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Abstract—Mammalian Target of Rapamycin (mTOR) is a Ser/Thr protein kinase, and its role is integral to the autophagy pathway in
cancer. Targeting mTOR for therapeutic interventions in cancer through autophagy pathway is challenging due to the dual roles of
autophagy in tumor progression. The architecture of mTOR reveals two complexes — mTORC1 and mTORC2, each having multiple
protein subunits. mTOR kinase inhibitors target the structurally and functionally similar catalytic subunits of both mTORC1 and
mTORC2. In this paper, we have explored two different categories of molecular features — descriptors and fingerprints for developing
predictive models using machine learning techniques. Random Forest variable importance measures and autoencoders are used to
identify molecular descriptors and fingerprints, respectively. We have built various predictive models using identified features and their
combination for predicting mTOR kinase inhibitors. Finally, the best model based on the Mathew correlation co-efficient value over the
validation dataset is selected for screening kinase SARfari bioactivity dataset. In this study, we have identified twenty best performing

descriptors for predicting mTOR kinase inhibitors. To the best of our knowledge, it is the first study on integrating traditional machine
learning and deep learning-based approaches for feature extraction to predict mTOR kinase inhibitors.

Index Terms—Drug Discovery, Kinase, mTOR, Autophagy, Molecular Descriptor, Fingerprints, Machine Learning, Deep Learning.

1 INTRODUCTION

Inases belong to one of the prominent family of drug
Ktargets in human [1]. The discovery of phosphatidyli-
nositol 3-kinase related kinases (PIKK) family in 1990 dra-
matically changed the landscape of stress-induced field.
PIKK includes six members in human, such as ataxia telang-
iectasia mutated (ATM), ataxia telangiectasia- and RAD3-
related (ATR), the catalytic subunit of DNA-dependent pro-
tein kinase (DNA-PK), human suppressor of morphogen-
esis in genitalia-1 (hSMG-1), transformation/transcription
domain-associated protein (TRRAP), and mammalian Tar-
get of Rapamycin (mTOR) [2]. mTOR is a Ser/Thr protein
kinase as it transduces the cellular signals through phospho-
rylation of serine/threonine residues of substrate molecules
in upstream and/or downstream pathways. The structure of
mTOR reveals two complexes - mTOR complexl (mTORC1)
and mTOR complex2 (mTORC2), having two and three
unique protein subunits, respectively; while four protein
subunits are common in both of the complexes [3]. A
summarized view of the topological variations of mTOR
complexes are shown in Table 1. The crystal structures of
mTOR are deposited in Protein Data Bank (PDB) [4]. A 3D
view of mTOR with one of its inhibitors, Torin-2 (PDB id:
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4]SX), is visualized using Pymol software [5] and shown in
Figure 1.

TABLE 1: Protein subunits of mTOR complexes (Laplante
and Sabatini [3])

Protein subunits mTOR Complexes

Abbreviations  Full name mTORC1 mTORC2
Regulatory protein associated
Raptor with mTOR 4 4
PRAS40 Proline-rich Akt substrate 40 kDa 4 X
. Rapamycin-insensitive
Rictor component of mTOR 4 v
mSinl Stresst-acti_vated mapk-interacting x v
protein 1 in mammal
Protor1/2 Protein with rictor 1 & 2 X v
mTOR Core catalytic subunit v 4
1ST8 mammalian Lethal with sec-13 v v
m protein 8
DEP domain comprising
DEPTOR mTOR-interacting protein v v
Ttil/Tel2 complex v v

The mTOR has clinical interventions in various human
diseases, such as cancer, type II diabetes, cardiovascular dis-
eases, obesity, autoimmunity, neurodegeneration, and aging
[6]. It also plays a vital role in male fertility [7]. The altered
status of mTOR in various diseases, its functional role in
initiation, maintenance or progression of the diseases, and
its resistance to conventional chemotherapy make it drug-
gable. Therefore, mTOR is culminated as a well-established
pharmacological target.

Autophagy is a dynamic cellular process for recycling
intracellular nutrients which helps the eukaryotic cells to
adjust metabolism to survive during the adverse growth
conditions [8]. Autophagy is primarily known to be reg-
ulated by mTORC1; however, there are evidences of its



Fig. 1: A 3D visualization of mTOR with Torin-2 (PDB id:
4JSX) inhibitor using Pymo1l software

regulation by mTORC2 as well [9]. The role of mTOR is
integral to the autophagy pathway in cancer. Autophagy
acts as suppressor during tumor initiation, whereas it acts
as promotor during tumor progression by enabling tumor
cells to adapt to the changes in nutrient availability. The
modulation and regulation of autophagy pathway through
mTOR, and dual roles of autophagy in tumor cells make
mTOR a challenging and promising anticancer drug target
[10], [11].

1.1 Generations of mTOR Inhibitors

A molecule which binds to the pharmacological target and
decreases its activity is known as inhibitor. Till date, three
generations of mTOR inhibitors are known [12]. Clinically
approved inhibitor Rapamycin (or sirolimus) binds to the
site other than the catalytic subunit of mTORC1. As a result,
it is also known as allosteric inhibitor of mTOR. Rapamycin
and its analogs (rapalogs) are the first generation mTOR
inhibitors. Few known ATP-competitive mTOR inhibitors
or mTOR kinase inhibitors (mTOR KIs), such as AZD-
8055, CC-223, Torin 2 bind to the catalytic subunits of both
mTOR complexes which are structurally and functionally
similar. These are the second generation mTOR inhibitors,
and considered more efficient than rapamycin and rapalogs.
The cumulative advantages of combining rapamycin and
AZD-8055 due to their binding site proximity on mTOR give
rise to the third generation mTOR inhibitor — RapaLink-1
[13]. The second generation mTOR inhibitors (or mTOR Kis)
have therapeutic advantages over the first generation mTOR
inhibitors, and the third generation mTOR inhibitor has
just entered the drug development pipeline. Moreover, few
of the known mTOR Kis targeting cancer are undergoing
different stages of clinical trials [14]. This motivated us to
develop computational approaches to predict new clinical
compounds like mTOR Kls. A partial list of six known
mTOR kinase inhibitors that are in clinical trial for cancer
are shown in Figure 2.

1.2 Existing Computational Approaches

Computational approaches to discover novel mTOR kinase
inhibitors are extensively reviewed in literatures [21]. The
existing approaches are broadly categorized as (i) compar-
ative modeling, (ii) structure-guided virtual screening or
molecular docking, (iii) quantitative structure-activity rela-
tionship (QSAR), (iv) pharmacophore-based modeling, (v)
molecular dynamics simulations, (vi) machine learning, and
(vii) similarity-based searching of hit and lead molecules.
On limiting our search to machine learning for the devel-
opment of mTOR kinase inhibitors, we found that a series
of classification models have been developed using naive
Bayes and recursive partitioning classifiers to predict mTOR
kinase inhibitor-like compounds [22]. In a hierarchical study;,
the classifier-based predictions are integrated to molecular
docking and in vitro enzyme assays to discover novel mTOR
kinase inhibitors [23].

