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DeepSBD: A Deep Neural Network Model with
Attention Mechanism for SocialBot Detection

Mohd Fazil, Amit Kumar Sah and Muhammad Abulaish, SMIEEE

Abstract—Online Social Networks (OSNs) are witnessing sophisticated cyber threats, that are generally conducted using fake or
compromised profiles. Automated agents (aka socialbots), a category of sophisticated and modern threat entities, are the native of the
social media platforms and responsible for various modern weaponized information-related attacks, such as astroturfing,
misinformation diffusion, and spamming. Detecting socialbots is a challenging and vital task due to their deceiving character of
imitating human behavior. To this end, this paper presents an attention-aware deep neural network model, DeepSBD, for detecting
socialbots on OSNs. The DeepSBD models users’ behavior using profile, temporal, activity, and content information. It jointly models
OSN users’ behavior using Bidirectional Long Short Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures. It
models profile, temporal, and activity information as sequences, which are fed to a two-layers stacked BiLSTM, whereas content
information is fed to a deep CNN. We have evaluated DeepSBD over five real-world benchmark datasets and found that it performs
significantly better in comparison to the state-of-the-arts and baseline methods. We have also analyzed the efficacy of DeepSBD at
different ratios of socialbots and benign users and found that an imbalanced dataset moderately affects the classification accuracy.
Finally, we have analyzed the discrimination power of different behavioral components, and it is found that both profile characteristics
and content behavior are most impactful, whereas diurnal temporal behavior is the least effective for detecting socialbots on OSNs.

Index Terms—Social network analysis, Socialbot detection, Deep learning, CNN, BiLSTM, Data-driven cybersecurity.
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1 INTRODUCTION

WEb2.0-based Online Social Networks (OSNs) are one
of the high impacting human innovations of the

21st century that facilitate their users to express views and
thoughts on current affairs and personal life, connect with
friends and celebrities, and get updated with the breaking
news. OSNs have revolutionized the scope and experience
of human communication in the form of real-time informa-
tion broadcasting. A large fraction of the world population
is using one or the other OSN1. Though hundreds of OSNs
exist, Twitter and Facebook are among the most popular
ones across the globe.

1.1 OSN and Socialbots
OSNs facilitate their users in terms of connectivity, infor-
mation sharing, knowledge acquisition, and entertainment,
but these are not without any repercussions. The real-
time message broadcasting, large user-base, open nature,
and anonymity have exposed OSNs as a suitable platform
for different malicious activities like trolling, astroturfing,
spamming, and fake news. The malicious and anti-social el-
ements generally perform such activities using fake pro-
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files in the form of bots, human-assisted cyborgs, Sybil,
and compromised accounts. Recently, OSN platforms have
witnessed emerging threats, having serious repercussions
that are much more sophisticated in comparison to the clas-
sical cyber threats like spamming, DDoS attack, and identity
theft. Among OSN-specific threats, automated profiles (aka
socialbots) are one of the major enablers of advanced illicit
activities like political astroturfing [1]. In a seminal work,
Varol et al. [2] estimated that approximately 9− 15% of the
Twitter accounts are bots. Though adversaries can program
socialbots for both benign and malicious objectives, recent
incidents like interference in the 2016 USA presidential elec-
tion, Brexit referendum [1], Arab spring [3] have branded
them as devils. Socialbots are very deceptive; they mimic
human behavior to gain trust in an OSN and then exploit it
for illicit activities [4]. As a result, researchers are analyzing
different malicious aspects of socialbots [5]. To tackle this
growing threat landscape, OSNs are framing account regu-
lation policies and developing in-house socialbot detection
methods. At regular intervals, OSN platforms carry out
cleanness drive to suspend the malicious accounts. In such
a drive, following the exposure of Russian interference in
the 2016 USA presidential election, Twitter suspended
approximately 70 million accounts2. Therefore, all such inci-
dents and reports suggest the unprecedented illicit impact of
socialbots on the structure and discourse of OSN platforms.

