(DS1) [14], Chen et al.’s [1] dataset (DS2), and Twitter US
Airline Sentiment dataset (DS3). DS1 contains 50000 reviews
which are collected from IMDB. Reviews present in DS1 are
labeled based on the movie rating. The lowest rating is 0,
whereas the highest rating of a movie is 10. Those movie
reviews that have a movie rating of less than 5 are labeled as
negative. Those movie reviews that have a rating greater than
6 are labeled as positive reviews. Those movie reviews that
have ratings of 5 and 6 are treated as neutral reviews. Neutral
reviews are discarded. 25000 movie reviews are present in
each positive and negative class. DS1 is a balanced dataset.

DS2 is crawled by Chen et al. [1] from amazon.com. In
DS2, there are product reviews from 20 domains. In each
domain, there are 1000 reviews. Each domain have positive,
negative, and neutral reviews. Each product review have a
rating from 1 to 5, rating 1 indicates the lowest, and 5 indicates
the highest rating. Product reviews with a rating greater than
3 are assigned positive labels. Product reviews with a rating
of less than 3 are assigned negative labels. Further, in our
experiments, those reviews with a rating of exactly 3 are
treated as neutral reviews. We have discarded neutral reviews
in our experiments. The detailed statistics of DS2 are presented
in Table I. We have conducted experiments on two variants
of the DS2 – balanced class distribution and natural class
distribution. As per Table I, DS2 is skewed towards positive
class in natural class distribution. For performing experiments
over DS2 in natural class distribution, we consider the number
of positive instances and negative instances presented in Table
I. For balanced class distribution, we have randomly created
a corpus of 200 reviews in each domain. We sampled 100
positive and 100 negative instances in each domain through a
random process. In order to perform experiments, data from
every domain is considered as an independent dataset.

DS3 is crawled from Twitter, released by CrowdFlower.
DS3 contains 14640 customer’s tweets about 6 United States
airlines – American, Delta, Southwest, Virgin America, United,
and US Airways. Each tweet present in this dataset is assigned
one of the three labels – positive, negative, and neutral. There
are 2363 tweets that are labeled as positive tweets, 9178 tweets
labeled as negative tweets, and 3099 tweets labeled as neutral
tweets. In our experiments, we have discarded those tweets that
are labeled as neutral tweets. We have conducted experiments
on two variants of DS3 – balanced class distribution and
natural class distribution. DS3 is skewed towards negative
class in natural class distribution. For performing experiments
over DS3 in natural class distribution, we consider the number
of positive instances and negative instances present in both



TABLE II
RESULTS OF THE BASELINE AND UNSEEN FEATURES ENHANCED APPROACHES OVER DS1

Classifier Conventional Approaches Unseen Features Enhanced Approaches
Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

SVM 67.31 69.34 68.31 67.83 80.93 81.00 80.96 80.96
GB 64.33 64.56 64.45 64.38 77.30 76.21 76.75 76.91
LR 67.01 67.98 67.50 67.26 80.13 79.22 79.67 79.79
RF 62.98 62.47 62.72 62.87 75.76 76.19 75.98 75.91
DT 54.53 53.78 54.15 54.46 65.58 63.76 64.66 65.15
Macro Average 63.23 63.63 63.43 63.36 75.94 75.28 75.60 75.74
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Fig. 2. Average of classifiers over all domains of balanced class distribution of DS2
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Fig. 3. Average of classifiers over all domains of the negative class (in natural class distribution) of DS2 (minority class is negative class)

classes. For balanced class distribution, we randomly sampled
a corpus of 4726 tweets, of which there are 2363 tweets from
each of the classes. We have kept the train and test ratio
to 80% : 20% for all datasets. We have used the hold-out
method to evaluate the performance of proposed approach
with baselines. We have used the 100 dimensional pre-trained
GloVe word embedding.

B. Evaluation Results and Analysis

In order to evaluate unseen features enhanced approach with
conventional approaches, we conducted experiments using 5
different classifiers – Support Vector Machine (SVM), Gradi-
ent Boosting (GB), Logistic Regression (LR), Random Forest
(RF), and Decision Tree (DT). The training phase of both types
of conventional and unseen features enhanced approaches
are the same. However, unseen features are not incorporated

during the conventional approaches’ deployment phase. Imple-
mentation of all classifiers is based on the Scikit-learn
library of python [15]. For SVM, we used linear kernel,
which works best in text classification [16], [17]. We used
L2-regularization with the regularization parameter C set to 1
for the SVM classifier. We set the default hyper-parameters in
Scikit-learn library for GB, LR, RF, and DT classifiers.
For performance evaluation on balanced class datasets, we
use standard evaluation metrics – precision, recall, F1-score,
and accuracy. Due to class imbalance, we have considered
precision, recall, and F1-score for performance evaluation in
natural class distribution. The performance evaluation results
of conventional approaches and unseen features enhanced
approaches over DS1 are presented in Table II. In Table V and
Table VI, we present performance evaluation results of DS2