In this study, we have also identified computational
approaches to design inhibitors using other targets. These
approaches may guide us to predict mTOR kinase inhibitor-
like compounds. Random forest algorithm is used for select-
ing optimal molecular descriptors for ligands of thymidine
kinase and other targets [24]. A novel method is developed
to predict compound-protein interactions using positive and
unlabeled samples, and compared using existing classifiers
[25]. Computational intelligence methods in drug discovery
has now progressed from machine learning to deep learning
using big data platform [26], [27]. In 2012, Merck-sponsored
Kaggle competition on chemical compound activity predic-
tion revealed deep learning as a potent tool in drug design
[28]. The application of deep learning approaches outside
bioactivity prediction is shown by an integrative approach
of data analysis on cancer dataset extracted from multiple
platforms [29].

In 2015, a drug combination prediction challenge was
launched as a part of the DREAM 10 challenge in col-
laboration with AstraZeneca and the Sanger Institute, and
the outcome has recently been reported [30]. The devel-
oped computational approaches may help combat short-
liveness of cancer targeted therapy. Moreover, the study may
provide useful guidelines to predict promising anticancer
drug combinations for targeting autophagy pathway, as the
autophagy modulators (inhibitor/inducer) are often used
in combination with standard treatment. Few of such drug
combinations are already in clinical or pre-clinical trial for
the treatment of various types of cancer [31].

1.3 Our Contributions

Though machine learning technique are extensively used
in biomedical domain, limited research efforts has been
directed towards predicting mTOR inhibitors. We noticed
that the existing approaches for predicting mTOR inhibitors
are based on few selective classifiers and limited number
of molecular descriptors that are mainly derived from ex-
perimental data. In this study, we explore a wide variety
of molecular descriptors and fingerprints to predict mTOR
inhibitors using four different machine learning techniques.
The key contributions of this study can be summarized as
follows:
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Fig. 2: A partial list of six known mTOR kinase inhibitors that are in clinical trial for cancer

o Exploration of diverse features including molecular
descriptors and molecular fingerprints of mTOR bioac-
tive molecules from ChEMBL database and devel-
opment of various classification models using four
classifiers, namely random forest, support vector ma-
chine, decision tree, and neural network to predict
mTOR kinase inhibitor-like molecules.

o Application of the variable importance measure to
rank and select the molecular descriptors using ran-
dom forest classifier.

e Application of the neural network-based autoen-
coders to reduce 166-bits MACCS (Molecular AC-
Cess System) fingerprints.

e A comparative study of the descriptors-based and
fingerprints-based classification models to predict
mTOR kinase inhibitors.

e Screening of the kinase SARfari compounds (~40,922
compounds) using the best performing classifica-
tion model for predicting mTOR kinase inhibitor-like
compounds.

2 METHODS
2.1 Pipeline Implemented

The pipeline of our proposed approach mainly consists of
the following steps: (i) mTOR bioactivity data collection,
(ii) partition of data into training and validation sets, (iii)
molecular feature (descriptors and fingerprints) extraction
and dimension reduction, (iv) classification model learning
and evaluation, (v) comparative analysis, (vi) best classifi-
cation model selection, and (vii) Kinase dataset screening.
Figure 3 presents the visualization of these steps.

2.2 Dataset

The mTOR bioactivity dataset is downloaded from ChEMBL
[32] and unique compounds are selected considering only
human mTOR kinase inhibition data. As a result, a total
number of 1804 unique compounds with IC50 values be-
tween 0.07nM and 50000nM (that is , 0.07nM < IC50 <
50000nM) associated with target id CHEMBL2842 are se-
lected. The 2D structures of the compounds are converted

into 3D structures using CORINA v2.64 software, and
molecules are saved in 3D-sdf format. Out of 1804 com-
pounds, 1590 compounds with IC50 values less than 10pM
are considered as active and remaining 214 compounds with
IC50 values > 10uM are considered as inactive. As reported
in [22], 10uM cut-off value is considered as a reasonable
starting point for hit-to-lead activity.

As shown in Table 2, out of the complete dataset of
1804 molecules, 80% (1444) molecules are considered as
the training set, whereas remaining 20% (360) molecules
are considered as the validation set. The training dataset
is again divided into five parts using random sampling
technique, such that four parts are used to train classification
model, while keeping aside one part to test the model. The
training and testing processes are repeated five times such
that test sets differ in each iteration, and every molecule
gets its participation in training and testing at least once.
After validating the trained classification models, the best
performing model on the basis of Mathews correlation
coefficient (MCC) values over validation set is used for
screening a large compound dataset (~40,922 compounds)
retrieved from the kinase SARfari database to predict mTOR
kinase inhibitor-like compounds.

TABLE 2: Statistics of the mTOR bioactivity dataset ex-
tracted from ChEMBL database

ChEMBL id. | Dataset #Active  #lnactive g
molecules molecules

ChEMBL2842 Training set 1273 171 1444

Validationset 317 43 360

2.3 Feature Extraction and Dimension Reduction

Prior to splitting the mTOR bioactivity dataset into train-
ing and validation sets, 1D/2D/3D descriptors and 166-
bits MACCS fingerprints (FPs) are calculated using PaDEL
descriptor software [33]. Since the calculated 3D descriptors
are sparse, they are excluded from the list of descriptors
for further study. A total number of 1444 1D /2D descriptor
columns and 166-bits MACCS FPs are filtered separately
to remove the redundant columns. As a result, 1171 in-
formative descriptor columns and 133-bits MACCS FPs are
retained for further analysis.
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Fig. 3: A visualization of the pipeline of our proposed approach for predicting mTOR inhibitors
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Variable Importance Measures (VIMs) are calculated to
rank, select, and prioritize the molecular descriptors. Un-
like other algorithms, random forest (RF) is not prone to
overfitting as the variable selection is randomized during
each tree-split. Therefore, VIMs are calculated based on
prediction error and splitting criteria using RF classification
model. By default, RF takes two-third of the dataset to train
the model and keeps one-third of the dataset for testing
during regression task, and ~ 70% of the data as training set
and ~ 30% of the data to test the model during classification
task. The dataset separated for testing is called out-of-bag
(OOB) sample, and it is used to calculate OOB error. The
OOB error calculated during model training represents the
performance over test dataset, and it is equivalent to the
error captured by n-fold cross-validation. Hence, training
can be terminated on stabilization of OOB error [34]. Predic-
tion error is calculated using the percentage of misclassification
in classification task, and mean square error (MSE) in case
of regression task which assigns mean decrease accuracy
(MDA) values. The prediction error is finally calculated as
the difference between out-of-bag (OOB) error calculated
from newly generated dataset by randomly changing the
order of the selected predictors, and the OOB error calcu-
lated from the original dataset. Shifting an important pre-
dictor generally increases the OOB error, which ultimately
increases the MDA values. On the other hand, decrease in
gini index (DGI) is used as splitting criteria to assign mean
decrease gini (MDG) values to multiple descriptors present
during the construction of the trees (the lowest the Gini
index, the purest the split). Hence, selection of an important
predictor for splitting is based on high decrease in Gini
index, resulting in high MDG. In this study, each of the 1171
molecular descriptors of the training dataset are assigned
MDA values based on the percentage of misclassification and
MDG values using RF classification task.