1.2 Background and Motivation
Apart from OSNs, academia and industry researchers are
also striving to decode the working environment of so-
cialbots to develop efficient detection methods. However,

2. https://gadgets.ndtv.com/social-networking/news/twitter-said-
to-have-suspended-58-million-accounts-in-q4-2017-1885193
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as the approaches mature, botherder tunes the socialbots
behavior to bypass the underlying detection methods. In
the existing literature, supervised machine learning-based
methods are the most popular, wherein authors design a
number of hand-crafted features from different categories
of information like profile, content, network, and metadata.
Further, machine learning models are trained that classify
bots and benign users [6], [7], [8]. Among the existing
set of features, most are relatively easy to escape through
human-assisted creation of profile attributes and scheduling
the socialbot activities using sophisticated randomization
algorithms. The bot accounts are generally human-assisted
to mix behavioral patterns with benign accounts to bypass
the complex features. The existing state-of-the-art feature
engineering-based approaches suffer from three major lim-
itations – (i) feature engineering process is a manual and
time-consuming task, (ii) it is not generic because a feature
engineering-based system can detect only a specific category
of socialbots modeled by the defined features, and finally
(iii) it includes human biases and limitations. Moreover, the
efficacy of a feature-based classification system depends on
the set of defined features. Therefore, if features are of low
quality, the performance of the classification system will be
automatically low.

The second category includes graph partitioning-based
approaches for detecting the groups of socialbots operating
in a coordinated manner. The graph partitioning-based ap-
proaches model the user interaction/connection formation
behavior as a network, and partition it into cohesive sub-
graphs using graph mining techniques. These approaches
generally consider only the connection forming behavior
of socialbots exploiting network information, but miss the
automation cues embedded in textual, temporal, and profile
information. Therefore, these approaches fail to detect so-
cialbots who somehow successfully create sufficient attack
edges (links) with normal users. Though graph partitioning-
based methods overcome the limitations of the feature
engineering-based approaches, they do not integrate the
cues from different categories of information.

Further, existing literature also has behavior and tempo-
ral modeling-based approaches for socialbot detection [9],
[10], [11], [12]. Though these approaches are independent
of the limitations of the feature engineering-based methods,
they model users using only one behavior, either temporal
[10], [11], [12], posting type [9], or some other informa-
tion. As a result, a particular behavior-modeling approach
can detect only a specific category of socialbots. Therefore,
behavior modeling-based methods are not generalized for
detecting different types of socialbots; instead, they detect
a particular category, depending on the type of information
used to model the users.

Neural networks are showing applicability in diverse
applications where other categories of approaches were
prevalent. Similarly, to overcome the limitations of the ex-
isting categories of approaches, researchers are exploiting
the advancements in deep neural networks for socialbots
detection. However, it is largely unexplored except few ap-
proaches like the ones that are reported in [13], [14], [15]. The
deep learning-based models solved the limitations of feature
engineering-based approaches because they do not employ
manual and hand-crafted feature engineering, and thereby

they do not include human biases. Further, if we provide
different types of information to deep neural networks, it
will extract patterns from each category of information. Like
behavior modeling and graph-partitioning approaches, the
existing deep learning methods also do not employ all the
aspects of user behavior to model the automation. For ex-
ample, [14] used only profile information; hence, botherders
can easily circumvent it through manual creation of profiles.
On the other hand, [13], [15] used temporal and content
information, ignoring profile, activity-type, and inter-activities
information. Therefore, these approaches can detect only
specific classes of socialbots. Further, none of the existing
deep learning methods uses the strength of a hierarchical at-
tention mechanism while learning user representations. This
study attempts to fill these research gaps and models OSN
users through integrating the cues from a comprehensive set
of profile, temporal, activity, and content information extracted
by employing a BiLSTM, CNN, and hierarchical attention-
based model.

1.3 Our Contributions

This paper presents a BiLSTM, CNN, and attention-based
deep neural network model, DeepSBD, to profile users for
detecting socialbots on OSNs. To the best of our knowledge,
this is the first deep learning-based approach that jointly
models a comprehensive set of profile, temporal, activity, and
content information for user behavior representation. The
DeepSBD has three levels of novelty – (i) it avoids the
tedious task of human-assisted feature engineering, and
extracts features using BiLSTM and CNN from the vector-
based representation of profile, temporal, and activity infor-
mation and embedding-based representation of content in-
formation, respectively at two different levels of granularity,
(ii) unlike existing behavior modeling approaches that use
only one behavior, DeepSBD models user behavior by inte-
grating the cues from a comprehensive set of profile, temporal,
activity, and content information, and (iii) DeepSBD learns
user representations by using a novel hierarchical attention-
based CNN-BiLSTM architecture to identify regularities in
the users’ behavior.

