
xMiner: Nip the Zero Day Exploits in the Bud

Muhammad Zubair Rafique and Muhammad Abulaish
Center of Excellence in Information Assurance (CoEIA)

King Saud University, Riyadh, Saudi Arabia
Email: {zrafique.c,mabulaish}@ksu.edu.sa

Abstract—Vulnerability exploits present in malformed mes-
sages are one of the major sources to remotely launch malicious
activities in different protocols. Sometimes, a single malformed
message could be enough to crash remote servers or to gain
unfettered access over them. In this paper, we propose the
design of a generic vulnerability exploits detection system
xMiner to detect malformed messages in real time for avoiding
any network hazard. The proposed xMiner exploits the infor-
mation embedded within byte-sequences of network messages.
xMiner applies multi-order Markov process and principal
component analysis (PCA) to extract novel discriminative
features and uses them to detect attacks launched through
malicious packets in real-time. The novelty of xMiner lies
in its light-weight design which requires less processing and
memory resources and makes it easily deployable on resource-
constrained devices like smart phones. The system is evaluated
on real-world datasets pertaining to three different protocols –
HTTP, FTP and SIP. Five different classifiers are deployed
to establish the effectiveness of the proposed system. On
evaluation we found that the decision tree classifier performs
well for HTTP and FTP datasets whereas, SVM shows highest
performance in case of SIP packets.

Keywords-Network security; vulnerability exploits detection;
feature extraction, machine learning.

I. INTRODUCTION

Remote attacks based on vulnerability exploitations are
one of the most destructive security problems faced by the
current security community. Particularly, the high profile
security threat of automatic dissemination attacks or worms
[1] are based on remote exploitation of vulnerabilities in
compromised systems. One of the recent example of such
attacks is the damaging Stuxnet worm in July 2010, which
used four zero-day vulnerability exploitations to attack
highly sensitive organizations (e.g. Iranian nuclear power
plant) in many countries of the world [2]. Another example
is the widely-spread Conficker worm in January 2009, which
affected more than 15 million computers in more than 200
countries of the world [3]. Also, the successful eruption of
well known CodeRed [4], Slammer [5], MSBlast [6], and
Sasser [7] worms highlight the severity of damages caused
in widely used services through vulnerability exploitation.

Beside the common web services, the emerging next
generation networks like Voice over IP (VoIP) and IP
Multimedia Subsystems (IMS) are also hot targets of re-
mote exploitation attacks. In these services, the underlying

flexibility of the application-specific protocols are exploited
to launch remote attacks [8], [9]. The devastating impact
of these attacks includes successful Denial of Services
(DoS) attack, crashing of hosts or end points (e.g., Smart
Phones), unfettered access to the systems and remote exe-
cution of malicious codes. Recent attacks like INVITE of
Death [10], Remote DoS attack on Cisco Routers [11] and
Asterisks server [12], and remote code execution in video-
conferencing framework of Apple Mac OS [13] highlight the
severity of damages that can be caused through vulnerability
exploits. Unfortunately, patching as a first line of defense
is not a perfect choice since it usually requires a service
disruption (reboot of a system) and causes reduction in
availability1 which severely undermines the reliability of
sophisticated real-time systems [1]. Additionally, it can not
be guaranteed that the applied patch will not alter the
behavior of the system. As an outcome, critical services
remain susceptible to novel attacks and zero-day exploits
for a considerable period of time which cannot be effectively
remunerated by applying certain administrative or technical
measures.

Several Intrusion Detection Systems (IDSs) like Snort [15]
and Bro [16] and fire-walls like Hogwash [17] and Shield [1]
are based on misuse detection where exploits are detected
by modeling the signature of known attacks. The main
drawback of signature-based techniques is that they cannot
cope-up with exponential increase in new malicious exploits.
Not only the size of signatures database will not scale but
the time to match signatures also significantly increases
[18], [19]. Last but not least, generation of signatures for
one particular protocol or application can not be used in
detection of zero-day exploits. Therefore, we argue that the
design of light-weight and non-signature based intrusion
detection systems to identify zero-day attacks in a real-time
environment is one of the novel research problems.

In this paper, we propose the design of a light-
weight intrusion detection system, xMiner, which applies
supervised-learning approach to detect malicious messages.
The proposed system is efficient and capable to detect vul-
nerability exploits targeting towards next generation services
at the granularity of application layer. One of the motivating

1A reliable VoIP infrastructure must guarantee at least 99.9% uptime to
stay competitive in the telecommunication market. VoIP servers are among
the SANS top 20 Security Risks [14].

c© Copyright 2011 IEEE

factors to target application-specific services is that they are
widely used2, constantly emerging [21] and more vulnera-
ble to zero-day attacks [22]. Instead of using syntax-level
features to model classification system, xMiner extracts
byte-level features using multi-order Markov process and
uses them to identify malicious messages. PCA (Principal
Component Analysis) is applied to reduce the dimension
of feature space and eliminate less discriminative features.
Some of the the novel features of xMiner are summarized
follows:
• Generality: Since xMiner uses byte-level features

instead of syntax-level features, it can be applied on
wide-range of protocols to identify malicious messages.

