
Enhancing a Biological Concept Ontology to Fuzzy 
Relational Ontology with Relations Mined from Text  

Lipika Dey1 and Muhammad Abulaish2 

1 Department of Mathematics, Indian Institute of Technology Delhi 
Hauz Khas, New Delhi – 16, India 

lipika@maths.iitd.ernet.in 
2 Department of Mathematics, Jamia Millia Islamia (A central university) 

Jamia Nagar, New Delhi – 25, India 
abulaish@computer.org  

Abstract. In this paper we investigate the problem of enriching an existing bio-
logical concept ontology into a fuzzy relational ontology structure using ge-
neric biological relations and their strengths mined from tagged biological text 
documents. Though biological relations in a text are defined between a pair of 
entities, the entities are usually tagged by their concept names in a tagged cor-
pus. Since the tags themselves are related taxonomically, as given in the ontol-
ogy, the mined relations have to be properly characterized before entering them 
into the ontology. We have proposed a mechanism to generalize each relation 
to be defined at the most appropriate level of specificity, before it can be added 
to the ontology. Since the mined relations have varying degrees of associations 
with various biological concepts, an appropriate fuzzy membership generation 
mechanism is proposed to fuzzify the strengths of the relations. Extensive ex-
perimentation has been conducted over the entire GENIA corpus and the results 
of enhancing the GENIA ontology are presented in the paper. 

Keywords: Generic biological relation, Biological ontology enhancement, 
Fuzzy relational ontology. 

1   Introduction 

The field of Molecular Biology has witnessed a phenomenal growth in research ac-
tivities in the recent past. Consequently to aid the process of organizing this large 
repository of knowledge, there has been a considerable effort towards building struc-
tured biological ontologies. Gene Ontology (GO) and GENIA ontology are two of the 
most popular ones. While the GENIA ontology stores only a set of concepts and the 
structural semantic relations, GO contains a large collection of biological processes 
along with biological concepts defined manually. Since manually identification of 
biological relations and their characterization is a labor-intensive task, several ap-
proaches have taken place to automate the process.    

Generic biological relations can be characterized based on their occurrence pat-
terns within text. The initial approaches focused on identifying a pre-defined set of 
verbs representing these relations within text. Thomas et al. [7] modified a pre-



existing parser based on cascaded finite state machines to fill templates with informa-
tion on protein interactions for three verbs – interact with, associate with, bind to. 
Sekimizu et al. [6] have proposed mechanisms for locating a pre-defined collection of 
seven verbs activate, bind, interact, regulate, encode, signal and function. However 
since it is expensive and labour-intensive to pre-define all such relations exhaustively, 
Rinaldi et al. [5] proposed an automated Literature Based Discovery (LBD) method 
to characterize these seven relations in terms of the participating entities. Ono et al. 
[4] reports a method for extraction of protein-protein interactions using a dictionary 
look-up approach. After identifying the dictionary-based proteins within the docu-
ment to analyze, sentences that contain at least two proteins are selected, which are 
then parsed with Parts-Of-Speech (POS) matching rules. The rules are triggered by a 
set of keywords, which are frequently used to name protein interactions like associ-
ate, bind etc. Ciaramita et al. [2] have proposed an unsupervised model for learning 
arbitrary relations between concepts of a molecular biology ontology from the 
GENIA corpus [3] for the purpose of supporting text-mining and manual ontology 
building.  

