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Abstract. Community detection from networks is one of the long standing and challenging tasks in the field of complex network
research. Detection of communities poses numerous challenges in terms of their overlapping and hierarchical nature, dynamics of
networks and underlying communities, scalability of detection algorithms on large scale networks to mention a few. Traditional
community detection methods are not readily scalable to large networks mainly due to the computation of global network
metrics. This paper presents a novel scalable overlapping community detection approach for large scale networks by presenting
a MapReduce framework based implementation of a density-based local community detection method. The method is divided
in two stages where the first stage uses a MapReduce approach to identify a mutual-core connected subgraph of the underlying
network. The second stage uses an existing connected component detection method, implemented via MapReduce, to identify
connected components in the mutual-core connected subgraph generated in the first stage. A community is then taken as the
union of the core-nodes in a connected component and the respective density-based neighborhood of each core-node in the
connected component. The resulting approach is among the first scalable overlapping community detection methods proposed in
literature.
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1. Introduction

Network systems are ubiquitous in nature and
society, and form the basic structure representing
interactions among various related entities. Some
important network systems include (i) real-world
social networks like human proximity networks,
friendship networks, terror networks, and crime/gang
networks, (ii) biological networks like protein-protein
interaction networks and gene regulatory networks
(iii) computer and computer-generated networks like
Internet and WWW (iv) online social networks
like Facebook, Twitter, and LinkedIn (v)
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financial networks like banking transaction networks
(vi) road networks (vi) power-grid networks, and (vii)
telecommunication networks like mobile call graphs.

Social Network analysis (SNA)
is a multi-disciplinary field dedicated to the analysis
and modelling of relations and diffusion processes
between various objects of network structures found in
nature and society, and other information/knowledge
processing entities. The aim of SNA is to understand
how the behaviour and interaction of such entities
translate to large-scale social network systems. SNA is
one of the important techniques which finds significant
application in anthropology, physics, mathematics,
biology,
communication networks, economics, geography, and
computing. The application of SNA includes but not
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limited to transport planning, dealing with organized
crime in adversary networks, community detection and
tracking, sentiment analysis and opinion mining, node
influence analysis, link prediction, and highlighting
functionally coherent groups of proteins and predict
the level of functional homogeneity within these
protein groups or communities.

One of the important challenges in the field of
SNA addressed in the existing literatures and along
the lines of which the current proposal is directed,
is the detection of communities and tracking their
temporal evolution. Actors in a social network tend
to form groups and the task of community detection
is to identify such groups (communities) through
the study of network structures and topologies.
Community detection from social networks is a long
standing and challenging task because communities
can often be closely related to the functional units
of a system, e.g., they may represent functionally
coherent groups of proteins, people discussing similar
topics and sharing an ideology (e.g. relating to
a political party, government initiatives, election
campaigns and so on), criminals linked to a particular
crime, group of people involved in money laundering
in a financial transaction network, web pages related
to similar topics and so on. Identification of such
groups, clusters, or communities in a social network
forms the basis for many other social network
analysis tasks. Further, communities may overlap and
have a hierarchical structure. Moreover, community
structures change with the changing dynamics of
the underlying network. These properties further
complicate the process of community detection. It thus
becomes important to devise novel methods to address
community detection challenges in a unified manner.

This paper presents a novel approach to solve the
scalability issue of earlier overlapping community
detection methods for large networks. It provides
a distributed implementation of a density-based
overlapping community detection method proposed
in [2] via Hadoop MapReduce framework [16].
The proposed approach is divided in two stages
wherein first stage reduces the network to a density-
based mutual-core connected subgraph. The second
stage uses a distributed connected component finding
algorithm [25] to extract connected components from
this subgraph which are then finally used to represent
the communities.

The rest of the paper is organised as follows.
Section 2 presents a brief review of literature on
existing parallel and distributed implementations of

community detection algorithms. This section also
presents significant differences of closely related
methods with the proposed approach. Section 3
presents detailed description on the implementation
of proposed approach. Some preliminary results are
summarized in section 4. Section 5 finally concludes
the paper.