• Efficiency and real-time deployability: The efficiency
of xMiner lies in its reduced set of features that
are obtained using multi-order Markov process and
principal component analysis. In addition, due to its
design as a non-signature based IDS, for predicting the
class (benign or malicious) of an incoming message
xMiner is not subjected to search through a large
list of signatures. Rather, it uses the trained model to
predict the class of an incoming message efficiently
and consequently, xMiner is real-time deployable. On
experimentation, we found that for some protocols,
xMiner achieves detection accuracy of more than 99%
and false alarm rate ≤0.1%.

• Novel attack detection: Since, rather than using sig-
nature matching approach, xMiner models a classi-
fication system to characterize malicious and benign
messages and uses the same for detection purpose,
it can easily detect novel (zero-day) attacks in the
network.

• Modularity: The modular design approach of xMiner
allows its simple yet effective deploying functionality.
Due to this feature, xMiner is easily configurable for
different types of services.

We have evaluated the xMiner on three different real-
world datasets related to three different services HTTP, FTP
and SIP. We have deployed a real-world testbed to generate
various vulnerability exploits using different types of se-
curity testing tools and scripts. The attack vectors include
real-world SQL-Injections, buffer over flows, remote code
execution, remote DoS and fuzzed message exploits. On
evaluation, we found that in some cases xMiner achieves
more than 99% detection rate and less than 0.1% false alarm
rate for distinguishing benign messages from malicious
messages.

The rest of the paper is organized as follows. Section II
presents a summarized view of the related works on mali-
cious message detection. The functioning detail of xMiner
is presented in Section III. The experimental setup and

2A market survey indicates that VoIP accounts for 49.7% of total voice
traffic at the end of year 2007 [20].

evaluation results are presented in Section IV. Finally, we
conclude the paper with an outlook to our future works in
Section V.

II. RELATED WORK

In this section, we present a brief review of the existing
network intrusion detection techniques proposed by different
researchers. The protection against application-level attacks
using protcol syntax was first purposed in signature-based
intrusion detection systems. In [16], Paxson has proposed
a signature-based IDS, Bro, which uses different protocol
parsers to identify malicious packets. The parsers developed
are tightly coupled with the Bro’s signature engine and can
not be used for wide range of services. Similarly, Roesch
has proposed Snort in [15] which is also a signature-based
intrusion detection system. Snort can perform protocol anal-
ysis, content searching/ matching and can be used to detect
a variety of attacks targeting towards servers. Some other
signature-based intrusion detection techniques have been
used by Niccolini et al. [23] and Apte et al. [24] specifically
for SIP protocol. Geneiatakis et al. [25] have also proposed
signature generating methodology that prevent fuzzed mes-
sage attacks on VoIP. The other signature-based techniques
like binpac [26] and GAPAL [27] provide effective and
generic procedures for detecting malicious packets by using
protocol parsers. However, most of these techniques are
dependant on signature database and hence cannot be used
to detect novel attacks. Düssel et al. [28] have proposed a
different approach which focuses on analyzing the payloads
of application-level protocols for anomaly detection. The
approach detects anomalous packets by computing similarity
between the attributed n-grams/ tokens derived from the
protocol grammar. Ingham et al. [29] have proposed a
learning system on specific presentation by extracting token-
based feature through delimiters specific to HTTP requests.
A related work by Rieck et al. [30] proposes the design
of a self-learning system for detecting malformed messages
in SIP. The self-learning model operates on the tokens and
n-gram based features, and the learned model from higher
values of n-gram features performs better than the token-
based attribute model. Kruegel et al. [31] have developed an
IDS for HTTP, which uses a number of features like length,
character distribution, etc. to detect malicious packets.

In contrast to the above-mentioned intrusion detection
systems, xMiner uses byte-level transitions of network
messages and applies multi-order Markov process to extract
discriminative features. Further, it applies PCA on the ex-
tracted set of features to filter-out irrelevant features and
reduce the dimension of the feature space. This boost the
efficiency of the proposed method drastically and makes it
deployable for real-time environment. Moreover, the use of
machine learning approach to model the characteristics of
benign and malicious packets makes xMiner capable to
identify zero-day attacks.

IBK

J.48

NB

RIPPER

SMO

 Multi-Order Markov

Transition Matrix

INVITE sip:bob@open-ims.test
SIP/2.0
Via:SIP/2.0/UDP

localhost.localdomain:5060;branch=z9hG
4bK000000

0791294355000001040B81
3054250064F00000208
0629173140807E834885C2
79701

Feature Extraction

Two class Dataset

Classifiers

Rules

Feature Selection
Selected Features

Raw Feature Set

Message Analyzer

Pass Packet

Drop Packet

Network
Traffic

Application Layer Messages

Principal

Component

Analysis Raw Feature Set
 Selected Features

Le
ar

n
in

g
P

h
as

e

D
e

te
ct

io
n

 P
h

as
e

Figure 1. Architecture of xMiner

III. ARCHITECTURE OF XMINER

In this section, we present the architectural detail of the
proposed xMiner to detect vulnerability exploits in differ-
ent types of application-layer protocols. xMiner is modular
in nature and it is developed through analytical research of
relevant issues in an engineering fashion. We systematically
analyzed different potential solutions and then chose the one
capable of meeting our challenges. This modular architecture
allows our system to function on different servers and NGNs
architectures. The main functionalities of xMiner are (a)
message analysis, (b) feature extraction, (c) feature selection,
and (d) model learning and vulnerability exploits detection.
(see Figure 1). Further details about these functionalities are
presented in the following sub-sections