Variable Importance Measures

2.3.2 Deep Neural Network-Based Autoencoder

Neural networks with more than one hidden layer are
known as deep neural network (DNN). DNN has achieved
great success in diverse areas of research, primarily in natu-
ral language processing, computer vision, and more recently
in bioactivity predictions [28]. The architecture of autoen-
coders (aka autoassociative network) are derived from DNN.
Autoencoders have adjustable, multilayer encoder network
to generate low-dimensional code by transforming the high-

dimensional input data, and a similar decoder network
to retrieve the inputs from the code. Thus, autoencoders
receive self-supervised training to extract features with
minimal information loss, and are non-linear abstraction
of principal component analysis [35]. In this study, simple
architecture of autoencoder with three hidden layers and
each having equal number of nodes are used for dimension
reduction of MACCS fingerprints (FPs) using h2o library in
R. Finally, best performing descriptors set and dimension-
ally reduced MACCS FPs are integrated to generate hybrid
feature set.

2.4 Machine Learning Techniques for Compound Clas-
sification

Supervised machine learning technique for compound clas-
sification for predicting bioactivities needs a labeled training
dataset which is designed using known annotated com-
pounds with specific activities. The training set is then
used to develop classifiers that assign class labels to un-
seen samples. In this study, molecular descriptors and/or
fingerprints based models are built to predict mTOR kinase
inhibitors using four popular classifiers — Random Forest
(RF) [36], Support Vector Machine (SVM) [37], Decision Tree
(DT), and Neural Network (NN) [38].

RF [36] is an ensemble learning algorithm in which
predictions are made either by collecting majority votes
or by calculating average predictions of the ensembles. RF
builds and averages a large collection of mutually related
trees. One of the important features of RF is the use of OOB
sample, which is used to calculate unbiased classification
error during generation of large number of trees. RF is
capable of showing excellent performance in presence of
large number of predictors, much higher than the number
of observations. Moreover, RF is a well-established data
analysis tool in bioinformatics [39], [40] which we have
implemented using randomForest library in R.

SVM [37] is a supervised learning algorithm, which
performs both classification and regression task for predic-
tion. SVM uses maximum-margin to perform the classifi-
cation task. First, the data vectors are mapped into an d-
dimensional space, then the algorithm finds a hyperplane
for the new space with maximal margin between positive
(active) and negative (inactive) class samples in the training
dataset. In our implementation, d represents the number
of molecular descriptors whose values are represented by
particular co-ordinates. The closest samples on either side of



the hyperplane are known as support vectors. In this study,
sigest function is used to choose the penalty parameter c
and kernel parameter g through cross-validation method.
We have used €1071 package of R for implementing the
LIBSVM [41], and performed classification task using the
radial basis function (RBF) kernel.

DT [42] is a supervised learning algorithm, which incor-
porates both numeric and categorical variables, as well as
missing values. DT uses tree-like structure, which consists
of a root node, decision nodes, and terminal or leaf nodes to
support the decision. Removal of a decision node from the
decision tree is called pruning. We have used the CART [42]
algorithm which is implemented through RPART library in
R. CART reduces the size of an overly large grown tree to
minimize the estimated misclassification error. The size of
the decision tree is controlled by the complexity parameter
(cp), and it is used to select an optimal tree size. By default,
10-fold cross-validation is employed in CART for model
evaluation.

ANN [38] is conceptualized from the architecture of
human brain. The simplest unit of a neural network is
called neuron. The neurons are organised into layers, called
input layers, hidden layers, or output layers depending on
their position in the network. ANN is categorized based
on the arrangements of neurons in certain topology and
connections to each other. In this study, we have used nnet
function of caret library in R to train neural network models.
Two hyper-parameters — size and decay are optimized using
cross-validation to generate optimal classification models.
The size parameter describes the number of units in hidden
layer, and decay parameter is the standardized parameter
which is used to avoid overfitting of the classification model.

3 RESULTS
3.1 Prioritization of Molecular Descriptors

In order to identify most discriminative molecular descrip-
tors, the MDA and MDG values are calculated for each
of the 1171 descriptors of the training dataset using RF
classification model. The error rates during model training
are calculated as percentage of the misclassification of active
molecules, inactive molecules, and OOB datasets, wherein
OOB error is considered to be crucial for selecting the final
model. In this study, OOB error is first calculated under
the default parameter settings, keeping the number of trees
(ntree) as 500 and the number of input descriptors to be
used in each node (mtry) as 34, which is roughly equivalent
to the square root of the number of descriptors. As shown
in Figure 4, we observe that the OOB error rate remains
almost constant after generation of 100 trees. However, in
order to avoid overfitting, total 300 trees are generated and
four different combinations of ntree with mtry are used
to calculate OOB error values using the tuneRF function
in R. The OOB error values are shown in Table 3 and
visualized in Figure 5, and based on the lowest OOB error,
the corresponding values of ntree and mtry parameters are
determined as 300 and 23, respectively to calculate RF-VIMs
(MDA and MDG values).

Since there is no any universal rule to prefer one VIM
over another, molecular descriptors are selected using both
MDA and MDG values. RF automatically takes care of
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TABLE 3: Tuning mtry parameter to calculate RF-VIMs

# Tree | mtry OOB error
16 6.16%
0,
300 23 5.89%
34 6.23%
51 6.3%

correlation between predictors, and the highly correlated
predictors in a pair receive smaller VIMs than the uncor-
related predictors. The correlation coefficient (aka Pearson’s
product-moment correlation coefficient) between a pair of
descriptors x and y is calculated using equation 1, where
and ¥ represent the mean of x and y, respectively, and o,
and o, represent the standard deviations of = and y, respec-
tively, and n is the number of molecules. Correlation plot
of MDA- and MDG-ranked top-30 descriptors are shown in
Figure 6. In order to avoid any bias in descriptor selection,
only those top-ranked descriptors that have correlation co-
efficient value <0.75 with other descriptors within the set
are selected as features. Table 4 presents the number of
features selected from each top-p descriptors based on MDA
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Fig. 5: Visualization of the OOB errors for different mtry
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and MDG values, where p is taken as 10, 20, 30,and 40. As a
result, total eight sets of descriptors based on different cut-
off values of p are selected for classification model learning
and analysis. Files containing all 1171 descriptors along with
their MDA and MDG values (mTORdescriptor_mda.csv &
mTORdescriptor_mdg.csv) have been uploaded at www.
github.com/chetna-kumari/mTOR_Inhibitor.
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3.2 Dimension Reduction of Molecular Fingerprints

We have used simple architecture of deep neural net-
work (DNN) based autoencoders to reduce the di-
mension of 166-bits MACCS FPs. Although DNN al-
lows different number of neurons in each layer, we
have considered same number of neurons (nodes) in
each hidden layer of the DNN which limits the num-
ber of adjustable parameter combinations. In this study,
the parameter settings for generating autoencoders are
as follows: no.ofhiddenlayers(h) = 3, no.ofnodes =
100, no.ofepochs = 100, costfunction(Il) = 0.00001,
activation function = tanh. We executed several autoen-
coders with different sets of neurons (assuming same in
each layer), and evaluated their performance using four
primary metrics — mean squared error (MSE), root-mean
squared error (RMSE), mean absolute error (MAE), sym-
metric mean absolute percentage error (SMAPE), and one
composite metric — R? (coefficient of determination) [43].
The calculated values of MSE, RMSE, MAE, SMAPE, RZ?,
and number of nodes (#Nodes) using autoencoders are
given in Table 5 and visualized in Figure 7. Comparatively
lower values of MSE, RMSE, MAE and SMAPE, higher
value of R?, and higher number of nodes are preferred for
dimension reduction using autoencoder. In this study, the
final architecture of autoencoder is selected on the basis of
MSE and RMSE values. It can be observed from Table 5 that
the MSE and RMSE values decrease with increasing number
of nodes. On analysis, we found that autoencoder with 100
nodes in each of the three layers achieves small MSE and
RMSE values, and do not change significantly after further
increasing the number of nodes. At this point, the MAE and
SMAPE values are also reasonably small, whereas R? value
is considerably high (that is, 0.995). Therefore, we have
chosen three hidden layers with 100 nodes in each layer
in autoencoder architecture and selected the nodes from the
middle layer.