The existing deep learning methods for socialbot de-
tection solve the limitations of the features engineering-
based approaches. However, they do not model all different
behavior of a user, disregarding the fact that adversaries
can design socialbots for varied purposes. Further, none of
the existing deep learning methods uses BiLSTM and atten-
tion mechanism that are the state-of-the-art techniques for
learning representations through incorporating bidirectional
contextual information. The main idea behind DeepSBD is
to learn contextual representation of each behavioral aspect
of the users’ personality. To this end, DeepSBD models the
bio of the users using their basic profile attributes which
makes it capable of monitoring and detecting the bots
created through the automation tools. DeepSBD models the
temporal behavior of the users to capture the diurnal and
periodic patterns in their tweet times. The temporal modeling
can detect the scheduling algorithm-based operating bots.
On Twitter, a user can post plain tweet, retweet, quoted
tweet, and reply. We encode the tweet posting behavior
of the users as a sequence of these four types of tweeting
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for detecting socialbots that are programmed to perform
a particular pattern of activities. Moreover, tweet content
is encoded using embedding vectors to track coherence in
user-generated contents. Finally, all behavior vectors are
fused to a novel and unified hierarchical attention-based
CNN-BiLSTM model to learn different user behavior rep-
resentations.

In short, the main contributions of this paper can be
summarized as follows:

• Developing a novel CNN and BiLSTM-based deep
neural network model with attention mechanism,
DeepSBD, which integrates the strength of feature
engineering, behavior modeling, and deep neural
network in a unified manner for socialbot detection.

• User representation learning through joint modeling
of profile, temporal, activity, and content information
using the attention-aware DeepSBD model.

• Performing a detailed empirical evaluation of
DeepSBD with seven state-of-the-art socialbot de-
tection methods of different categories.

• Exploring the most commonly used data balancing
method, SMOTE (synthetic minority oversampling
technique), to judge the efficacy of DeepSBD over
imbalanced datasets.

2 RELATED WORK

Boshmaf et al. [4] classified the socialbot detection ap-
proaches into two categories – machine learning and graph
partitioning-based approaches. Ferrara et al. [16] presented
a detailed description of socialbots and discussed their
role as a facilitating entity in various malicious activi-
ties on different OSNs. The authors further classified the
existing socialbot detection methods into four categories
– (i) graph-based, (ii) crowd sourcing-based, (iii) feature
engineering-based, and (iv) hybrid approaches. Since the
crowd sourcing-based approaches are manual, unscalable,
and infeasible, they did not receive enough attention. Based
on the underlying methodologies, this study groups social-
bot detection approaches into four categories – (i) feature
engineering, (ii) graph partitioning, (iii) behavior modeling,
and (iv) deep learning-based approaches that are briefly
reviewed in the following sub-sections.

2.1 Feature Engineering-Based Socialbot Detection
In this category of methods, researchers devise hand-crafted
features from user profile, connection network, and textual
content, and machine learning models are trained over
labeled training datasets. In the early approaches for bot
detection [17], researchers trained machine learning models
using different categories of simple and straightforward
features. Authors in [8], [18] extracted profile-, content- and
interaction-based novel features to train machine learning
models to segregate spambots from benign users. The au-
thors also performed feature ablation analysis. Yang et al. [19]
analyzed the socialbots’ evasive tactics to circumvent the
existing detection methods. Based on the analytical observa-
tions, they devised robust features that are difficult to evade.
OSN service providers also developed their adversarial de-
tection approaches; e.g., Facebook has Facebook Immune

System, which monitors every read and write actions on
the database and labels them as malicious or benign action.