A. Message Analysis

The main goal during this phase is to analyze network
traffics based on the syntactical formation of the underlying
application-specific protocol. The message analyzer module
analyzes request and response messages of the underlying
protocol to extract discriminative features from them. For
network protocols like HTTP, FTP or SIP, packets are
captured in form of a raw byte payloads. The structured
information of underlying protocols is then acquired by
converting raw byte payloads of network traffic using binpac
[26]. A sample INVITE request for a SIP protocol, which
is used in SIP-based VoIP infrastructure to set up commu-
nication session between SIP clients is shown in Figure 2.
The overflow of the colons in the second line is mangled to
create a buffer overflow exploit. It is important to note that
the control information in SIP header is ASCII conforming
and contains the necessary information for session setup.
The crafty attacker can fuzz different fields in the request
message to exploit vulnerability in VoIP servers, which
can lead to call processing delays, an unauthorized access
or a complete denial of service [8]. It is not possible
to predict in advance which fuzzed field can result in a

denial of service attack. Therefore, we have considered the
complete incoming messages as a syntactical input for our
feature extraction module. The analysis is performed on the
complete syntactical formation of the response and request
messages.

B. Feature Extraction

A key challenge in extracting features for generic detec-
tion of exploits is to make the system adaptable for both
text-based and binary protocols. Hence, the tight coupling of
feature-set with the formation and syntax of specific protocol
is not a feasible choice for our system to operate in diverse
environment. Therefore, we have not considered the token-
based feature extraction scheme [30] in which special delim-
iters are used to obtain the features’ strings for classification
of attack instances in a specific protocol. Rather, xMiner
treats a message Mp of a specific application layer protocol
P , as an order of elements ΘMp

= [Θ1Mp
. . .ΘlMp

], where
ΘMp

represents an order of byte values in M and l is the
length of the message in bytes. Without loss of generality,
we can also incorporate every consecutive n bytes in Mp as
a distinctive feature. For example, if ΘMp = [b1, b2, b3, b4],
and we consider two consecutive bytes as a feature (n = 2),
we get the feature-set as [b1b2, b2b3, b3b4]. The up-scaling

S
IP
 H
e
a
d
e
rs

S
e
s
s
io
n

D
e
s
c
ri
p
ti
o
n
 P
a
y
lo
a
d

INVITE sip:bob@open-ims.test SIP/2.0

Via:::::: SIP/2.0/UDP localhost.localdomain:5060;branch=z9hG4bK000000

From: 0; tag=0

To: Receiver

Call-ID: 0@localhost.localdomain

CSeq: 1 INVITE

Contact: 0

Expires: 1200

Max-Forwards: 70

Content-Type: application/sdp

Content-Length: 131

v=0

o=0 0 0 IN IP4 localhost.localdomain

s=Session SDP

c=IN IP4 127.0.0.1

t=0 0

m=audio 9876 RTP/AVP 0

a=rtpmap:0 PCMU/8000

Figure 2. SIP R-DOS INVITE of death.

0 50 100 150 200 250
-0.2

0

0.2

0.4

0.6

0.8

Lag

Sa
m

pl
e

A
ut

oc
or

re
la

tio
n

(a) HTTP Benign

0 50 100 150 200 250
-0.2

0

0.2

0.4

0.6

0.8

Lag

Sa
m

pl
e

A
ut

oc
or

re
la

tio
n

(b) SIP Benign

0 50 100 150 200 250
-0.2

0

0.2

0.4

0.6

0.8

Lag

Sa
m

pl
e

A
ut

oc
or

re
la

tio
n

(c) FTP Benign

0 50 100 150 200 250
-0.2

0

0.2

0.4

0.6

0.8

Lag

Sa
m

pl
e

A
ut

oc
or

re
la

tio
n

(d) IIS (ISAPI/Indexing) Code Red

0 50 100 150 200 250
-0.2

0

0.2

0.4

0.6

0.8

Lag
Sa

m
pl

e
A

ut
oc

or
re

la
tio

n

(e) SIP INVITE of Death

0 50 100 150 200 250
-0.2

0

0.2

0.4

0.6

0.8

Lag

Sa
m

pl
e

A
ut

oc
or

re
la

tio
n

(f) FTP Exploits

Figure 3. Sample autocorrelation in byte-sequences of benign and exploit messages.

results in higher dimensional feature space of the byte-
level distribution of Mp. The large value of n increases the
underlying knowledge information and may result in sparse
distribution in case the size of training data is not sufficiently
large. Alternatively, the small value of n increases the
probability of false detection resulting in reduced system
performance. Note that the order n = k (where k > 1)
is simply a joint distribution of byte values with order
n = k − 1. The up scaling in joint distribution of byte-
level features may contain redundant information that are
useful for accurate analysis but, at the cost of processing
overhead [32]. To this end, we apply number of statistical
measures to quantify the order of byte sequence in different
protocol messages. A correlation analysis of byte sequences
provides valuable insights about the order of their joint
distribution. Thereafter, the concept of multi-order Markov
process is used to model the information contained in the
byte-sequences of the messages. These steps are further
explained in the following sub-sections.