3.3 Classification Model Learning and Evaluation

The classification models are trained using eight sets of
descriptors, one set of autoencoder-reduced FPs, and a
hybrid feature set, as shown in Table 4. The descriptors- and
fingerprints-based models are trained using four classifiers
- RF, SVM, DT, and NN, while the hybrid feature-based
model is trained using the best performing classifier. In RF
model, the OOB errors calculated during model training
represent the performance over the test dataset. However,
to make sure that all samples get a chance to be a part
of the training as well as test, cross-validation is crucial

6

for model evaluation and comparison with other models.
Hence, 5-fold cross-validation over the training dataset is
used for model evaluation. The performance of the devel-
oped models are evaluated using various metrics — accu-
racy (ACC), sensitivity (SE), specificity (SP), F-measure (F1),
Mathews correlation coefficient (MCC) and area under curve
(AUC) values, such as Receiver Operating Characteristic AUC
(ROC-AUCQ) and Precision Recall AUC (PR-AUC). The accu-
racy, sensitivity, specificity, F-measure, and Mathews correlation
coefficient values are calculated using equations 2, 3, 4, 7, and
8 respectively. In these equations, TP (true positives) repre-
sents the number of active molecules that are classified as
active, FP (false positives) represents the number of inactive
molecules that are classified as active, FN (false negatives)
represents the number of active molecules that are classified
as inactive, and TN (true negatives) represents the number
of inactive molecules that are classified as inactive. Table
6 presents the evaluation results of different classification
models in terms of these metrics.

TP+ TN
Accuracy(ACC) = —— )
TP+ TN+ FP + FN

TP

Sensitivity(SE) = [©)

TP+ FN

TN
TN + FP

Specificity(SP) =

@)

TP
Precision(Il) =

5)
TP + FP

TP
Recall(p) =

(©6)
TP + FN

2 XTI X p
I+ p

F-measure(F1) =

@)

TN x TP — FN x FP
MCC = 8)
(TN + FP) X (FP 4+ TP) x (TP + FN) x (FN + TN)

Two common graphical representations to evaluate the
performance of classifiers are ROC and PR curves, as shown
in Figure 8. ROC curve represents the relationship between
true positive rate (sensitivity) and false positive rate (1 -
specificity), while the PR curve represents the relationship
between precision (positive predictive value) and recall (true
positive rate or sensitivity) at different cut-off values. PR-
AUC value is preferred over ROC-AUC value, while MCC
is most important measure for evaluation of binary classier
when the model training is done using class-imbalanced
dataset [44], [45].

3.4 Comparative Analysis

In order to establish the efficacy of our proposed approach,
we have compared and contrasted it with one of the existing
state-of-the-art methods proposed by Wang et al. [22]. Wang
et al. developed a series of in silico models using Recur-
sive Partitioning (RP) and Naive Bayes (NB) algorithms to
predict mTOR inhibitors. They considered thirteen molec-
ular descriptors, atom centre fragments (ACFs) descrip-
tor, and two types of fingerprints (FPs) namely extended-
connectivity fingerprints and path-based fingerprints for
model development, and evaluated the classification models
in terms of various metrics, such as accuracy, sensitivity
(recall), specificity, F-measure, AUC, and MCC values, and
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TABLE 4: Feature sets used in this study to build classification models

Feature . . .
cet id Feature category Feature selection technique | #Top-ranked descriptors | #Selected features
f1 10 5
20 10
J2 MDA
f3 30 16
. 40 20
fa Descriptors
fs 10 5
20 9
Js MDG
f7 30 11
fs 40 17
fo Fingerprints (FPs) Autoencoder 100
f10 Hybrid (Descriptors + FPs) MDA & Autoencoder 40 20+100
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Fig. 6: Correlation plot of top-30 molecular descriptors ranked on the basis of (a) MDA, and (b) MDG values

TABLE 5: Dimension reduction of 166-bits MACCS FPs
using autoencoders

#Nodes (h =3) MSE RMSE MAE SMAPE R?
10, 10, 10 0.035 0.186 0.102 1375  0.965
20, 20, 20 0.021 0.144 0.083 1357  0.984
30, 30, 30 0.014 0.116 0.066 1.345  0.988
40, 40, 40 0.009 0.097 0.056 1.341  0.991
50, 50, 50 0.006 0.080 0.046 1.335  0.993
60, 60, 60 0.005 0.069 0.041 1332  0.993
70, 70, 70 0.003 0.054 0.032 1328  0.99%4
80, 80, 80 0.002 0.050 0.031 1.327  0.993
90, 90, 90 0.002 0.046 0.029 1326  0.994
100, 100, 100 0.002 0.042 0.027 1324 0995
110, 110, 110 0.002 0.040 0.026 1.325  0.99
120, 120, 120 0.002 0.040 0.027 1325  0.996
130, 130, 130 0.002 0.039 0.026 1324  0.99%

finally compared the performance on the basis of MCC
values. MCC is the most important indicator for evaluating
the classification models, when the training is done using
class-imbalanced datasets. The classification model based on
ACFs descriptor using an in-house program ACFs-NB shows
best performance in terms of MCC value over validation set,
and achieves the MCC value of 0.777.

In this study, we have developed various classification
models based on the selected feature sets (that is, eight sets
of descriptors, one type of fingerprints, and a hybrid feature
set), and using four classifiers such as RF, SVM, DT and NN.
The models are evaluated using several performance met-
rics, as shown in Table 6. However, the final comparison is
based on MCC values, due to imbalanced training datasets.
Our best performing model is based on a prioritized set of
20 descriptors (correlation coefficient <0.75) out of MDA-
ranked top 40 and NN classifier, and achieves MCC value
of 0.815 over validation set. Table 7 presents the comparative
analysis results of our proposed model with Wang et al. [22]
model. It can be observed from this table that our proposed
model performs better to classify mTOR kinase inhibitor like
compounds.

3.5 Best Classification Model Selection

Classification models based on the best performing set of
twenty descriptors, reduced FPs, and hybrid feature set are
compared for final model selection. A list of twenty best per-
forming descriptors is shown in Table 8. It can be observed
from this table that all twenty descriptors belong to nine
different descriptor categories in which three categories are
most prominent, as seven descriptors belong to the atom type
electrotopological state, five belong to the autocorrelation, and
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two belong to molecular distance edge category. We observe
that the classification models based on NN and twenty best
performing descriptor set (f4)), reduced FPs (f9), and the
hybrid feature set (f19) achieve MCC values of 0.815, 0.752
and 0.731, respectively. The model based on f4 and NN also
achieves reasonably good ROC-AUC and PR-AUC values
that are 0.928 and 0.989 respectively, as shown in Figure 8.
Therefore, we have selected best performing NN model for
screening kinase bioactivity dataset.