For the first time, Dickerson et al. [20] utilized sentiment-
driven features along with content, network, and linguistic
features to train socialbot classification systems. In one of
the most efficient and popular approaches, Devis et al.
[6] designed more than 1000 features, including simple to
complex ones to train a random forest classifier for labeling
OSN users as socialbot or benign. Most of the existing
feature engineering-based methods characterize users based
on their attributes, but ignore their connecting users and
associated communities. Fazil and Abulaish [7], [21] char-
acterized users using four categories of features, based on
their attributes, followers’ attributes, and communities in
the followers’ network. As detection approaches mature,
socialbots also evolve to bypass the detection systems. So-
cialbots can easily circumvent the feature engineering-based
classification systems by manipulating their behavior as per
the defining features of the detection systems. Hand-crafting
of features is also a time-consuming and tedious task.

2.2 Graph Partitioning-Based Socialbot Detection
In graph partitioning-based approaches, connection net-
work of the OSN users is modeled as a graph G(V,E),
where nodes in V represent the OSN users and edges in
E ⊆ V × V represent their relationships. In this category
of approaches, a graph is partitioned into fake and real re-
gions segregating the benign and malicious users. The links
between the fake and benign users are called infiltration
or attack edges. The graph partitioning-based approaches
assume that sybils or socialbots cannot create sufficient
connections with benign users, and researchers exploit this
intuition to model and partition the connection network.
Viswanath et al. [22] exploited state-of-the-art community
detection algorithms to partition the cohesive groups of
malicious and benign users. Wang et al. [23] presented
the click stream model to cluster sybil and benign regions.
The authors first analyzed the click transition probability
among sybil and benign users, and then created the activity
sequence of the users based on their click stream data. Next,
a similarity matrix was created based on the similarity
between activity sequences of every pair of users. Finally,
they applied a clustering technique on the similarity matrix
to find sybil and non-sybil regions. In [24], the authors first
presented an analysis of a socialbot injection experiment.
They modeled the OSN users as a graph and applied the
Markov clustering to identify malicious groups.

2.3 Behavior Modeling-Based Socialbot Detection
Researchers have also performed behavior modeling using
sequence and statistical analysis of user activities for de-
tecting socialbots. Zhang et al. [12] performed statistical
analysis on tweet-times and used Pearson’s chi-squared test
for detecting automated accounts. They used visualization
approach based on seconds-of-the-minutes and minutes-of-the-
hours distribution of tweet-times to evaluate the automation
of user accounts. The efficacy of tweet-time for socialbot de-
tection lies in the fact that socialbots are generally activated
using some scheduling algorithms. Pan et al. [11] proposed
another temporal approach to group socialbots and normal
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users. They proposed a burstiness parameter to observe user
activity behavior within a short period. Chavoshi et al. [10]
modeled the sequence of user activities as an activity time-
series data and applied dynamic time warping for detecting a
synchronized set of users considering their activities. The
authors first constructed the activity time-series for each
user and hashed them into multiple buckets using a lag-
sensitive hashing technique. Cresci et al. [9] presented a
biological DNA-inspired approach to encode tweet, retweet,
and reply activities of a user as a digital-DNA. On the
constructed digital-DNA, they applied longest common sub-
sequence analysis to detect synchronous behavior among a
set of users.

2.4 Deep Learning-Based Socialbot Detection

In the first approach of this kind, Cai et al. [13] jointly
modeled the temporal and textual information of users for
detecting socialbots. Ping et al. [15] presented another deep
learning-based model for detecting socialbots using joint
modeling of users based on their temporal, content and other
information like hashtags, URLs, and mentions. However,
these two approaches do not incorporate any information
regarding the type of activities, such as tweet, retweet, or
reply performed by the users. Further, they neither used
profile information nor synchronization in the sequence
of time intervals between consecutive tweets. In another
approach, the authors of [14] used only profile information
with SMOTE for detecting socialbots. Recently, Wu et al.
[25] presented an active learning and deep learning-based
approach for socialbots detection. They expanded labeled
dataset using active learning, and proposed a set of 30
hand-crafted features for user representation. The features
are passed through an attention-aware Residual and BiGRU
network for classification. However, due to initial user rep-
resentation using hand-crafted features, [25] suffers from the
limitations of the feature engineering-based approaches.