2. Related Works

Although many techniques and methods for
detecting communities from social networks have
been proposed in literature [4,5,6,7,8,9,10,11,12,36],
none of them aims to address all the multifaceted
challenges inherent in the field, but instead deal
with a single objective. Identifying communities poses
numerous challenges which include dealing with
their overlapping and hierarchical nature [30,31,35],
tracking their evolution in dynamic networks [29,2,
40], and scaling the community detection methods
for large-scale social networks, besides dealing with
directed and weighted properties of the underlying
networks. A comprehensive summary and review of
various challenges and solutions to the community
detection problem is presented in [40]. It is also
often difficult to have consensus on the evaluation
methods of identified community structures with
the underlying ground truth [32,33,34]. Recently,
community detection methods based on both structure
and semantics/content of online social networks (like
[44]) have also been proposed. Methods which include
both the structure and content related data for detection
and analysis of communities in online social networks
may help in providing important insights on concepts
related to the influence and diffusion in online social
networks. In this line of work, [42,43] have highlited
the significance of communities and their dynamic
behavior in online social networks for collaborative
decision making and opinion formation.

Presently, huge size of social networks has created a
great need for scalabe community detection methods.
Earlier methods fail to address this issue in their
present state and very few possess characteristics
that can be exploited for scaling the methods via
parallelization and distributed computing, which is the
backbone for addressing scalability issues over big
data. Traditional community detection methods based
on modularity optimization [22,36] and hierarchical
clustering methods [23] are generally considered non-
scalable to large-scale networks as they are based
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on global network metrics and thus difficult to
parallelize. Some of the recent parallel algorithms
proposed for detecting disjoint communities include
[13,14,15]. These methods are mainly based on shared
memory architectures, and multi-core processors and
GPUs. The MapReduce framework supports a
parallel model for addressing big data challenges
[16]. It involves software to be written using two
important functions – map and reduce. The map
function processes a sub-problem for input data
and emits intermediate <key, value> pairs, whereas
reduce function combines values associated with the
same key and produces the final output. Figure
1 demonstrates the basic processing paradigm of
MapReduce framework.

Fig. 1. Basic processing architecture of MapReduce framework

The popularity of MapReduce for processing big
data has failed to effectively promote its usage for
community detection in large-scale social networks
because it is considered unsuitable for iterative
graph algorithms [17]. However, recently, some
research related to community finding from large-
scale social networks using MapReduce framework
appeared in[18,19,20,21,22]. Some of these methods
are based on label propagation approaches derived
from detecting connected components from large-
scale networks. Other methods like [21] are based
on modularity optimization and compute betweeness
centrality of nodes and edges which requires higher
communication between the computation nodes. This
creates huge scope of improvement and highlights the
importance of designing local MapReduce solutions
for community detection problem and that is what
this paper aims to offer. The method proposed in
this paper is along the lines of approach presented in
[22], wherein the first stage of the method establishes
a similarity score between each pair of adjacent
nodes and then updates the topology by removing or
keeping edges based on a threshold on the similarity
metric. The final stage identifies communities by

finding connected components in the edge filtered
network based on label propagation. However, the
method proposed in this paper significantly differs
from the method of [22] in terms of distance function
for measuring similarities between pairs of nodes,
identification of overlapping communities vs disjoint
communities, scalability to directed/undirected and
weighted/unweighted networks vs only undirected and
unweighted networks.

3. Proposed Approach

The main objective of this work is to scale the
previous work of the authors [2], a novel density-
based overlapping community detection method, using
a distributed computation approach implemented
over Hadoop via MapReduce framework. Being
a density-based method, wherein communities are
found by expanding a density function over local
node neighbourhoods in a cascading fashion, this
approach is naturally scalable to large-scale networks
via parallelization and exploiting computation locality.