3.6 In silico Screening of Kinase Bioactivity Datasets

The current release of ChEMBL (version 25) marks a
rapidly growing public repository of approx. 1.9 million dis-
tinct compounds, more than 15 million bioactive drug-like
molecules, approx. 1.1 million bioassays, and more than 12
thousand drug targets, 11 thousand drugs, and 72 thousand
publications (https://www.ebi.ac.uk/chembl/) [46]. Kinase
SARfari (current version 5.01), an offshoot of ChEMBL, is
an integrated repository of chemogenomics data derived
from high throughput screening, sequence, alignment, and
structural information mainly focussed on kinases [47]. In
this study, we have retrieved 40,922 compounds from ki-
nase SARfari database which include bioactivity datasets of
more than 500 kinases, to screen mTOR kinase inhibitor-like
molecules. For screening, we require at least those features
present in the data to be screened, based on which the clas-
sification models are trained. Therefore, out of total 40,922
compounds retrieved from the kinase SARfari database,
only 26,421 compounds are considered for screening using
the best classification model, and the screening result is
shown in Table 10. It can be observed from this table that our
predictive model is able to discriminate active and inactive

mTOR molecules, and this model can be used for predict-
ing mTOR kinase inhibitor-like compounds in preliminary
stages of the virtual screening.

4 DISCUSSION

mTOR is a well established pharmacological target due to
its druggability and intervention in many human diseases
including cancer. In this study, we have developed a series
of in silico classification models to predict mTOR kinase
inhibitors-like compounds with intent to therapeutically
intervene autophagy pathway in cancer. The molecular de-
scriptors and molecular fingerprints of mTOR bioactivity
dataset from ChEMBL database are calculated using paDEL
software. The complete dataset is divided into training set
and validation set (4:1) by applying random sampling. The
training dataset is used to build the classification models,
which are internally validated using 5-fold cross validation.
Validation set is used for external validation of the trained
classification models. We have used RF classifier for two
purposes — to calculate variable importance measures, and
as a classifier. The molecular descriptors are selected based
on percentage of misclassification and decrease in gini index
values of variable importance measures using RF classifica-
tion model. The selected molecular descriptors are further
filtered on the basis of correlation coefficients, and deep
neural network-based autoencoders are used to extract the
molecular fingerprints. Simple architecture of autoencoder
with three hidden layers and 100 neurons in each layer re-
duces the dimension of 166-bits MACCS fingerprints. Since
no single feature is sufficient to discriminate inhibitors from
non-inhibitors, different cut-off values of the number of
top-ranked descriptors, reduced FPs and hybrid feature set



TABLE 6: Performance evaluation metrics of classifiers using prioritized feature sets

Classifier ::ta ;:;Te Training set (5-fold cv) Validation set

acc s sp B ROC PR meclace seose om ROC PR mcc

fi 0937 0966 0.719 0964 0.928 0.987 0.694| 0950 0972 0.791 0.972 0.943 0.991 0.762

f2 0940 0964 0.760 0.966 0.918 0.987 0.715| 0952 0.972 0.814 0.973 0942 0991 0.778

f3 0950 0972 0.784 0.972 0.922 0.988 0.760 | 0.956 0.975 0.814 0.975 0.907 0.985 0.789

fa 0.948 0.969 0.790 0.9705 0.914 0.986 0.753 | 0.950 0.975 0.767 0.972 0.933 0.989 0.758

RF fs 0936 0962 0.737 0.963 0.922 0.989 0.694| 0953 0.978 0.767 0.973 0.9373 0.991 0.769

fe 0943 0969 0.754 0.968 0.930 0.989 0.727 | 0.956 0.978 0.791 0.975 0.937 0.990 0.785

f7 0945 0972 0.737 0969 0916 0.987 0.728 | 0953 0975 0.791 0.973 0918 0.987 0.773

fs 0940 0970 0.719 0.966 0.910 0.984 0.708 | 0.953 0.978 0.767 0.973 0.923 0988 0.769

fo 0938 0976 0.655 0.965 0.938 0.991 0.685| 0953 0.981 0.744 0.964 0904 0983 0.765

fi 0936 0967 0.702 0.964 0.932 0.989 0.685| 0939 0.972 0.698 0.966 0913 0.986 0.698

f2 0941 0972 0.7135 0.967 0.917 0.986 0.709 | 0.928 0.968 0.628 0.959 0.936 0.990 0.637

f3 0.9398 0977 0.661 0.966 0.914 0986 0.692| 0947 0.978 0.721 0.970 0936 0.990 0.738

fa 0943 09725 0.725 0.968 0.914 0986 0.720 | 0.953 0.978 0.767 0.973 0.933 0.989 0.769

SVM fs 0940 0967 0.743 0966 0.926 0.988 0.713 | 0939 0972 0.698 0.966 0.9399 0.991 0.698

fe 0939 0964 0.754 0.965 0.932 0.989 0.711| 0936 0.968 0.698 0.964 0913 0.986 0.687

f7 0938 0967 0.719 0.965 0.914 0986 0.697 | 0942 0.972 0.721 0.967 0903 0982 0.715

fs 0938 0971 0.696 0965 0.895 0.982 0.694 | 0931 0965 0.674 0.961 0.933 0.990 0.660

fo 0940 0970 0.714 0.966 0913 0986 0.704 | 0956 0.978 0.791 0.975 0.928 0988 0.783

f1 0941 0969 0.731 0.967 0.926 0.989 0.713 | 0936 0.965 0.721 0.964 0.929 0.990 0.693

f2 0929 0958 0.714 0.960 0.940 0.991 0.662 | 0939 0.959 0.791 0.965 0.936 0.9905 0.722

f3 0934 0961 0.731 0962 0.925 0.988 0.685| 0953 0972 0.814 0.973 0.948 0.992 0.778

fa 0927 0958 0.696 0.958 0.919 0.987 0.650 | 0.947 0.965 0.814 0.970 0916 0986 0.757

DT fs 0938 0966 0.731 0.965 0916 0.987 0.702| 0936 0.965 0.721 0.964 0.950 0.992 0.693

fe 0931 0955 0.754 0961 0.940 0.991 0.684 | 0936 0965 0.721 0.964 0.936 0.991 0.693

f7 0934 0956 0.772 0.962 0.925 0.988 0.699 | 0958 0.987 0.744 0.977 0.930 0.987 0.791

fs 0931 0954 0.754 0.961 0.928 0.988 0.682| 0936 0.965 0.721 0.964 0.899 0982 0.693

fo 0931 0969 0.643 0961 0914 0.986 0.651 | 0936 0972 0.674 0.964 0.886 0.982 0.682

fi 0938 0961 0.772 0965 0.928 0.989 0.713 | 0.942 0968 0.744 0.967 0.946 0.992 0.720

f2 0941 0967 0.748 0.967 0.928 0.989 0.717 | 0950 0.972 0.791 0.972 0933 0.990 0.762

f3 0948 0972 0.772 0.971 0.932 0.990 0.749 | 0.953 0.978 0.767 0.973 0.892 0.983 0.769

fa 0949 0974 0.760 0971 0.926 0.989 0.750 | 0961 0.978 0.837 0.978 0.928 0.989 0.815

NN fs 0944 0967 0.772 0.968 0.912 0986 0.733 | 0950 0.972 0.791 0.972 0918 0988 0.762

fe 0940 0966 0.743 0.966 0.928 0.989 0.711| 0950 0.968 0.814 0.972 0.933 0.990 0.767

f7 0937 0963 0.743 0964 0.931 0.989 0.700 | 0.936 0965 0.721 0.964 0.920 0.987 0.693

fs 0940 0966 0.743 0.967 0.926 0.989 0.711| 0939 0.975 0.674 0.966 0.903 0.983 0.693

fo 0940 0968 0.737 0.966 0.931 0.989 0.712| 0947 0.968 0.791 0.970 0943 0.992 0.752
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Fig. 8: (a) ROC and (b) PR curves with corresponding AUC values of NN classifier showing best performance over the
validation dataset.