3 PRELIMINARIES

3.1 Long Short Term Memory

Recurrent Neural Networks (RNNs) are a type of artificial
neural network to process sequential data for modeling
temporal dynamic behavior. RNN consists of recurrent hid-
den states whose value depends on previous states. Long
Short Term Memory (LSTM) is a type of RNN which
contains memory block instead of self-connected hidden
units. Consequently, LSTM resolves the vanishing gradient
problem. In LSTM, memory blocks consist of memory cells,
that make the neural network intelligent to decide what to
remember and what to forget, enabling it to learn long range
contextual information. Earlier LSTM cells were made up of
three components, namely input gate, output gate, and cell
state. Later, Gers et al. [26] added another component, called
forget gate. Now, a standard LSTM cell is composed of four
components. The input gate at time t, it, controls the flow of
value in a cell through a pointwise addition to update the
cell state to a new value. The updated information is written
to the cell state using equation 1. The output of forget gate
at time t, ft, determines the amount of information to be
erased, as defined in equation 2. The candidate cell value,

C̃t, based on the current input is determined using equation
3. current cell state Ct using C̃t, it, ft, and previous cell
state Ct−1 is updated using equation 4. The final output
ht of the LSTM cell is computed using equation 6, where
ot represents the output of the output gate, as defined in
equation 5. All equations from 1–6 are defined and taken
from [27].

it = σ(Wi · [ht−1, xt] + bi) (1)

ft = σ(Wf · [ht−1, xt] + bf ) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

Ct = ft ⊗ Ct−1 + it ⊗ C̃t (4)

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ot ⊗ tanh(Ct) (6)

In these equations, W and b represent the weight and
bias vector, respectively. The σ() and tanh represent the
sigma and hyperbolic tangent functions, respectively, and
⊗ represents an element-wise multiplication. The classical
LSTM only incorporates historical information from a se-
quence, completely ignoring the information ahead in the
sequence. Bidirectional LSTM (BiLSTM) resolves this issue
by incorporating both backward and forward contextual
information of a sequence. Moreover, deep RNN learns
better low-level feature representation and greater model
complexity. Therefore, in this paper, we have used a stacked
BiLSTM to incorporate both backward and forward contex-
tual information on sequential data, and to have better low-
level feature representation.

3.2 Convolutional Neural Network
Convolution Neural Network (CNN) is a class of artificial
neural networks to process data organized in grid format
like image and text organized as a matrix. A classical CNN
usually consists of two layers – convolution and pooling.
Convolution layer uses a linear mathematical operation,
called convolution, to extract high-level feature map from
input tabular data, whereas pooling layer applies pooling
operation to extract important features from the feature map.
Although CNN was originally developed to deal with im-
ages, it is now extensively used in various natural language
processing and text classification tasks due to its robust
feature extraction power.

3.3 Attention Mechanism
Attention means concentrating on one or more compo-
nents while ignoring others. Focusing on a particular unit
makes the machine learning models more intelligent. In
general, neural network-based classification systems model
data as a numeric vector comprising of low-level features,
wherein all features are assigned same weight irrespective of
their potential of conceptualizing the data. The problem of
equal relevance assignment to all features is resolved using
an attention mechanism, which assigns variable weights
to different features based on their importance. Attention
mechanism can be applied at different levels of granularity
like word, phrase, and sentence [28]. Further, the attention
mechanism enables the neural model to rank features based
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on their relevance. The main idea behind this mechanism
is to compute a weight distribution on the input features
to assign higher values to those features that have higher
ranks. The attention layer consists of an alignment layer,
attention weights, and context vector. First, the alignment
layer computes alignment scores between encoded vector
h = {h1, h2, . . . , hn} and a vertex vector v. Thereafter,
softmax is applied to calculate a probability distribution
αi by normalizing over all the n elements of h, where
i = 1, 2, . . . , n, as given in equation 7. A large αi means that
hi contributes important information to v. The output O of
the attention mechanism is a weighted sum of all elements
in the encoded vector h, as given in equation 8.