1) Correlation Analysis of Byte-Sequences: Autocorrela-
tion is used to study the correlation between the random
variables in a stochastic process at different points in time
or space. Mathematically, the autocorrelation function of a
stochastic process Xz (where z is a time/ space index), for a
given lag e, is defined using equation 1 in which E{.} is the
expected value operator and ρXi is the standard deviation of
the random variable Xi at time/ space lag z.

ρ[e] =
E{X0Xz} − E{X0}E{Xz}

ρX0 ρXz

(1)

The autocorrelation value lies in the range [-1, 1], where
ρ[z] = 1 means perfect correlation at lag z (which is
obviously true for n = 0) and ρ[z] = 0 means no correlation
at all at lag z.

To examine the reliance of byte-level sequences in Mp,

we calculate sample autocorrelation functions for benign
and exploit request messages of different services. Figure
3 shows the sample autocorrelation functions plotted versus
the lag of HTTP, SIP and FTP messages. It can be noted
in Figure 3 that the byte-sequences in request and response
messages of different protocols usually follows a 1st, 2nd

and 3rd order reliance because the autocorrelation shows
peak at n = 1, 2, 3 for both benign and exploit messages
of all three protocols. This property helps us to model the
byte-sequences of messages in detecting zero day exploits.

2) Modeling Byte Sequences using Multi-Order Markov
Process: Application protocols are specified by defined
syntax (sequences of bytes) of their request and response
messages. Due to dependencies among the bytes of protocol
messages, we model the byte-sequences using Markov chain.
The Markov chain uses conditional distribution instead of
joint distribution, which results in small sample space,
eliminating the redundant information in underlying feature
space. A kth order Markov chain of S states can be used
to model byte transition probabilities of network messages
in a transition matrix T as given in equation 2. In this
equation, each state si corresponds to byte value bi. The
transition to state si+1 from the state si can be computed as
t{si,si+1} and the probability of state transition as P{si,si+1}.
The underlying assumption is that the probability of each
state transition depends only on the previous state values,
i.e., in a kth order Markov chain, the value of state si can
be determined by using the values of the previous states
si−k, . . . , si−1.

Tk = [Ps0,...,sk], (2)

A simple (single-order) Markov chain representing the
transition probabilities of a byte sequence can be a good
choice to model protocol messages when dependencies
are homogenous in byte-sequences. But, in our case the
heterogenous nature of byte-sequences in different protocol

messages is evident in the autocorrelation analyses. There-
fore, we argue that the extraction of information from byte-
sequences using a single-order Markov model may not be
a perfect choice to model all possible dicriminative features
necessary for detecting exploits. It should be noted that the
order of a Markov chain represents the extent to which
past states determine a present state, i.e., how many lags
should be examined to analyze higher order sequences [32].
Since, our correlation analysis shows 1st, 2nd and 3rd order
dependencies in byte sequences of protocol messages, we
have used upto three-order Markov chain to model byte-
level information. In this process, we combine transition
matrixes T̂k of multiple orders to achieve more compre-
hensive modeling of the dependencies in byte-sequences.
The transformation function Υ operates on the bytes of each
incoming packet Mp and embeds spatial information in the
form of probability values to multiple order state transitions.
For a given dataset of Protocol P containing n messages,
the multi-order Markov process for ith message in the
dataset is computed using equation 3 in which i = 1, . . . , n,
K is the set of values representing Markov chain orders,
and pre-subscript c represents concatenation operator, which
combines all T̂ ik’s into one matrix. For example, the output
of transformation function Υ for K = 1, 2, 3 can be obtained
using equations 4 to 7:

Υ(mi)→ {cT̂ ik}kεK (3)

Υ(mi) =

 T̂ i1
T̂ i2
T̂ i3

 (4)

T̂ i1 =
[
pis0 p

i
s1 . . . p

i
s255

]
(5)

T̂ i2 =

pi{s0,s0} pi{s0,s1} . . . pi{s0,s255}
pi{s1,s0} pi{s1,s1} . . . pi{s1,s255}
. .
. .
pi{s255,s0} pi{s255,s1} . . . pi{s255,s255}

 (6)

T̂ i3 =

pi{s0,s0,s0} pi{s0,s0,s255}
pi{s0,s1,s0} pi{s0,s1,s255}
. .
. .
pi{s255,s255,s0} pi{s255,s255,s255}

 (7)

The transitions in byte-sequences incorporates the under-
lying information from the protocol messages. Any devia-
tion in transition values reflects a different composition of
incoming request or response message. This situation indi-
cates an anomalous message, possibly an exploit message
received by the server. Since, in the transition matrix not all

transitions contain valuable information to detect exploits
messages, we remove them from further consideration to
reduce computation overheads.