TABLE 7: Comparison of in silico models predicting mTOR
inhibitors

Criteria Wang et al., 2014 Proposed work

(i) Dataset

a. Source ChEMBL & BindingDB ChEMBL

b. Class distribution Imbalanced Imbalanced

c. Balancing technique not used not used

(ii) Features extraction

a. Tool used Discovery Studio PaDEL

b. #Descriptors 13+1 (ACF) 1171

c. #Fingerprints (FPs) type 2 1

(iii) Features selection

a. Descriptors not used RF-VIM

b. FPs not used Autoencoder

(iii) Classifiers selection RP, NB, ACF-NB RF, SVM, DT, NN

(iv) Best model Selection

a. Classifier ACF-NB NN

b. Feature set ACF fa

c. Feature selection not used MDA

d. Performance over validation set
Accuracy 92% 96.1%
Sensitivity 92.4% 97.8%
Specificity 90.3% 83.7%
Precision 97.3% 97.8%
PR-AUC not calculated 0.989
MCC 0.777 0.815

TABLE 8: List of best performing twenty descriptors

Descriptor type Descriptor Rank | MDA
maxHBint6 7 4.158
SHBd 11 4.031
maxssNH 20 3.405
Atom type electrotopological state | maxHBint10 24 3.272
maxHBa 32 3.088
minHBint5 33 3.057
minaaN 38 3.004
MATS6¢ 15 3.813
GATS5m 18 3.518
Autocorrelation ATSC5s 26 3.208
AATSC2c 30 3.157
AATSC3m 31 3.151
Molecular distance edge MDEN.12 ! 5.263
MDEN.22 3 4.529
Extended topochemical atom ETA_BetaP_ns_d 6 4.448
Topological charge JGI2 9 4117
Mannhold LogP MilogP 16 3.616
Carbon types C1spP2 25 3.249
Chi cluster VC.5 27 3.179
Weighted path WTPT.4 28 3.176

(combined set of best performing descriptors and reduced
FPs) are used to build several classification models using
four different classifiers — RF, SVM, DT, and NN. Perfor-
mance measures are calculated using accuracy, sensitivity,
specificity, F-measure, AUC (ROC-AUC and PR-AUC), and
MCC values.

We observe that the classification models based on
descriptor sets perform better than reduced MACCS
fingerprints-based models in most of the cases. On evaluat-
ing the performance using MCC over the validation dataset,
the model based on prioritized set of 20 descriptors (out of
MDA-ranked top-40) and NN classifier outperform other
models. Finally, we have selected this model to screen a
compound dataset from kinase SARfari database, which
is a specialized repository of bioactivity data for highly
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conserved catalytic site in protein kinases. The predictive
model is biased towards prediction of active class, yet
capable of discriminating active and inactive molecules of
mTOR bioactivity dataset. The reason for this biasness may
be the disproportionate distribution of active and inactive
classes in ChEMBL datasets as well as the compounds
extracted from kinase SARfari database. These datasets
are mainly extracted from literatures, and are more biased
towards active compounds. This biasness may be due to
more incentive given for publishing active compounds than
publishing inactive molecules, which are mostly discarded.
However, for building the predictive models, information
on inactive molecules are equally important. The bioactivity
dataset of mTOR in ChEMBL faces the same problem,
and shows under-representation of inactive class in training
dataset. As a result, the predictive models based on such
skewed datasets are biased towards predicting majority
class instances. There are various ways to deal with the
class-imbalance problem in bioactivity data, such as us-
ing undersampling, oversampling, or using suitable perfor-
mance metrics like PR-AUC and MCC values for evaluation
of the models. Synthetic Minor Oversampling Technique
(SMOTE) [48] is widely used method for balancing the class-
imbalanced datasets. In another study reported in [49], we
have discussed the handling of class-imbalance problem in
mTOR bioactivity dataset using SMOTE. The main findings
of this study can be summarized as follows:

e Two best performing models using MCC values —
one over the validation dataset (MCC=0.815) and
another over the training dataset (MCC=0.760), use
MDA for descriptor selection. Hence, MDA may be
preferred over MDG for prioritization and selection
of descriptors.

e The best performing classifier based on the MCC
value over the validation dataset is NN, which uses
the prioritized set of 20 descriptors, out of the top-40
descriptors ranked by MDA.

e Three most important descriptor categories for pre-
dicting mTOR kinase inhibitor-like compounds are
atom type electrotopological state, autocorrelation, and
molecular distance edge.

e Screening of compound datasets from kinase SARfari
database shows that our classification model is ca-
pable of discriminating active and inactive molecules
of mTOR. Hence, this model seems useful for pre-
dicting mTOR kinase inhibitor-like compounds in
preliminary stages of the virtual screening.

5 CONCLUSION AND FUTURE WORK

Machine learning-based compound classification is one of
the ligand-based virtual screening approach, which is con-
sidered in this study to predict mTOR kinase inhibitor-
like compounds from ChEMBL database. mTOR, a serine-
threonine kinase, has implications in several diseases in-
cluding cancer. Based on the existing literatures, it is found
that mTOR has dual role in cancer through the process
of autophagy. Though virtual screening methods (either
structure- or ligand-based) cannot be solely applied to de-
sign a new drug, their application in the preliminary stages
of the drug development process dramatically reduces the
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TABLE 9: Performance evaluation metrics of NN classifier based on best performing descriptor set (f4), reduced FPs (f9)

and hybrid feature set (f1)

Feature set id. Training set (5-fold cv) Validation set
ROC- PR- ROC- PR-
ACC SE  SP F1  ,uo s MCC| ACC SE  SP F1  ,;c auc MCC
fa 0949 0974 0760 0971 0926 0989 0.750 | 0.961 0978 0.837 0978 0928 0.989 0.815
fo 0940 0968 0737 0966 0931 0989 0712 0.947 09685 0.791 0970 0943 0.992 0752
o 0945 0969 0760 0969 0931 0989 0733 | 0.944 0972 0744 09685 0.943 0.992 0731
TABLE 10: Screening results of kinase SARfari compounds [6] R. A. Saxton and D. M. Sabatini, “mtor signaling in growth,

using the best performing classification model

Classifier NN
Feature set id. fa
MCC over validation set | 0.815
#compounds extracted 40922
#compounds selected 26421
#Active molecules 23719
# Inactive molecules 2702

time and cost investment to complete a drug development
cycle. On analysis, it is found that the classification models
based on prioritized set of molecular descriptors generally
outperform MACCS FPs-based models. We have shown that
the classification model based on MDA-ranked descriptors
shows best performance based on MCC values over the
training and validation datasets. Hence, MDA may be pre-
ferred over MDG for descriptor selection and prioritization
using mTOR bioactivity dataset. Although the model based
on hybrid feature set under-perform prioritized descriptor
set and fingerprints-based models using NN classifier, the
fact cannot be generalized for all the classifiers used in this
study, and there is a scope to use different combinations
of molecular descriptors and FPs for evaluating hybrid
features-based models using different classifiers.