The proposed approach is based on a local
density based distance function, which can be
efficiently parallelized via MapReduce framework.
The dual-layered distance function is a generalized
function for every combination of directed/undirected
and weighted/unweighted networks. Considering the
social network as a graph G = (V, Ew), where V is the
set of nodes representing users and Ew ⊆ V × V is the
set of weighted and directed links between the users,
the proposed distance function is defined as follows.

Layer-1 It should be noted that the distance is
measured only between those node pairs that are
directly linked and have reciprocating interactions as
they are expected to be less distant (more similar). In
case of undirected networks, each link is considered to
be reciprocating by treating it as a set of two oppositely
directed links with the same weight as the original
link. Given these considerations, the first layer of the
distance function for two reciprocating nodes p and
q is represented by equation 1, where Vp and Vq are
sets of nodes to which nodes p and q have outgoing
links/interactions respectively, and Vpq is the set of
common nodes to which both p and q have outgoing
links in the network.

In equation 1, ∆(p, q) represents the layer-2 of the
distance function which will be discussed shortly and η
(0 < η ≤ 1) is an input parameter which specifies the
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dist(p, q) =

{
∆(p, q) if |Vpq | > (η ×min(|Vp|, |Vq |))− 1

1 otherwise

(1)

resolution at which communities need to be identified.
In simple terms, the first layer of the distance function
ensures that the distance between two reciprocating
nodes p and q is computed at the second layer only if
the fraction of their commonly interacted nodes forms
a significant fraction of the total outreached nodes
of either p or q, i.e., min(|Vp|, |Vq|). Otherwise, the
distance between p and q is taken as 1 (maximum).

Layer-2 The second layer of the distance function
takes the intensity of interactions between nodes
(link weights) into consideration. It is based on
the assumption that if a node p has outgoing links
(interactions) to a node q and a set of nodes
Vpq (to which q also has outgoing links) then the
similarity/distance between p and q can be measured
in terms of proportion of response from q and nodes in
Vpq to the interactions of p and vice versa. Formally,
the response of node q and the nodes in Vpq to the
interactions of node p is measured as the average of
per-node reciprocated interactions (edge weights) of q
and the nodes in Vpq towards p, represented by δ(p, q),
as given in equation 2, where I←→pq represents the
amount of reciprocated interactions (weight) between
two nodes p and q, i.e., minimum of the amount of
interactions from p to q and q to p.

δ(p, q) =


(∑

s∈Vpq
(I←→ps)+I←→pq

|Vpq|+1

)
if I←→pq > 0

0 otherwise
(2)

Finally, symmetric distance between two nodes
p and q, ∆(p, q), is taken as the maximum of
their mutual directed-response (or minimum of the
reciprocals of their mutual directed-response) values
normalized by their respective total weight of outgoing
interactions (represented by I−→p and I−→q respectively)
in the interaction graph, as given in equation 3.

The dual-layer distance function thus defined
measures the amount of maximum average reciprocity
among two nodes p and q and their common neighbors,
provided the overlap of their neighbors is significant.
Smaller values of ∆(p, q) represent higher response

∆(p, q) =

min
(
δ(p,q)−1

I−→p
,
δ(q,p)−1

I−→q

)
if δ(p, q) > 0 ∧ δ(q, p) > 0

1 otherwise

(3)

between nodes p and q and translates to more closeness
between p and q.

Given a distance measure, we need to specify a
neighborhood threshold to mark the boundary for any
given node as required by density-based methods.
However, instead of manually specifying the threshold
value, we determine a local neighborhood threshold
for a node p as the average per-receiver reciprocated
interaction score of pwith all its outreached neighbors.
Formally, the local neighborhood threshold of a node
p (εp) is defined using equation 4, where Vp represents
the set of nodes to which p has out-links, I←→p
represents the number of reciprocated interactions
of a node p (i.e.,

∑
∀q∈Vp

min(I−→pq, I−→qp), where I−→pq
represents the number/weight of interactions from
node p to node q, and I←→p

|Vp| represents the average
number of reciprocated interactions between p and
all other nodes in V to which p has out-links. The
denominator I−→p represents the total count of outgoing
interactions of node p and it normalizes the value of εp
in the range [0, 1].