C. Feature Selection

In this section, we present a discussion about out feature
selection process. Having too many features often results in
the problem of having too many degrees of freedom leading
to poor statistical coverage and thus poor generalization. In
addition, each feature adds to a computational burden in
terms of processing and storage. Hence, feature selection
is an essential step to filter out non-discriminative features
from the feature set and thereby to reduce computational
overheads. For this purpose, we have used the concept
of Principal Component Analysis (PCA) which is a sta-
tistical method for dimension reduction. PCA maps high-
dimensional data points onto a lower-dimensional set of axes
that best explain the variance observed in the dataset.

D. Model Learning and Vulnerability Exploits Detection

Once we have identified the relevant features through
applying multi-order Mrkow process followed by principal
component analysis on training dataset, we map every
instance of training data into a feature vector to learn
classification models. A large body of literatures related to
anomaly detection [33], [34], [30] or anomalous network
payloads [35], [31], [36], [37] share the common thesis:
anomalies are characterized as deviations from a learnt
“normal model”. In this paper, we have trained five different
classifiers – Naı̈ve Bayes (NB), decision tree (J48), inductive
rule learner (RIPPER), instance based learner (k-NN), and
Support Vector Machine (SVM) using sequential minimal
optimization to model the normal behaviors of malicious and
benign messages. For model learning we have used Weka3,
which is a collection of machine learning algorithms for
data mining tasks. Once the classification models are trained
on training data they can be easily deployed in real-time to
detect malformed messages containing possible vulnerability
exploits.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, we present the experimental setup includ-
ing the dataset description and implementation details of
xMiner. The evaluation results of xMiner on different
datasets is also presented in this section.

A. Dataset Description

In order to analyze the detection capability of xMiner
on real-world attacks launched through various vulnerability
exploits, we have collected four real-world traces containing
two HTTP, one FTP and one SIP dataset. The first dataset

3An open source software issued under the GNU General
Public License and can be downloaded from the URL:
http://www.cs.waikato.ac.nz/ml/weka/

Table I
REAL-WORLD EXPLOITS OF HTTP, FTP AND SIP PROTOCOLS

HTTP

Id CVE Description Type Id CVE Description Type

1 2001-0500 IIS (IDQ-Path) Buf 13 2005-4085 Blue Coat WinProxy Host Header Buf
2 2001-0241 IIS (Printer Host Header) Buf 14 2007-0774 Apache mod jk 1.2.20 Buf
3 2004-1134 IIS(ISAPI w3who.dll Query) Buf 15 2005-0595 BadBlue 2.5 EXT.dll Buf
4 2003-0109 IIS (WebDAV ntdll Path) Buf 16 2007-6377 BadBlue 2.72b PassThru Buf
5 2003-1192 IA WebMAil 3.x Buf 17 2005-3190 CA iTechnology iGateway Debug Mode Buf
6 2005-2847 Barracuda Remote Command Execution Web 18 2008-4008 BEA Weblogic Transfer-Encoding Buf
7 2005-0116 AWStats Remote Command Execution Web 19 – eDirectory iMonitor Remote Stack Overflow Buf
8 2003-0471 Alt-N WebAdmin User Buf 20 2007-1868 IBM TPM 5.1.0.x rembo.exe Buf
9 2006-5478 Novell eDirectory (Host Header) Buf 21 2006-5478 Novell eDirectory Server Host Header Buf
10 2006-1148 PeerCast <=0.1216 URL Handling Buf 22 2005-1348 MailEnable Authorization Header Buf
11 – HP OpenView NNM-CGI Buf 23 2004-2271 Minishare 1.4.1 Web
12 2007-5067 Xitami Web Server Buf 24 2006-5112 NaviCOPA 2.0.1 URL Handling Buf

FTP

1 2005-0277 3Com 3CDaemon 2.0 FTP Username Buf 10 2004-0330 Serv-U FTPD MDTM Buf
2 2006-2961 Cesar FTP 0.99g MKD Command Buf 11 2005-2373 SlimFTPd LIST Concatenation Buf
3 2004-2074 BolinTech Dream FTP Server 1.02 Buf 12 1999-0256 War-FTPD 1.65 Password Buf
4 2006-3952 Easy File Sharing FTP Server 2.0 PASS Buf 13 1999-0256 War-FTPD 1.65 Username Buf
5 2006-3726 FileCopa FTP Server pre 18 Jul Version Buf 14 2006-4318 Texas Imperial Software WFTPD 3.23 SIZE Buf
6 2006-2407 FreeFTPd 1.0.10 Key Exchange Buf 15 2004-1135 WS-FTP Server 5.03 MKD Buf
7 2005-3683 freeFTPd 1.0 Username Buf 16 2006-3952 Easy File Sharing FTP Server 2.0 PASS Buf
8 2005-1415 GlobalSCAPE Secure FTP Server Buf 17 2006-4847 Ipswitch WS FTP Server 5.05 XMD5 Buf
9 2005-1323 NetTerm NetFTPD USER Buf