The limitations of this study include the choice of the
dataset which should ideally be stage-specific for the study
of autophagy regulating kinases, as autophagy plays dual
role in cancer (suppresses tumor in initial stage of tumorige-
nesis while promotes tumor in matured tumor cells). Han-
dling class-imbalance problem in datasets, detailed evalu-
ation of the hybrid feature-based models, and including
more autophagy regulating kinases as targets to build a
common model for screening large compound library seem
promising future directions of research.

REFERENCES
[1] R. Santos, O. Ursu, A. Gaulton, A. P. Bento, R. S. Donadi, C. G.
Bologa, A. Karlsson, B. Al-Lazikani, A. Hersey, T. I. Oprea, and J. P.
Overington, “A comprehensive map of molecular drug targets,”
Nature Reviews Drug discovery, vol. 16, no. 1, p. 19, 2017.

R. T.Abraham, “Pi 3-kinase related kinases: ‘big’ players in stress-
induced signaling pathways,” DNA Repair, vol. 3, no. 8, pp. 883—
887, 2004.

M. Laplante and D. M. Sabatini, “mtor signaling in growth control
and disease,” Cell, vol. 149, no. 2, pp. 274-293, 2012.

H. Yang, D. G. Rudge, J. D. Koos, B. Vaidialingam, H. J. Yang,
and N. P. Pavletich, “mtor kinase structure, mechanism and regu-
lation,” Nature, vol. 497, no. 7448, pp. 217-223, 2013.

W. L. DeLano et al., “Pymol: An open-source molecular graphics
tool,” CCP4 Newsletter on protein crystallography, vol. 40, no. 1, pp.
82-92, 2002.

(2]

(3]
(4]

(5]

(7]

(8]

(%]

[10]

[11]

[12]

(13]

[14]

(15]

[16]

(17]

[18]

[19]

(20]

[21]

metabolism, and disease,” Cell, vol. 168, no. 6, pp. 960-976, 2017.
P. E Oliveira, C. Cheng, and M. G. Alves, “Emerging role for
mammalian target of rapamycin in male fertility,” Trends in En-
docrinology & Metabolism, vol. 28, no. 3, pp. 165-167, 2017.

D. J. Klionsky and S. D. Emr, “Autophagy as a regulated pathway
of cellular degradation,” Science, vol. 290, no. 5497, pp. 1717-1721,
2000.

P. Sini, D. James, C. Chresta, and S. Guichard, “Simultaneous
inhibition of mtorcl and mtorc2 by mtor kinase inhibitor azd8055
induces autophagy and cell death in cancer cells,” Autophagy,
vol. 6, no. 4, pp. 553-554, 2010.

Y. C. Kim and K.-L. Guan, “mtor: A pharmacologic target for
autophagy regulation,” The Journal of Clinical Investigation, vol. 125,
no. 1, pp. 25-32, 2015.

X. Li, H-L Xu, Y.-x. Liu, N. An, S. Zhao, and ] .-k. Bao, “Autophagy
modulation as a target for anticancer drug discovery,” Acta Phar-
macologica Sinica, vol. 34, no. 5, pp. 612624, 2013.

E. Rad, J. Murray, and A. Tee, “Oncogenic signalling through
mechanistic target of rapamycin (mtor): A driver of metabolic
transformation and cancer progression,” Cancers, vol. 10, no. 1,
p- 5, 2018.

V. S. Rodrik-Outmezguine, M. Okaniwa, Z. Yao, C. J. Novotny,
C. McWhirter, A. Banaji, H. Won, W. Wong, M. Berger,
E. de Stanchina ef al., “Overcoming mtor resistance mutations with
a new-generation mtor inhibitor,” Nature, vol. 534, no. 7606, p. 272,
2016.

F. Chiarini, C. Evangelisti, J. A. McCubrey, and A. M. Martelli,
“Current treatment strategies for inhibiting mtor in cancer,” Trends
in Pharmacological Sciences, vol. 36, no. 2, pp. 124-135, 2015.

K. G. Pike, K. Malagu, M. G. Hummersone, K. A. Menear, H. M.
Duggan, S. Gomez, N. M. Martin, L. Ruston, S. L. Pass, and
M. Pass, “Optimization of potent and selective dual mtorcl and
mtorc2 inhibitors: the discovery of azd8055 and azd2014,” Bioor-
ganic & Medicinal Chemistry Letters, vol. 23, no. 5, pp. 1212-1216,
2013.

S. V. Bhagwat, P. C. Gokhale, A. P. Crew, A. Cooke, Y. Yao,
C. Mantis, J. Kahler, J. Workman, M. Bittner, L. Dudkin, D. M.
Epstein, N. W. Gibson, R. Wild, L. D. Arnold, P. J. Houghton,
and J. A. Pachter, “Preclinical characterization of 0si-027, a po-
tent and selective inhibitor of mtorcl and mtorc2: Distinct from
rapamycin,” Molecular Cancer Therapeutics, vol. 10, no. 8, pp. 1394-
1406, 2011.

D. S. Mortensen, S. M. Perrin-Ninkovic, G. Shevlin, ]J. Zhao,
G. Packard, S. Bahmanyar, M. Correa, ]. Elsner, R. Harris, B. G. Lee
et al., “Discovery of mammalian target of rapamycin (mtor) kinase
inhibitor cc-223,” Journal of Medicinal Chemistry, vol. 58, no. 13, pp.
5323-5333, 2015.

J. M. Garcia-Martinez, J. Moran, R. G. Clarke, A. Gray, S. C.
Cosulich, C. M. Chresta, and D. R. Alessi, “Ku-0063794 is a
specific inhibitor of the mammalian target of rapamycin (mtor),”
Biochemical Journal, vol. 421, no. 1, pp. 29-42, 2009.

E. K. Slotkin, P. P. Patwardhan, S. D. Vasudeva, E. de Stanchina,
W.D. Tap, and G. K. Schwartz, “MIn0128, an atp-competitive mtor
kinase inhibitor with potent in vitro and in vivo antitumor activity,
as potential therapy for bone and soft-tissue sarcoma,” Molecular
Cancer Therapeutics, vol. 14, no. 2, pp. 395406, 2015.

Q. Liu, C. Xu, S. Kirubakaran, X. Zhang, W. Hur, Y. Liu, N. P.
Kwiatkowski, J. Wang, K. D. Westover, P. Gao et al., “Characteriza-
tion of torin2, an atp-competitive inhibitor of mtor, atm, and atr,”
Cancer Research, vol. 73, no. 8, pp. 2574-2586, 2013.

Y. Luo and L. Wang, “Discovery and development of atp-
competitive mtor inhibitors using computational approaches,”
Current Pharmaceutical Design, vol. 23, no. 29, pp. 4321-4331, 2017.



[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

[36]
[37]
[38]

(39]

[40]

[41]

(42]

[43]

L. Wang, L. Chen, Z. Liu, M. Zheng, Q. Gu, and ]. Xu, “Predicting
mtor inhibitors with a classifier using recursive partitioning and
naive bayesian approaches,” PloS One, vol. 9, no. 5, p. €95221, 2014.
L. Wang, L. Chen, M. Yu, L.-H. Xu, B. Cheng, Y.-S. Lin, Q. Gu,
X.-H. He, and J. Xu, “Discovering new mtor inhibitors for cancer
treatment through virtual screening methods and in vitro assays,”
Scientific Reports, vol. 6, p. 18987, 2016.