εp =


(

I←→p
|Vp|

)−1

I−→p
if |Vp| > 0 ∧ I←→p > 0

0 otherwise
(4)

Based on the distance function dist(p, q) and local
neighborhood threshold εp, we define a local εp-
neighborhood of a node p as the subset of p’s out-
linked nodes (i.e., Vp) with which its distance is
less than or equal to εp. Formally, the local εp-
neighborhood of a node p can be defined using
equation 5.

Np = {q : q ∈ Vp ∧ dist(p, q) ≤ εp} (5)

In simple terms, we can state that Np contains
those neighbors of p in the network that have a
significant topological overlap with p and an above-
average interaction intensity with p in the network
neighborhood. This approach thus aims to find areas
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of higher structural density (than the surrounding) to
constitute a community.

Formally, for a given resolution fraction (η), a
density-based community is realized by the following
two key definitions.

Definition 1 (Core node) A node p ∈ V having
non-zero reciprocated interactions with any of its
neighbor(s) in Vp is defined to be a core node if
its local εp-neighborhood contains at least µp (local
minimum-number-of-points threshold for p) of nodes
in Vp, as given in equation 6, where µp = η × |Vp|.

COREη(p)⇔ |Np | ≥ µp (6)

Definition 2 (Mutual-cores) Two nodes p, q ∈ V are
mutual-cores if both p and q are core nodes, and p
belongs to local εq-neighborhood and q belongs to
local εp-neighborhood.

The basic aim is to find all maximal sets of
connected core nodes such that for each pair of
nodes in a maximal set there exists a chain of nodes
v1, v2, . . . , vn such that vi and vi+1 are mutual-cores
for all i ranging from 1, 2, . . . , n− 1. The set of
all such connected core nodes forms the mutual-
core connected maximal subgraph (MCMS) of a
community. A community is then defined as the union
of an MCMS (backbone of the community) and local
εp-neighborhoods of each core node p in the MCMS.
The set of all such possible communities identified
forms the community structure of an underlying
network.

3.1. MapReduce Implementation

As mentioned earlier, the main objective of this
paper is to create a parallelized implementation of
our earlier community detection method in [2] over
a distributed computation platform (Hadoop) via
MapReduce framework. The community detection
process is divided
into two mainstages viz 1. Computation of density-
based neighbourhoods and formation of mutual-
core network, and 2. Identifying communities from
the mutual-core network by connected component
extraction using label propagation.

3.1.1. Stage 1: Computation of density-based
neighbourhoods and formation of mutual-core
network

The initialization process
of this stage involves a mapper and reducer pair, which
computes local metrics to establish the density-based
local neighbourhoods of each node in the network as
shown in figure 2.

Fig. 2. MapReduce phase 1 for computing local metrics

The
input to this phase is the network edges in the form of
<source> <destination> <weight> tuple1.
For each record read by the mapper, it emits two
records in the format shown in figure 3.

Fig. 3. Record format emitted by the mapper function of the first
phase of Stage 1

The reducer function of this phase accepts this
information in aggregated form for each node as shown
in figure 4. This information is used by the reducer
function to compute various local metrics for each
node which include Vp, I−→p , I↔p and εp as described
in the first part of section 3.

For each node (record read by the reducer), the
reducer emits this aggregated local information in the
format shown in figure 5. The field out_reciprocated
in the value of the emitted record for a node p is a set
containing elements in the form <q: I←→

pq
> where q is

a node in Vp and I←→
pq

is the minimum of the weight
of edges from p to q and q to p. However, if an edge

1For undirected networks, each edge is represented by two records
with swapped source and destination fields and may have different
weights
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Fig. 4. Records aggregated at the reducer function of the first phase
of Stage 1

q to p does not exist, then I←→
pq

is taken as 0 for that
q. Formally the set out_reciprocated is represented as
shown in equation 7.