αi =
exp(h′

iv)∑n
j=1 exp(h

′
jv))

(7)

O =
n∑

i=1

αihi (8)

3.4 Word Embedding

The distributional representation of words is the latest and
popular method for generating numeric vector representa-
tions that incorporate contextual information. In the existing
literature, such numeric vectors have shown encouraging
results in many natural language processing tasks like
rumor detection [29]. The numeric vector representations
of textual content can be generated at different levels of
granularity, such as word, phrase, sentence, or paragraph.
Moreover, vector operations like addition, subtraction, and
concatenation can be over the vectors of the smaller con-
stituents (word, phrase, or sentence) to get the vector rep-
resentation of the larger constituents (sentence, paragraph,
or document). In an early approach, Bengio et al. [30]
presented a feed-forward neural model for joint learning
of both the word representation and statistical language
model. In a seminal work, Mikolov et al. [31] presented
a computationally efficient approach, word2vec, to learn
the word representation from an unlabelled corpus using
two different representation models – (i) continuous bag
of words, and (ii) skip-gram. In another widely accepted
method, Pennington et al. [32] presented GloVe (Global Vec-
tor) for word representation which is based on a weighted
least square model fitted on global words co-occurrence
count. In the distributed representation, each dimension of
a word embedding represents a latent concept based on the
word’s co-occurrence with other words in the corpus. In this
paper, we have used the freely available pre-trained 200-
dimensional GloVe word vectors, trained on a corpus of 2
billion tweets [32].

4 PROPOSED APPROACH

This section presents an architecture of the proposed
DeepSBD model, which consists of four layers, namely (i)
input layer, (ii) low-level feature representation layer, (iii)
user representation layer, and (iv) output layer, as shown in
figure 1. A detailed description of these layers is presented
in the following sub-sections.

4.1 Input Layer
Since a user is generally characterized in the real-world
based on identity and behavior, DeepSBDmodels OSN users
using both profile and behavioral characteristics. To this
end, the input layer of DeepSBD is used to read profiles,
tweets, and related metadata information to learn user rep-
resentations, as described in the following sub-section.

4.2 Low-level Feature Representation Layer
In the real-world, individuals/communities differ from
each other in terms of physical characteristics and behavior.
This difference in identity and behavior also persists
on OSNs. The users within a community are generally
cohesive in terms of physical and behavioral characteristics.
Likewise, on OSN, socialbot and benign users differ in
terms of profile information, status posting behavior, and
topical inclination. The low-level feature representation
layer extracts fine-grained features from profile, temporal,
activity, and content information using neural network
techniques that represent users’ behavior. A detailed
description of learning different behavior representations of
users is presented in the following sub-sections.

4.2.1 Profile Representation
Users have different profile information on OSN depending
on real-world identity. However, socialbots do not have
any real-world identity and use bogus profile information
like user name, handle, bio description, created either
manually or automatically. To evade the detection systems,
botherder generally creates profiles manually to make
them look real. On the other hand, automatically created
socialbots show regularity in their profile information [14].
The existing literature has used profile information in both
feature engineering and deep learning-based approaches
for detecting socialbots [14], [17]. Therefore, in order to
detect socialbots with regularity in their profile information,
DeepSBD models users’ identity-related information using
12 basic features – status count, followers count, friends count,
favorites count, listed count, account age (in days), follower rate,
friend rate, status rate, followers to friends ratio, default profile
status, and geo enabled or not. The follower rate represents
the number of followers gained by a user per day. Other
average-related features are also computed on per day basis.
We have used simple features that can be directly extracted
from the user profiles (or with little computation) to avoid
manual complex feature crafting. The profile feature vector
Pu is passed to an attention-based two-layers stacked
BiLSTM to learn the low-level profile-based representation
Pu.

4.2.2 Temporal Behavior Representation
While designing socialbots, the activity times are generally
determined using some scheduling algorithms. The activity
times are not completely random, rather they follow a
certain distribution. Therefore, automated accounts possess
a certain level of regularity in the activity timings [12],
[10]. In contrast, activity times of human beings are gen-
erally random and unpredictable. In order to observe the
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Fig. 1: Architecture of the proposed DeepSBD model

(a) Socialbot (b) Benign user

Fig. 2: Temporal distribution of tweeting activities and corresponding tweet counts over a period of 10 days. Y-axis
represents the number of tweets in the respective minute of a particular day

regularity and automation of accounts, modeling of tweet-
times is vital. Therefore, we perform a temporal analysis of
tweet-times to observe the automation of the user accounts.
Generally, bots are programmed to be active – (i) either at a
specific time of the day representing the diurnal pattern, (ii)
or after some specific time-intervals representing the periodic
pattern. As a result, DeepSBD models two types of the
temporal behavior of a user u using temporal information of
either the 30 days tweets (if available) or a minimum of 100
tweets, extracted from u’s timeline. The diurnal and periodic
temporal modeling, described in the following paragraphs,
uses the temporal information of all four types of tweeting
activities – plain tweet, retweet, quoted tweet, and reply.