TABLE III
NATURAL CLASS DISTRIBUTION: PERFORMANCE EVALUATION RESULTS OF THE BASELINE AND UNSEEN FEATURES ENHANCED APPROACHES OVER DS3

TO IDENTIFY MINORITY CLASS (MINORITY CLASS IS POSITIVE CLASS)

Classifier Conventional Unseen Features Enhanced
Precision Recall F1-Score Precision Recall F1-Score

SVM 82.73 24.78 38.14 78.12 62.67 69.54
GB 61.94 32.97 43.04 70.60 59.78 64.74
LR 71.10 33.41 45.45 79.06 63.78 70.60
RF 80.34 20.26 32.36 81.99 47.56 60.20
DT 37.18 40.30 38.68 50.69 56.89 53.61
Macro Average 66.66 30.34 39.53 72.09 58.14 63.74

TABLE IV
BALANCED CLASS DISTRIBUTION: PERFORMANCE EVALUATION RESULTS OF THE BASELINE AND UNSEEN FEATURES ENHANCED APPROACHES OVER

DS3

Classifier Conventional Approaches Unseen Features Enhanced Approaches
Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

SVM 72.55 76.92 74.67 73.47 84.14 85.16 84.65 83.93
GB 69.23 71.1 70.15 69.24 82.23 80.89 81.56 80.97
LR 72.69 76.92 74.75 73.57 84.04 84.55 84.3 83.62
RF 70.81 71.1 70.95 70.4 80.39 84.15 82.22 81.08
DT 62.64 59.25 60.9 61.31 72.48 70.12 71.28 70.61
Macro Average 69.58 71.06 70.28 69.60 80.66 80.97 80.80 80.04

TABLE V
NATURAL CLASS DISTRIBUTION: AVERAGE PERFORMANCE EVALUATION RESULTS OF BASELINE AND UNSEEN FEATURES ENHANCED APPROACHES OVER

DS2 TO IDENTIFY MINORITY CLASS (MINORITY CLASS IS NEGATIVE CLASS)

Domain Conventional Approaches Unseen Features Enhanced Approaches
Precision Recall F1-Score Precision Recall F1-Score

AlarmClock 55.09 29.53 34.28 66.28 44.13 51.33
Baby 14.22 10.32 11.74 53.36 21.94 25.45
Bag 38.61 14.62 17.19 53.71 21.54 25.19
CableModem 16.51 15.46 15.58 24.23 24.54 23.99
Dumbbell 23.32 12.26 14.89 55.48 31.61 37.21
Flashlight 4.93 3.75 3.96 9.91 8.75 9.19
Gloves 14.88 8.00 9.11 38.76 13.00 16.18
GPS 36.67 20.59 23.32 52.16 34.71 37.34
GraphicsCard 15.39 8.75 10.87 45.40 24.37 29.69
Headphone 34.75 18.79 20.82 56.43 30.30 35.35
Home Theater System 72.03 45.72 54.00 74.62 60.71 66.57
Jewelry 13.93 18.46 15.75 15.13 24.62 18.24
Keyboard 49.29 19.57 23.72 61.87 27.83 36.69
Magazine Subscriptions 58.81 40.45 43.76 70.43 61.34 63.89
Movies TV 31.88 12.00 13.01 23.81 20.00 19.48
Projector 58.09 20.47 27.37 70.14 49.77 55.75
RiceCooker 58.75 22.73 28.95 68.77 38.18 46.81
Sandal 14.07 5.22 6.91 43.53 11.30 14.47
Vacuum 66.29 20.00 26.02 71.60 34.34 44.15
Video Games 28.70 16.32 19.18 58.34 34.21 39.78
Macro Average 35.31 18.15 21.02 50.70 30.86 34.84

in balanced class distribution and natural class distribution,
respectively.

It can be observed from Table II, Table III, Table IV,
Table V, Table VI, Figure 2, Figure 3, Figure 4, Figure 5, and
Figure 6, that incorporating unseen features in a classification
approach results in improving the performance of the system.
In Table III, Table V, and Figure 5, we present the performance
evaluation results of the baseline and unseen features enhanced
approaches to identify the minority class. In Table V, the
minority class is the negative class. In Table III, the minority

class is the positive class. The classification of minority
class is hard to identify as there are fewer instances of that
class. From Table III, Table V, and Figure 5, it can also be
observed that the unseen features enhanced approach is able
to identify the minority class significantly better, and it shows
the superiority of the unseen features enhanced approaches
over baseline approaches. Unseen features enhanced approach
performs better on both types of short and long texts. Reviews
present in both DS1 and DS2 are of a long-text type or
more structural in nature. However, tweets present in DS3