Fig. 5. Record format emitted by the reducer function of the first
phase of Stage 1

out_reciprocated =
{(

q : I←→
pq

)
|q ∈ Vp

}
(7)

The second phase of this stage involves computing
layer-1 and layer-2 components of the distance
function as mentioned earlier to identify density-based
neighbourhood of each node. The overview of this
phase is shown in figure 7. The mapper function of
this phase takes input from the reducer of the previous
phase in the format shown in figure 5. For each node,
it emits multiple records for ordered pairs of nodes in
the format shown in figure 6.

Fig. 6. Record format emitted by the mapper function of the second
phase of Stage 1

To emit the records for a key node p, the mapper
takes each node q from Vp only for which I←→

pq
is not

equal to 0 and forms the key part of the record in the
form <s:t> such that s = min(p,q) and t=max(p,q).
The value part of the emitted record is half filled, with
the local metrics of p from the previous reducer, for
either s or t depending upon whether s = p or t = p.
For each node p, this mapper emits a maximum of |Vp|
number of records.

The reducer function of this phase aggregates these
records on the key, thus completing the value part for
each node pair emitted by the mapper. That means
reducer has local metrics computed by the first phase

Fig. 7. MapReduce phase 2 for computing density-based neighbours

for both the nodes of the node pair which are sufficient
to compute the distance between this pair of nodes
as discussed in the first part of section 3. For each
record thus read, the reducer computes the distance
between the pair of nodes in the key part of the record
from the information in the value part of the record.
It emits 0, 1 or 2 records with key equal to the ID
of one of the nodes in the node pair and the value
equal to the ID of the other (along with |Vp| of the
key node) depending upon the following conditions: 1.
Record with key = s and value = ‘t:|Vs|’ is emitted if
dist (s, t) < εs, and 2. Record with key = t and value
= ‘s:|Vt|’ is emitted if dist (s, t) < εt. Each record
thus emitted represents that the node present in the
value part of the record belongs to the density-based
local neighbourhood of the node in the key part. To
find the complete density-based local neighbourhood
Np of each node p as given in equation 5, these records
simply need to be aggregated on the key which is done
by the third MapReduce phase of this stage. In the
third phase, the mapper only emits the records (identity
mapper) for the reducer to aggregate Np for each node
p. Upon aggregation of Np the reducer function uses
equation 6, with the value of resolution parameter
η passed as a configuration parameter, to determine
whether the key node p is a core-node or not. If node
p is found to be a core-node, the reducer performs
two actions. First, it creates a separate file in HDFS
named p with contents equal to the list of nodes in
Np (to be used later in the second stage). Second, the
reducer takes each node q from Np and emits records
for the node pair p and q with key in the ordered form
<s:t> such that s = min(p,q) and t=max(p,q) and value
equal to 1. These records are emitted by the reducer
for fourth and last MapReduce phase of this stage to
identify the mutual-core network. The overview of this
process in illustrated in figure 8.

The last MapReduce phase of this stage involves
an identity mapper which simply emits the records
from the previous reducer. The reducer function of
this phase aggregates the value field of these records,
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Fig. 8. MapReduce phase 3 for aggregating density-based
neighbourhoods

wherein an aggregated value of 2 for a node pair
represents a mutual-core relation between the two. For
each mutual-core pair <s:t> thus found, the reducer
emits a record with key = s and value = t thus forming
the edges of the mutual-core network of the underlying
social network as illustrated in figure 9.

Fig. 9. MapReduce phase 3 for aggregating density-based
neighbourhoods

3.1.2. Stage 2: Identifying communities from the
mutual-core network by connected component
extraction using label propagation.