In this paper, we present a method for characterizing biological relations mined 
from a tagged corpus using an ontology-based text-mining approach to extend the 
underlying ontology into a fuzzy relational ontology. Since biological relations occur-
ring within a text can be directly associated to participating entities, locating only 
these relations does not provide the true character of the biological relation as an 
interaction between two biological entities. While it is straightforward to propagate 
these relations along the ontology tree, consolidating them at the most appropriate 
level requires significance analysis. For example, analyzing 170 instances out of a 
total of 219 instances of “expressed in” occurring in the GENIA corpus a break-up 
reveals that 48 associations are between the concept-pair <protein_molecule, 
cell_type>; 22 instances occur between <protein_family_or_group, cell_type>; 21 
instances occur between <protein_molecule, cell_line>; 10 between < pro-
tein_family_or_group, cell_line>; 9 between <DNA_domain_or_region, cell_type>; 7 
between <RNA_molecule, cell_type>; 6 between <DNA_family_or_group, cell_type>; 
5 between <RNA_molecule, cell_line>; 4 each between <RNA_family_or_group, 
cell_type> and between <protein_molecule, tissue>; 3 each between pairs  <pro-
tein_molecule, body_part> and <protein_molecule, mono_cell>; 2 each between pairs 
<DNA_domain_or_region, cell_line>, <protein_domain_or_region, cell_type>, 
<DNA_domain_or_region, tissue>, and <DNA_domain_or_region, body_part>; 1 
instance each between 20 other concept-pairs. While it may not be significant to keep 
track of the single, dual or triple occurrences, it will also not be appropriate to club all 
these relations together and state that “expressed in” occurs between concepts sub-
stance and source, which is correct but a case of over-generalization. An appropriate 
characterization should take into account the proportion of instances reaching at a 
particular concept-pair against the total occurrences at its parent concept-pair. Thus 
characterized, the relations can be used to enhance the underlying ontology. We have 
provided experimental validation of the approach over the GENIA corpus [3]. 



2   Analyzing Frequently Occurring Biological Relations Extracted 
from GENIA Corpus  

The GENIA ontology is a taxonomy of 47 biologically relevant nominal categories in 
which the top three concepts are biological source, biological substance and 
other_name. The other-name refers to all biological concepts that are not identified 
with any other known concept in the ontology. The sub-tree rooted at source contains 
13 nominal categories and the other rooted at substance, contains 34 nominal catego-
ries. The GENIA corpus contains 2000 tagged MEDLINE abstracts. Tags are leaf 
concepts in GENIA ontology. Tags may be nested whereby a tagged Biological entity 
in conjunction with other entities or processes may be tagged as a different leaf con-
cept. A biological relation is expressed as a binary relation between two biological 
concepts [4]. Following this definition, while mining for biological relations, we 
define a relation as an activity co-occurring with a pair of tags within the GENIA 
corpus. In [1] we had identified a set of 24 root verbs and their 246 variants, which 
represent biological relations occurring in the GENIA corpus. A complete list of all 
feasible biological relations and their morphological variants extracted from the 
GENIA corpus is available on http://www.geocities.com/mdabulaish/BIEQA/. We 
can enhance the GENIA ontology with these relations. 

Since the GENIA corpus is tagged with leaf-level concepts, all relations are de-
fined between entities or between leaf-level concept pairs. However keeping track of 
all instances may not be useful from the aspect of domain knowledge consolidation. 
This was illustrated through an example in section 1. Hence our aim is to generalize a 
relation at an appropriate level of specificity before including it in the ontology. This 
reduces over-specialization and noise.  

All molecular biology concepts in the GENIA ontology are classified into two 
broad categorirs, source and substance. Hence the entity pairs occurring with each 
relation can be broadly classified as belonging to one of the following four categories 
(i) <source, source> (ii) <source, substance> (iii) <substance, source> and (iv) <sub-
stance, substance>. Every instance of a relation belongs to one of these categories and 
the total number of instances associated to any category can be obtained with appro-
priate summation. Since a generic concept can represent multiple specific concepts, 
hence the first step towards characterizing relations is to consolidate the total number 
of relations belonging to each category, identify the pathways through which they are 
assigned to a category and then find the most appropriate generalization of the rela-
tion in that category.  

In order to achieve this, we define a concept-pair tree to represent each category. 
The root node of a concept-pair tree denoted by (Lr, Rr) contains one of the four ge-
neric concept-pairs defined earlier. Each node N in a concept-pair tree has two con-
stituent concepts >< ji CC ,  denoted as the LEFT and the RIGHT concepts. The 

LEFT and RIGHT concepts are specializations of Lr and Rr respectively, as obtained 
from the underlying ontology. Each concept-pair tree stores all possible ordered 
concept-pairs that match the root concept-pair (Lr, Rr) and is generated using a recur-
sive algorithm, described in the next section. 



3  Generating Concept-Pair Trees 

The concept-pair tree is represented as an AND-OR tree, where each node has links 
to two sets of children, denoted by L1 and L2. L1 and L2 each contain a set of con-
cept-pair nodes. The two sets L1 and L2 are themselves connected by the OR opera-
tor, while the nodes within each of them are connected with each other through an 
AND operator. For every node N, the two sets of child nodes L1 and L2 are created as 
follows: 
• L1 consists of concept pairs created by expanding the LEFT concept to consider 

all its child nodes in the concept ontology, while keeping the RIGHT concept un-
changed.  