TABLE VI
BALANCED CLASS DISTRIBUTION: AVERAGE PERFORMANCE EVALUATION RESULTS OF THE BASELINE AND UNSEEN FEATURES ENHANCED APPROACHES

OVER DS2

Domain Conventional Approaches Unseen Features Enhanced Approaches
Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

AlarmClock 65.85 61.00 63.09 63.59 65.56 54.00 58.66 61.03
Baby 56.96 55.00 55.57 55.90 70.22 69.00 69.40 68.20
Bag 55.46 55.00 55.13 54.36 71.35 69.00 70.00 69.74
CableModem 77.38 61.00 67.97 70.25 72.37 67.00 69.28 69.74
Dumbbell 63.89 60.00 61.61 62.05 71.00 56.00 62.37 65.13
Flashlight 68.33 56.00 61.27 63.59 66.48 66.00 65.88 65.13
Gloves 53.12 43.00 47.46 51.28 62.74 56.00 59.11 60.51
GPS 57.85 50.00 53.23 54.87 70.02 72.00 70.52 69.74
GraphicsCard 66.07 52.00 57.93 61.03 65.95 56.00 60.14 61.54
Headphone 60.24 64.00 61.84 59.49 67.44 71.00 69.00 67.18
Home Theater System 64.25 65.00 64.27 62.05 78.64 87.00 82.53 81.03
Jewelry 70.28 64.00 66.95 67.69 80.81 83.00 81.50 80.51
Keyboard 59.26 58.00 58.06 58.46 73.77 75.00 73.93 72.82
Magazine Subscriptions 62.20 77.00 68.67 63.59 75.12 75.00 75.04 74.36
Movies TV 61.04 58.00 59.02 59.49 70.07 76.00 72.77 71.28
Projector 62.41 45.00 51.29 56.41 61.09 67.00 63.85 61.54
RiceCooker 61.80 52.00 56.05 58.46 81.33 78.00 79.482 80.00
Sandal 56.05 49.00 51.80 53.85 65.42 71.00 68.01 65.64
Vacuum 62.81 61.00 61.56 61.54 67.47 55.00 59.89 62.57
Video Games 53.47 49.00 50.74 52.31 80.14 66.00 72.18 73.84
Macro Average 61.94 56.75 58.68 59.51 70.85 68.45 69.18 69.08
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Fig. 4. Average of accuracies of classifiers over all domains of balanced class
DS2

are more like short-text or unstructured type text, which is
more common in online social media platforms. Short-text or
unstructured text is difficult to classify.

C. Discussion

Incorporating unseen features during the deployment phase
of an approach is a complex problem to address because
unseen features appear for the first time in the deployment
phase and do not carry knowledge that other features seen
during the training phase; therefore, these features can not be
incorporated directly in the task of classification. The idea
of transforming training and testing data to an embedding
space is one solution to address the issue of leveraging unseen
features in the classification task. However, there could be
other ways to address the problem of unseen features. The
approach we present addresses the issue of unseen features.
In our approach, the unseen features are looked at in the
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Fig. 5. Macro average of classifiers of identifying minority class in natural
class distribution of DS2 and DS3 (in DS2 the minority class is negative, and
positive class in DS3)

vocabulary of the word embedding. If the feature is present
in the vocabulary of word embedding, that unseen feature is
incorporated into the classification task. However, there is a
possibility of words that are absent in the vocabulary of word
embedding. To address those words, we assign them a zero-
valued embedding. However, we believe that these words can
be addressed more efficiently. One possible solution to address
these words that do not appear in word embedding vocabulary
is to split them into a character-level representation and then
aggregate the word embedding associated with each character
to form a new embedding that represents the unknown word.
We believe addressing the aforementioned issue is beyond the
scope of this paper because it touches on the concept of the
out-of-vocabulary problem in word embedding.
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Fig. 6. Macro average of classifiers over balanced class distribution of all datasets

V. CONCLUSION

In this research, we have presented an improved text clas-
sification method using unseen features. When a conventional
machine learning model is deployed, if it is fed a data sample
with new features, the model does not take these features into
account since the dimensions of the feature vector used for
training and of the testing data sample are different. Such
features are referred to as unseen features. The dimensions of
the training data space and the testing data sample must match
in order to incorporate unseen features during the deployment
phase. In order to achieve this, the tokenized feature vector
of the training data during the training phase and the testing
data sample during the deployment phase is transformed into
word embedding space which can evenly represent both sets
of features. The results of the performance evaluation over
three benchmark datasets point to the importance of the unseen
features enhanced approach in a variety of situations (natural
and balanced class distributions), different types of text – long-
texts (aka structured texts) and short-texts (aka unstructured
texts), and different classifiers (decision tree, gradient boost-
ing, logistic regression, random forest, and support vector
machine). The suggested unseen features improved strategy
outperforms the traditional approaches in both balanced class
distribution and natural class distribution cases by a sizeable
margin of at least 10%.
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