The connected components of the mutual-core
network constructed in the previous stage represent
the MCMSs of various communities in the underlying
network. For a connected component in the mutual-
core network, its full community is identified by taking
the union of density-based local neighbourhood Np
of each node p in the connected component. This
becomes a trivial task once a connected component is
extracted as the Np of each core-node p has already
been saved in separate files on the HDFS in the
previous stage.

The important task in this stage thus is to extract the
connected components from the mutual-core network.
Many MapReduce frameowrk based methods for
extracting connected components from networks have
been proposed in literature [24,25,26,27,28]. These

methods mainly vary in optimizations used for
reducing the amount of communication generated
between cluster nodes and the number of MapReduce
rounds required to converge the result. Rastogi et al.
[25] proposed Hash-to-Min MapReduce approach,
which uses label propagation with logarithmic
rounds to extract connected components. At the
end of algorithm Hash-to-Min, the set of nodes Cv
representing a connected component of which v is a
member which satisfies the following property: If vmin
is the smallest node of a connected component C, then
Cvmin

= C. For all other nodes v, Cv = {vmin}. The
method is illustrated in figure 10.

At this stage, there are two alternative ways of
representing and using the connected components.
One way is to use the records emitted by Hash-to-
Min in the form <Cvmin

, C> wherein the key =
Cvmin

is the smallest ID of the node in the connected
component (representing the connected component
ID) and value = C is the list of all the node IDs
belonging to the connected component. In order to
extract the complete communities, finally a single
mapper function is used which reads a <core-nodemin,
connected-component-list> record and performs the
following tasks for each such record:

1. Create a new directory on HDFS labelled with
the connected-component ID i.e. Cvmin

in the
key part of the record.

2. Move all the existing files containing the Np of
each core-node p ∈ C in the value part of the
record (already saved on HDFS in the previous
stage) to the directory created in the previous
step.

Fig. 10. Hash-to-Min [25] connected-component extraction

Alternatively, the last round of the Hash-to-Min
method can be modified such that the last reducer also
emits Cvmin = {vmin}. Thus the <key, value> format
output of Hash-to-Min method becomes such that the
key is a node ID (core-node in this case) and the value
is the connected-component ID to which the node
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belongs. Finally, to extract the complete communities,
a single mapper function is used which reads a <core-
node, connected-component ID> record and performs
the following tasks for each such record:

1. Create a new directory on HDFS labelled with
the connected-component ID in the value part of
the record if it doesn’t exist already.

2. Move the existing file containing the Np of the
core-node p in the key part of the record (already
saved on HDFS in the previous stage) to the
directory labelled with the connected-component
ID in the value part of the record.

These two steps of the last mapper ensure that a
community consisting of at least one pair of mutual-
core nodes is represented by a separate directory
containing files representing its core-nodes and each
such file containing Np i.e. the density-based local
neighbourhood of each core-node p. Moreover, a
community consisting of a single core-node p is simply
represented by a separate file labelled p containing
its Np. These are those files which were not moved
by the last mapper to any directory as the core-nodes
represented by these files did not have mutual-core
relations with any other core-nodes and thus did not
appear in the mutual-core network as illustrated in
figure 11.

Fig. 11. Extracting communities by grouping Np neighbourhoods of
mutual-core nodes

4. Evaluation and Results

To present some basic characteristics of the
proposed method, this paper uses two network
datasets. One is a large interaction graph of the most
popular online social network in Slovakia, namely,

Pokec [38]. It is a directed and unweighted network
with 1632803 nodes and 30622564 edges. The second
network is a relatively smaller web graph with 325729
nodes and 1497134 edges, where nodes represent
pages from University of Notre Dame (domain nd.edu)
and directed edges represent hyperlinks between them
[39]. For generalization, a weight of 1 is assigned
to each edge in both the networks. The results were
generated on a two-node Hadoop cluster.