SIP

1 2009-2867 Cisco 12.2XN(A,B,C,D,T,Z) R-DoS 10 2003-1112 Ingate Firewall (3.1.3) RCE
2 2008-3802 Cisco IOS 12.2 through 12.4 R-DoS 11 Intoto iGateway-VoIP (1.0.1) R-DoS
3 2007-4292 Cisco IOS 12.2 through 12.5 R-DoS 12 2003-1113 IPTel OpenSER ¡=0.8.9 RCE
4 2007-0746 Apple Mac OS X 10.3.9-10.4.9 RCE 13 2003-1109 Cisco IP Phone Model 7940 RCE
5 2007-1306 Asterisk ¡=1.4.1 && ¡=1.2.16 R-DoS 14 2003-1114 Mediatrix Telecom (SIPv2.4/4.3) RCE
6 INVITE of Death (OpenSBC 1.1.5-25) R-DoS 15 2003-1109 Cisco IP Phone Model 7960 RCE
7 2007-0961 Cisco PIX 500 and ASA 5500 R-DoS 16 2003-1111 Dynamicsoft products RCE
8 2003-1108 Alcatel OmniPCX Enterprise 5.0 Lx RCE 17 2003-1115 Nortel Networks SC Server 2000 RCE
9 2003-1110 Columbia SIP User Agent (sipc) RCE 18 2006-1973 Linksys RT31P2 VoIP router R-DoS
10 2005-1461 Ethereal before 0.10.11 Buf

(KSU11) contains 50, 000 normal HTTP connections logged
from the web server of our institute. The second dataset
(CoEIA11) has been collected from the web server of our
research center that contains “pure” web application data.
This dataset is generated through capturing HTTP traffic for
a period of two weeks and contains 37, 000 requests.

The FTP dataset is generated by simulating 10, 000 clients
on Microsoft IIS server with variable user names and pass-
words. For real-world SIP dataset, we contacted a VoIP
vendor that has a customer base in North America. We
developed a SIP traffic logger and deployed it on their
SIP server and collected a SIP traffic log of more than 20
days containing 4, 000 legitimate SIP request and response
messages. The log contains traces of SIP dialogs among
several SIP terminals as well as SIP dialogs among various
network nodes of VoIP infrastructure.

The exploits are collected by using Metasploit framework
as well as from common security mailing lists xssed.com,
sla.ckers.org and Bugtraq. Some of the exploits used in
this study are shown in Table I. We have also used Hzzp
fuzzer by Krakow Labs [38]. We have launched attacks
of malformed messages on Microsoft Internet Informa-
tion Services (IIS) HTTP server and sniffed 5, 000 fuzzed
messages through our attack generating machine. This in-
cludes request and response fuzzing, authentication fuzzing
and query parameter fuzzing. Similarly, we have generated
2, 000 fuzzed FTP packets using FTP Fuzzer by INFIGO
Information Security [39], which is a GUI based fuzzing
tool for bench marking the performance of FTP servers.
The fuzzing tests covered by the FTP Fuzzer unveiled a
number of security vulnerabilities (overflows, format strings)

in various implementations of FTP servers [40]. Finally, we
have used SIP Security Evaluation Tool [41] for generating
30, 000 malicious SIP messages. The tool is well known
for discovering INVITE of Death vulnerability in the SIP
stack of an open source SIP server [10]. We have normalized
the attack instances by using the similar structure of benign
messages injected to ensure that no obvious artifacts are
introduced in attack dataset that make detection intuitively
simple.

B. Evaluation Results and Analysis

In our experiments, the purpose is to judge the classifi-
cation accuracy of xMiner to distinguish between benign
and exploit packets. We have done the experiments on an
Intel(R) Core(TM) i7 920 @2.67 GHz processor with 12 GB
RAM and 64 bit operating system (Windows 7). For each
dataset, we have extracted the features using multi-order
Markov process and PCA, and then trained five different
classification models namely Naı̈ve Bayes (NB), decision
tree (J48), inductive rule learner (RIPPER), instance based
learner (k-NN), and Support Vector Machine (SVM) using
sequential minimal optimization. From the classification re-
sults, we calculate the true positive TP (number of malicious
packets the system identifies as malicious), the false positive
FP (number of benign packets the system identifies as
malicious), true negative TN (number of benign packets the
system identifies as benign), and the false negatives FN
(number of malicious packets the system identifies benign).
By using these values we calculate the standard performance
measures true positive rate (TPR) and false
positive rate (FPR), which are defined in equations

Table II
CLASSIFICATION ACCURACY RESULTS OF XMINER.

HTTP FTP SIP
TPR FPR TPR FPR TPR FPR

NB 0.977 0.056 0.928 0.064 0.99 0.001
J48 0.994 0.003 0.98 0.001 0.99 0.001
RIPPER 0.992 0.008 0.971 0.029 0.98 0.001
k-NN 0.989 0.004 0.997 0.004 1 0.001
SVM 0.992 0.011 0.936 0.063 1 0
Average 0.9888 0.0164 0.9624 0.0322 0.99 0.0008

8 and 9. The true positive rate and false positive rate are also
called detection accuracy and false alarm rate respectively.