• L2 is created by keeping the LEFT concept unchanged while considering all chil-
dren of the RIGHT concept in the concept ontology. 

• When any of the concepts LEFT or RIGHT is a leaf-level ontology concept, the 
corresponding set L1 or L2 respectively is NULL. 

 

Starting from a root concept pair <Lr, Rr>, the complete concept-pair tree is created 
recursively as follows: 

OR [AND [<children of Lr, Rr >], AND [<Lr, children of Rr >]] 

Let us suppose ‘a’ and ‘d’ represent two root concepts in a concept ontology, at each 
of which an ontology sub-tree is rooted, as shown in Fig. 1. The sets L1 and L2 for the 
root node of the concept pair tree, <a, d>, are determined as L1: <b, d>, <c,d>; L2: <a, 
e>, <a, f>. Fig. 1 shows the resulting AND-OR tree. AND is represented by ‘∪’, OR 
is represented using the symbol ‘∨’.  It may be noted that leaf-level pairs occur more 
than once in the tree. Each occurrence defines a path through which relations between 
that pair may be propagated up for generalization. Two sets of relations converging at 
a parent node, could be viewed as alternative models for generalization or could be 

Fig. 1. Sample AND-OR concept-pair tree 
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viewed as complementing each other to form the total set at the parent level, depend-
ing on whether they are coming via the AND path or the OR path. This is further 
explained in the next section.  

3.1 Mapping the Relation Instances over a Concept-Pair Tree  

After creating the four different concept-pair trees for the GENIA ontology, the most 
feasible representation of a relation for each of these categories is obtained using 
these. Suppose there are N instances of a relation rg observed over the corpus. Each 
of these instances is defined for a pair of leaf-level concepts. Based on the generic 
category of the leaf-level concepts, each relation instance can be mapped to a leaf 
node in one of the four concept-pair trees. 

For each concept-pair tree TG, all instances that can be mapped to leaf-level nodes 
of TG are mapped at the appropriate nodes. These counts are propagated up in the tree 
exploiting its AND-OR property. Since each leaf-level node has multiple occurrences 
in a concept-pair tree, each relation instance is mapped to all such leaf-level nodes. 
For each non-leaf node in the concept-pair tree, the total number of relations is equal 
to the number of instances propagated up through all its children in either L1 or L2.   
In order to derive the most appropriate levels for describing a relation, the concept-
pair tree is traversed top-down. Starting from the most generic level description at the 
root level, an information loss function based on set-theoretic approach is applied at 
each node to determine the appropriateness of defining the relation at that level. 

4 Characterizing Relations at Appropriate Levels of Specificity 

The process of determining the most specific concept pairs for relations follows a top-
down scanning of the AND-OR tree. Starting from the root node, the aim is to deter-
mine those branches and thereby those nodes which can account for sufficiently large 
number of relation instances. When the frequency of a relation drops to an insignifi-
cant value at a node the node and all its descendents need not be considered for the 
relation conceptualization, and may be pruned off without further consideration. The 
lowest un-pruned node becomes a leaf and is labeled as the most specific concept-pair 
for defining a relation.  
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where, ICN = Count of instances of relation rg at N, ICP = count of instances of rg at 
parent P of N. 

Equation 1 defines a loss-function that is applied at every node N to determine the 
loss of information incurred if this node is pruned off. The loss function is computed 
as a symmetric difference between the number of instances that reach the node and 
the number of relation instances that were defined at its parent. Equation 1 states that 
if the information loss at a node N is above a threshold, it is obvious that the node N 



accounts for a very small percentage of the relation instances that are defined for its 
parent. Hence any sub-tree rooted at this node may be pruned off from further con-
sideration while deciding the appropriate level of concept pair association for a rela-
tion. For our implementation this threshold has been kept at 10%. 