The quality of communities identified by the
proposed community detection method has already
been evaluated in [2] for a centralized implementation
of the same. The distributed implementation of
the method via MapReduce framework does not
affect the nature of the communities detected as
the base approach remains the same. Moreover, the
heuristic approach for estimating a value for η is not
implemented for the current distributed approach and
thus η is required as input from the user. As a reminder,
η is the resolution parameter that can take values in
the range [0 1]. Higher values of η yield smaller
denser communities and larger number of outliers
whereas smaller values of η yield larger less-dense
communities and lesser number of outliers.

For the current distributed implementation, η affects
the computation overhead in terms of disk I/O
operations, involved for creating files for core-nodes
in the last phase of the first stage. It also dictates
the overall complexity of the second stage for finding
connected components as the size of input for this
stage depends on the number of core-nodes identified
in the first stage. Figure 12 illustrates the fraction of
nodes identified by the proposed method as core-nodes
in both the input networks at different values of η. It
can also be observed from this figure that generally the
number of core-nodes identified by the method is much
smaller than the actual size of the network by a large
magnitude. It can be thus concluded that the disk I/O
overhead caused due to creation of core-node files in
the first stage is a large magnitude less than as required
for all nodes in input network.

Moreover, the number of MapReduce rounds in the
first stage is fixed (i.e. four). The computation time for
the first stage is thus totally dependent on the number
of Map and Reduce functions executed in parallel and
the communication overheads i.e. the structure of the
cluster. An average time consumption of the Mappers
and Reducers of the four phases of Stage 1 for the two
input graphs is shown in figure 13.

From figure 13, it can be seen that the majority of
the time required by the first stage is at phases 1 and
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Fig. 12. Fraction of nodes identified as core-nodes from the two
input graphs in Stage 1
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Fig. 13. Average time consumption of the Mappers and Reducers of
Stage 1

2. That is where the neighbourhood aggregation and
distance computation is performed. Moreover, most of
the time is consumed at the Reducer stages due to the
requirement of copying and sorting the data at various
nodes of the cluster. The number of MapReduce
rounds required by Stage 2, for identifying connected
components, as reported in the base paper [25] is O(log
n) where n is the number of nodes in the input graph.
As demonstrated in figure 12, Stage 1 of the proposed
method extracts a relatively smaller mutual-core
network for Stage 2 to process. This further reduces
the number of rounds required by Stage 2 compared
to the number of rounds required in case the whole
input network required processing in Stage 2. One of
the obvious merits of a distributed implementation of
an algorithm compared to its non-parallelized or non-

distributed implementation is achieved speedup. In this
paper, the proposed MapReduce based distributed
implementation of the centralized algorithm given in
[2] also has an obvious speedup improvement which is
directly proportional to the number of Map and Reduce
nodes in the Hadoop cluster.

5. Conclusion and Future Work

We have presented a novel MapReduce framework
based implementation of a density-based overlapping
community detection method for large-scale social
networks. The community detection process is divided
into two main stages – (i) computation of density-
based neighbourhoods and formation of mutual-
core network, and (ii) identifying communities from
the mutual-core network by connected component
detection using label propagation. To do so, we
have combined two state-of-the art methods, one
the authors’ earlier work which is a density-based
overlapping community detection method, and the
other an optimized label propagation algorithm for
connected component detection. The method is
implemented on a two-node Hadoop cluster for
evaluations. The resulting approach is among the first
scalable overlapping community detection methods
proposed in literature. Although this paper aims to
address a challenging problem with a novel solution,
the proposed solution can further be generalized
to encompass other related problems. One of the
directions along which the current work can be
extended is to consider dynamic nature of networks
and the underlying communities, as addressed in [2,
40]. Since the current paper is an adaption of the
method proposed in [2], the authors aim to generalize
the current method to large-scale dynamic networks
by incorporating the adaptive community dynamics as
proposed in [2].
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