TPR =
TP

TP + FN
(8)

FPR =
FP

FP + TN
(9)

We have used the stratified 10-fold cross-validation for
performance evaluation of xMiner, i.e., for each category
of data the dataset is randomly divided into 10 smaller
subsets, out of which 9 subsets are used for training and
1 subset is used for testing. This process is repeated 10
times for every dataset. For each category of data, the TPR
and FPR values obtained for different type of classifiers are
shown in Table II.

It can be be observed from the results presented in Table
II that xMiner achieves the detection rate of more than 0.99
for most of the application protocols and even approaching
1 in case of SIP packets. We have also found during
experimentation process that the feature selection using PCA
improves the detection capability of xMiner. On average,
with the help of PCA the TPR is improved by 2% and the
FPR is reduced by 3% in detecting malicious exploits of
different application services. In our experiments, we have
also evaluated the effectiveness of different classifiers on
selected features from different datasets. It can be observed
from Table II that the TPR and FPR of the decision tree
classifier (J48) is optimum for HTTP and FTP packets
whereas, the SVM performs well in case of SIP packets
with respect to other classifiers.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the design of a generic
light-weight vulnerability exploits detection system xMiner
to detect malformed packets in real-time. xMiner operates
on the byte sequences of network messages and model
them using multi-order Markov process. It also applies PCA
to reduce the dimensionality of feature space. xMiner is
tested on real datasets of HTTP, FTP and SIP messages.
On experimentation, we found that xMiner successfully
detects exploit messages with average detection accuracy of
99% and false alarm rate of less than 0.1% for different

application-specific services. This makes xMiner deploy-
able to protect application servers and devices from real-
world threats through effective flitering/ blocking malformed
massages. As a result, the threat regarding instant unavail-
ability of a service can be mitigated. Presently, we are
working to enhance xMiner for SMS protocol.

REFERENCES

[1] H. Wang, C. Guo, D. Simon, and A. Zugenmaier, “Shield:
Vulnerability-driven network filters for preventing known
vulnerability exploits,” in Proceedings of the 2004 conference
on Applications, technologies, architectures, and protocols for
computer communications. ACM, 2004, pp. 193–204.

[2] A. Matrosov, E. Rodionov, D. Harley, and J. Malcho,
“Stuxnet Under the Microscope,” eset, September
2010. [Online]. Available: http://www.eset.com/resources/
white-papers/Stuxnet Under the Microscope.pdf

[3] “United Press International UPI,” January 2009. [Online].
Available: http://www.upi.com/Top News/2009/01/25/Virus
strikes 15 million PCs/UPI-19421232924206/

[4] “Microsoft Security Bulletin MS01-033,”
November 2003. [Online]. Available:
http://www.microsoft.com/technet/treeview/default.asp?
url=/technet/security/bulletin/MS01-033.asp.

[5] “Microsoft security bulletin ms02-039,” January
2003. [Online]. Available: http://www.microsoft.com/
technet/treeview/default.asp?url=/technet/security/bulletin/
MS02-039.asp.

[6] “Microsoft Security Bulletin MS03-026,”
September 2003. [Online]. Available:
http://www.microsoft.com/technet/treeview/default.asp?
url=/technet/security/bulletin/MS03-026.asp.

[7] “W32.Sasser.Worm,,” April 2004. [Online]. Avail-
able: http://securityresponse.symantec.com/avcenter/venc/
data/w32.sasser.worm.html.

[8] M. Rafique, M. Akbar, and M. Farooq, “Evaluating DoS
attacks against SIP-based VoIP systems,” in Proceedings of
the IEEE Global Telecommunications Conference (GLOBE-
COM), 2009.

[9] C. Mulliner and C. Miller, “Fuzzing the Phone in your
Phone,” Black Hat USA, 2009.

[10] M. Z. Rafique and M. Farooq, “INVITE of Death,
Remote DoS Vulnerabiltiy in OpenSBC Server,” February
2009. [Online]. Available: http://ims-bisf.nexginrc.org/
OpenSBC-vul.html

[11] “Remote DoS on Cisco IoS,” 2009. [Online]. Available: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2867.

[12] “Remote DoS on Asterisks SIP Server,” 2007.
[Online]. Available: http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2007-1306.

[13] “Remote Code Execution on Video-Confernce Framework
in Apple Mac OS,” 2007. [Online]. Available: http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0746.

[14] SANS-Institute, “SANS Top-20 2007 Security Risks,” 2007.
[Online]. Available: http://www.sans.org/top20/

[15] M. Roesch, “Snort-lightweight intrusion detection for net-
works,” in Proceedings of the 13th USENIX conference on
System administration. USENIX Association, 1999, p. 238.

[16] V. Paxson, “Bro: A system for detecting network intruders in
real-time,” Comput. Networks, vol. 31, no. 23, pp. 2435–2463,
1999.