G. Cano, J. Garcia-Rodriguez, A. Garcia-Garcia, H. Perez-Sanchez,
J. A. Benediktsson, A. Thapa, and A. Barr, “Automatic selection
of molecular descriptors using random forest: Application to drug
discovery,” Expert Systems with Applications, vol. 72, pp. 151-159,
2017.

Z.Cheng, S. Zhou, Y. Wang, H. Liu, J. Guan, and Y.-P. P. Chen, “Ef-
fectively identifying compound-protein interactions by learning
from positive and unlabeled examples,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 2016.

E. Gawehn, J. A. Hiss, and G. Schneider, “Deep learning in drug
discovery,” Molecular Informatics, vol. 35, no. 1, pp. 3-14, 2016.

L. Zhang, ]J. Tan, D. Han, and H. Zhu, “From machine learning to
deep learning: Progress in machine intelligence for rational drug
discovery,” Drug Discovery Today, 2017.

J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, “Deep
neural nets as a method for quantitative structure-activity rela-
tionships,” Journal of Chemical Information and Modeling, vol. 55,
no. 2, pp. 263-274, 2015.

M. Liang, Z. Li, T. Chen, and J. Zeng, “Integrative data analysis
of multi-platform cancer data with a multimodal deep learning
approach,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB), vol. 12, no. 4, pp. 928-937, 2015.

M. P. Menden, D. Wang, M. J. Mason, B. Szalai, K. C. Bulusu,
Y. Guan, T. Yu, J. Kang, M. Jeon, R. Wolfinger ef al., “Community
assessment to advance computational prediction of cancer drug
combinations in a pharmacogenomic screen,” Nature communica-
tions, vol. 10, no. 1, p. 2674, 2019.

N. Chen and V. Karantza, “Autophagy as a therapeutic target in
cancer,” Cancer biology & therapy, vol. 11, no. 2, pp. 157-168, 2011.
A. Gaulton, L. J. Bellis, A. P. Bento, ]J. Chambers, M. Davies,
A. Hersey, Y. Light, S. McGlinchey, D. Michalovich, B. Al-Lazikani
et al.,, “Chembl: A large-scale bioactivity database for drug dis-
covery,” Nucleic Acids Research, vol. 40, no. D1, pp. D1100-D1107,
2012.

C. W. Yap, “Padel-descriptor: An open source software to calculate
molecular descriptors and fingerprints,” Journal of Computational
Chemistry, vol. 32, no. 7, pp. 1466-1474, 2011.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd edition, ser.
Springer series in statistics. Springer, 2009.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimension-
ality of data with neural networks,” Science, vol. 313, no. 5786, pp.
504-507, 2006.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5-32, 2001.

C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273-297, 1995.

S. Haykin, “Neural networks a comprehensive foundation: Pretice
hall international,” Inc., Englewood Cliffs, 1999.

A.-L. Boulesteix, S. Janitza, ]. Kruppa, and I. R. K6nig, “Overview
of random forest methodology and practical guidance with em-
phasis on computational biology and bioinformatics,” WIREs: Data
Mining and Knowledge Discovery, vol. 2, no. 6, pp. 493-507, 2012.

V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and
B. P. Feuston, “Random forest: A classification and regression
tool for compound classification and gsar modeling,” Journal of
Chemical Information and Computer Sciences, vol. 43, no. 6, pp. 1947—
1958, 2003.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1-27:27, 2011, software available at http://www.csie.
ntu.edu.tw/~¢jlin/libsvm.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and Regression Trees. CRC press, 1984.

A. Botchkarev, “A new typology design of performance metrics
to measure errors in machine learning regression algorithms.”

[44]

[45]

[46]

[47]

(48]

[49]

12

Interdisciplinary Journal of Information, Knowledge & Management,
vol. 14, 2019.

D. Chicco, “Ten quick tips for machine learning in computational
biology,” BioData mining, vol. 10, no. 1, p. 35, 2017.

T. Saito and M. Rehmsmeier, “The precision-recall plot is more
informative than the roc plot when evaluating binary classifiers
on imbalanced datasets,” PloS one, vol. 10, no. 3, p. e0118432, 2015.
A. Gaulton, A. Hersey, M. Nowotka, A. P. Bento, J]. Chambers,
D. Mendez, P. Mutowo, F. Atkinson, L. J. Bellis, E. Cibrian-Uhalte
et al., “The chembl database in 2017,” Nucleic Acids Research,
vol. 45, no. D1, pp. D945-D954, 2016.

A. Bender, “Databases: Compound bioactivities go public,” Nature
Chemical Biology, vol. 6, no. 5, p. 309, 2010.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: Synthetic minority over-sampling technique,” Journal of
artificial intelligence research, vol. 16, pp. 321-357, 2002.

C. Kumari, M. Abulaish, and N. Subbarao, “Using smote to deal
with class-imbalance problem in bioactivity data to predict mtor
inhibitors,” in Proceedings of the International Conference on Adaptive
Computational Intelligence (ICACI), Mysuru, India, July 18-19, 2019,
pp- 1-12.

Chetna Kumari received M.Tech. degree in
Computation and Systems Biology from Jawa-
harlal Nehru University (JNU), New Delh, In-
dia. She is currently pursuing PhD in Compu-
tational Biology from the Department of Com-
puter Science, Jamia Millia Islamia (A Central
University), Delhi, India. She has qualified GATE
and CSIR-UGC-NET exam in Life Sciences.
Her research interests include Data-driven and
Structure-based Drug Design, Biological Data
Mining, and Machine Learning.

Muhammad Abulaish received PhD degree in
Computer Science from Indian Institute of Tech-
nology (lIT) Delhi, india in 2007. He is cur-
rently an Associate Professor at the Department
of Computer Science, South Asian University,
Delhi, India. His research interests span over the
areas of Data Analytics, Biological Data Mining,
and Social Computing. He is a senior member
of the IEEE, ACM, and CSI. He has published
over 100 research papers in reputed journals
and conference proceedings.

Naidu Subbarao received PhD in Chemistry
from IIT Kanpur and Jawaharlal Nehru Cen-
tenary Common Wealth Postdoctoral fellow at
Dept. of Biochemistry and Molecular Biology,
University of Leeds, UK. He is currently an Asso-
ciate Professor at the School of Computational
and Integrative Sciences, JNU, New Delhi. His
research focuses on Structural Bioinformatics
and Molecular Recognition studies. His group
has developed a pairwise and multiple structural
alignment program and protein-protein docking

algorithm using graph theoretic methods.


http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	Generations of mTOR Inhibitors
	Existing Computational Approaches
	Our Contributions

	Methods
	Pipeline Implemented
	Dataset
	Feature Extraction and Dimension Reduction
	Variable Importance Measures
	Deep Neural Network-Based Autoencoder

	Machine Learning Techniques for Compound Classification

	Results
	Prioritization of Molecular Descriptors
	Dimension Reduction of Molecular Fingerprints
	Classification Model Learning and Evaluation
	Comparative Analysis
	Best Classification Model Selection
	In silico Screening of Kinase Bioactivity Datasets

	Discussion
	Conclusion and Future Work
	References
	Biographies
	Chetna Kumari
	Muhammad Abulaish
	Naidu Subbarao