 Since a parent node has two alternative paths denoted by the expansion of LEFT 
and RIGHT respectively, along which a relation may be further specialized, the 
choice of appropriate level is based on the collective significance of the path com-
posed of retained nodes. For each ANDed set of retained nodes, total information loss 
for the set is computed as the average information loss for each retained child. The 
decision to prune off a set of nodes rooted at N is taken as follows: Let information 
loss for nodes retained at L1 is E1 and that for nodes retained at L2 is E2.  
• If E1 = 0, then L1 is retained and L2 is pruned off, otherwise, if E2 = 0 then L2 is 

retained and L1 is pruned off.  
• Otherwise, if E1 ≈ E2, i.e., 995.0),(),( 2121 ≥EEMaxEEMin  then both the sub-

trees are pruned off, and the node N serves as the appropriate level of specifica-
tion. 

• Otherwise, if E1 < E2, then L1 is retained and L2 is pruned off. If E2 < E1 then L2 
is retained while L1 is pruned off.  

The set of concept-pairs retained are used for conceptualizing the relations.  

5 Fuzzification of Relations  

Since all relations are not equally frequent in the corpus, hence we associate with 
each relation a strength S which is computed in terms of relative frequency. Equation 
2 computes this strength, where G denotes the category of concept-pairs: source-
substance, source-source, substance-substance and substance-source. |TG| denotes 
the total count of all relations that are defined between ordered concept pairs defined 
in the tree TG, and G

gr
N  denotes the total number of relation instances of type rg 

mapped to TG .  
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Since exact numeric values of strength do not convey much information, hence we 
choose a fuzzy representation to store the relations. The feasible biological relations 
are converted into fuzzy relations based on the membership of their strength values to 
a fuzzy quantifier term set {weak, moderate, strong}. The membership functions for 
determining the values to each of these categories are derived after analyzing the 
graphs displaying the distributions of strength. Fig. 2 shows the percentage of feasible 
relations of each category against the strengths of the relations.  

The fuzzy membership functions are derived after analyzing the graphs shown in 
Fig. 2. Each curve shows only one valley, and this common valley for all trees is 



observed at strength 0.4. Hence 0.4 is selected for defining the intermediate class 
“moderate”. The membership functions for the categories “weak”, and “strong” for 
each category are obtained through curve-fitting on different sides of the valley, 
while the membership function for class “moderate” is obtained by using the values 
surrounding 0.4.  The fuzzy membership functions for categories “moderate” and 
“strong” are always characterized by Gaussian functions, whereas for the category 
“weak”, different types of functions are derived. 

  

Table 1. Biological relations and associated generic concept-pairs along with their 
fuzzy strength 

Generic concept-pairs and their strengths Relation 
Substance-Source Substance-Substance Source-Source Source-Substance 

Induce (<OC, Nat>, S) 
(<OC, Art, W>)  

(<OC, AA>, S) 
(<OC, NA>), W) (<Src, Src>, S) ------- 

Inhibits 

(<Lip, CT>, W) 
(<PFG, CT>, W) 
(<PM, CT>, M) 
(<DNADR, CT>, W) 

(<Sbs, Cmp>, S)  (<CT, Art>, S) 
(<CT, Nat>, S) 

(<Nat, AA>, S) 
(<Nat, NA>, M) 

Activate (<OC, Nat>, S) (<Pr, AA>, S) 
(<Pr, NA>, W) 

(<CL, CT>, W) 
(<CT, CT>, S) 
(<MC, CT>, W) 

(<Src, OC>, S) 

Expressed in (<OC, Src>, S) 

(<DNA, OC>, W) 
(<Pr, AA>, M) 
(<Pr, NA>, M) 
(<RNA, OOC >, W) 

(<Nat, Org>, W) 
(<Nat, Tis>, W) 
(<Nat, CT>, S) 

------- 

Legend: 
OC: Organic compound;    AA: Amino_acid;    NA: Nuclic_acid;    OOC: Other_organic_compound;    Sbs: 
Substance; Nat: Natural source;    Org: Organism;    CT: Cell_type;    Pr: Protein;    Src: Source;    Tis: Tissue;    
MC: Mono_cell;   PFG: Protein_family_or_group;    Lip: Lipid;    DNADR: DNA_domain_or_region;    Art: 
Artificial source;    Cmp: Compound;    PM: Protein_molecule;    S: Strong; M: Moderate; W: Weak 

Fig. 2. A plot of relation strengths and their %age counts for all four categories of trees 
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Sample fuzzy membership functions derived for the category substance-substance 
(shown in yellow color in Fig. 2) is shown below. The membership functions for the 
fuzzy sets “weak”, “moderate” and “strong” are defined in equations 3, 4 and 5 re-
spectively. Table 1 shows the top 5 relations along with their associated concept pairs 
and strengths identified for enhancing the GENIA ontology. 