[17] “Hogwash.” [Online]. Available: http://sourceforge.net/
projects/hogwash/.

[18] H. Abdelnur et al., “KiF: a stateful SIP fuzzer,” in Proceed-
ings of the 1st international conference on Principles, systems
and applications of IP telecommunications. ACM, 2007, pp.
47–56.

[19] D. Aitel, “An Introduction to SPIKE, the Fuzzer Creation
Kit,” immunity inc. white paper, 2004.

[20] The-VoIP-Network, “VoIP Market Trends,” 2008, http://www.
the-voip-network.com/voipmarket.html.

[21] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traffic
classification through simple statistical fingerprinting,” ACM
SIGCOMM Computer Communication Review, vol. 37, no. 1,
pp. 5–16, 2007.

[22] “ Protecting Internet Data Centers,” http://www.
arbornetworks.com/dmdocuments/AB PIDC EN Web.pdf.

[23] S. Niccolini, R. Garroppo, S. Giordano, G. Risi, and S. Ven-
tura, “SIP intrusion detection and prevention: recommenda-
tions and prototype implementation,” in 1st IEEE Workshop
on VoIP Management and Security, 2006, 2006, pp. 47–52.

[24] V. Apte, Y. Wu, S. Bagchi, S. Garg, and N. Singh, “Space
Dive: A Distributed Intrusion Detection System for Voice-
over-IP Environments,” DSN 2006, p. 222.

[25] D. Geneiatakis, G. Kambourakis, C. Lambrinoudakis, T. Dag-
iuklas, and S. Gritzalis, “A framework for protecting a
SIP-based infrastructure against malformed message attacks,”
Computer Networks, vol. 51, no. 10, pp. 2580–2593, 2007.

[26] R. Pang, V. Paxson, R. Sommer, and L. Peterson, “binpac: A
yacc for writing application protocol parsers,” in Proceedings
of the 6th ACM SIGCOMM conference on Internet measure-
ment. ACM, 2006, p. 300.

[27] N. Borisov, D. Brumley, H. Wang, J. Dunagan, P. Joshi, and
C. Guo, “A generic application-level protocol analyzer and
its language,” in 14h Symposium on Network and Distributed
System Security (NDSS). Citeseer, 2007.

[28] P. D
”ussel, C. Gehl, P. Laskov, and K. Rieck, “Incorporation of
application layer protocol syntax into anomaly detection,”
Information Systems Security, pp. 188–202, 2008.

[29] K. Ingham, A. Somayaji, J. Burge, and S. Forrest, “Learning
DFA representations of HTTP for protecting web applica-
tions,” Computer Networks, vol. 51, no. 5, pp. 1239–1255,
2007.

[30] K. Rieck, S. Wahl, P. Laskov, P. Domschitz, and K. Muller,
“A self-learning system for detection of anomalous sip mes-
sages,” in Principles, Systems and Applications of IP Telecom-
munications (IPTCOMM), Second International Conference,
LNCS. Springer, 2008, pp. 90–106.

[31] C. Kruegel and G. Vigna, “Anomaly detection of web-based
attacks,” in Proceedings of the 10th ACM conference on
Computer and communications security. ACM, NY, USA,
2003, pp. 251–261.

[32] F. Ahmed, H. Hameed, M. Shafiq, and M. Farooq, “Using
spatio-temporal information in API calls with machine learn-
ing algorithms for malware detection,” in Proceedings of the
2nd ACM workshop on Security and artificial intelligence.
ACM, 2009, pp. 55–62.

[33] S. Forrest, S. Hofmeyr, A. Somayaji, T. Longstaff et al., “A
sense of self for unix processes,” in IEEE Symposium on
Security and Privacy. IEEE COMPUTER SOCIETY, 1996,
pp. 120–128.

[34] D. Gao, M. Reiter, and D. Song, “Behavioral distance mea-
surement using hidden markov models,” Lecture Notes in
Computer Science, vol. 4219, p. 19, 2006.

[35] K. Rieck and P. Laskov, “Language models for detection of
unknown attacks in network traffic,” Journal in Computer
Virology, vol. 2, no. 4, pp. 243–256, 2007.

[36] K. Wang, J. Parekh, and S. Stolfo, “Anagram: A content
anomaly detector resistant to mimicry attack,” in Recent
Advances in Intrusion Detection. Springer, 2006, pp. 226–
248.

[37] K. Wang and S. Stolfo, “Anomalous payload-based network
intrusion detection,” in Recent Advances in Intrusion Detec-
tion. Springer, 2004, pp. 203–222.

[38] KrakowLabs, “HTTP compliant client and server fuzzer,”
http://www.krakowlabs.com/dev.html.

[39] INFIGO-Information-Security, “FTP Fuzzer,” http://www.
infigo.hr/files/.

[40] J. Leon, “FTP buffer overflow vulnerabilities,”
http://www.derkeiler.com/Mailing-Lists/securityfocus/
vuln-dev/2006-05/msg00004.html.

[41] M. Z. Rafique and A. Yaqub, “SIP Security Evaluation Tool,”
http://www.ims-bisf.nexginrc.org/SIPTool.php.