6 Enhancing GENIA to a Fuzzy Relational Ontology  

We now explain how we propose to extend the GENIA ontology by adding the ge-
neric relations to it. Since the relations have variable strengths, hence we propose to 
maintain a Fuzzy Relational Ontology rather than a crisp ontology structure. In this 
model there are two categories of relations – structural and generic. While structural 
relations are crisp, generic relations have associated fuzzy strengths. We define the 
Fuzzy Relational Ontology Model as follows:  

Definition (Fuzzy Relational Ontology Model) – A Fuzzy Relational Ontology Model 
Θf is a 5-tuple of the form 

Θf = (C, P, ℜs , ℜg, S), where, 

• C is a set of concepts 
• P is a set of properties. A property p ∈ P is defined as a unary relation of 

the form p(c), where c ∈ C is the concept associated to the property. 
• ℜs = {is-a, kind-of, part-of, has-part} is a set of structural semantic rela-

tions between concepts. A structural semantic relation rs ∈ ℜs is defined as 
a binary relation of the form rs(Ci, Cj), where Ci, Cj ∈ C are the concepts 
related through rs.  

• ℜg is a set of feasible generic relations between concepts. Like structural 
semantic relations, a generic relation rg ∈ ℜg can be defined as a binary re-
lation of the form rg(Ci, Cj), where Ci, Cj ∈ C are the concepts related 
through rg. 

• S = {weak, moderate, strong}, is a term set to represent the strength of the 
generic biological relations in terms of linguistic qualifiers. A linguistic 
qualifier ξ ∈ S is defined as a unary relation of the form ξ(rg), where rg ∈ 
ℜg is a feasible generic relation 



  

To accommodate generic relations and their strengths, in addition to existing GENIA 
ontology classes, the fuzzy GENIA relational ontology structure contains three ge-
neric classes - a “ConcetPair” class, a “FuzzyStrength” class and a “GenericRelation” 
class, where the last one multiply inherits from the earlier two classes. The Con-
ceptPair class consists of HasLeftConcept and HasRightConcept properties whose 
values are the instances of the GENIA concept classes. FuzzyStrength class has been 
defined to store the fuzzy quantifiers that can be associated with the generic relations 
to represent their strength. This class consists of a single property TermSet which is 
defined as a symbol and contains the fuzzy quantifiers “weak”, “moderate” and 
“strong”. The GenericRelation class has two properties – LeftRightActors and 
Strength. The LeftRightActors property is a kind of OWL object property which range 
is bound to the ConceptPair class. The Strength property is also a kind of OWL ob-
ject property for which the range is bound to the FuzzyStrength class. All mined ge-
neric relations are defined as instances of the class GenericRelation. Fig. 3. shows a 
snapshot of a portion of the enhanced Fuzzy GENIA relational ontology structure. A 
total of 280 strong, 38 moderate and 576 weak relational links were identified for 
adding to GENIA. It is observed that each instance of relation has a strong or moder-
ate co-occurrence with a maximum of 4 different pairs. However, the maximum 
number of weak co-occurrences could go up to 17.  For example, Table 1 shows 3 
strong and 2 weak instances of the relation “induce”. In our implementation we have 
restricted the enhancement to include only strong and moderate relations, to keep the 
ontology comprehendible.   

Fig. 3. A snapshot of the Fuzzy Relational GENIA ontology structure 



7 Conclusions 

In this paper we propose a fuzzy relational ontology model to accommodate generic 
biological relations into an existing biological ontology. The relations are mined from 
the GENIA corpus, which contains tagged MEDLINE abstracts. The mined relations 
which are always defined between a pair of leaf level concepts in the GENIA corpus 
are generalized using a novel technique. The generalization task is framed as an opti-
mization problem over a AND-OR concept-pair tree. Since the relations occur with 
varying strengths, the enhanced ontology is modeled as a fuzzy ontology structure. 
The derivation of the fuzzy membership functions have also been addressed in detail. 
A glimpse of the experimental results has been provided. Extension of the ontology 
structure into a rough-fuzzy ontology is being currently studied.  
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