Diurnal Behavior Representation

As discussed earlier, bots can be programmed to be active
at a specific time of the day, representing the diurnal pattern
[12]. We model such bots using the temporal information of
their tweeting activities. To this end, we divide the Twitter
timeline of a user u in days, wherein each day d ∈ D
is divided into a sequence of time-intervals of 1 minute,
say τ = {τ1, τ2, . . . , τ1440} because 1 day=24×60 minutes,
where |D| represents the day count between the first and
last crawled tweets of u. Further, we assign the number of
tweeting activity by u in a particular minute of the day d to
the respective minute of the day vector du. For example, if
u performs 2 retweet activities, posts 1 tweet, and replies
to a tweet within a minute between 1 : 30 AM to 1 : 31
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(a) A distribution of inter-activity time of a sequence of 100 tweets (b) A distribution of a sequence of 100 activities

Fig. 3: Inter-activity time and activity sequence behavior of a set of four socialbots (one from each of the four socialbot
datasets) and a genuine user

AM, i.e., 91st minute of the ith day di, then 91th index of
the ith day temporal vector diu is assigned a value of 4.
Finally, diurnal temporal behavior representation of diu is
{dvi1, dvi2, . . . , dvi1440}, where dvi1 represents the number of
activities performed by u at the first minute of di. Similarly,
the diurnal temporal vector is constructed for each of the
30 days if the tweets exist; otherwise, a zero vector is
generated. Finally, we concatenate the diurnal temporal vector
of each day of u to create the final diurnal temporal vector Du.
Thereafter, Du vector is passed to an attention-based two-
layers stacked BiLSTM to extract diurnal behavior-based
low-level features T D

u .
The diurnal temporal behavior of a randomly sampled

socialbot and benign user, along with the number of tweet-
ing activities performed in every minute of a day over 10
days, is shown in figures 2(a) and 2(b), respectively. In
both figures, X-axis represents the minute of the day and Y-
axis represents the number of tweeting activities performed
in the particular minute of the day. In these figures, we
visualize the tweet count only for a maximum of 2 tweets
within a minute due to the visibility issue. It can be ob-
served from figure 2(a) that the socialbot shows a diurnal
pattern and gets activated to perform tweeting activity at
some particular minutes of the day. Further, socialbot also
performs 2 activities within a minute on multiple occasions,
like three times on day 6 which is suspicious. On the other
hand, figure 2(b) reveals that the benign user is considerably
random in the temporal distribution of tweet-time and does
not show any diurnal behavior.

Periodic Behavior Representation

The bots can be programmed to be active at a fixed interval
of time with some irregularities, representing a periodic
pattern in inter-tweets time [10]. In this section, we model
such behavior of users to segregate socialbots from benign
users. To this end, we compute inter-activity time between
every pair of consecutive tweets. In this behavior modeling,
we consider the time-stamp sequence of all the four types
of tweets without grouping. Given a user u, if T1 and T2

represent the posting times of tweets t1 and t2, respectively,
then ΔT(1,2) = T2 − T1 represents the inter-activity time
between t1 and t2. Similarly, we compute ΔT between every
pair of consecutive tweets. The set of all inter-activity time
over a set of N tweets of u is represented using ΔTu.
Thereafter, ΔTu is given to an attention-based two-layers
stacked BiLSTM to extract the periodic behavior-based low-
level features T P

u . We investigate the inter-activity time dis-
tribution of socialbots and benign users and observe very
contrasting behavior. Figure 3(a) shows the inter-activity time
distribution of a set of four randomly selected socialbots,
one from each of the four socialbot datasets, and one benign
user. In this figure, the lower four sub-plots represent the
socialbots’ behavior and the uppermost sub-plot represents
the benign user’s behavior. The X-axis and Y-axis represent
the pair of activities and inter-activity time, respectively.
The analysis of the lower four sub-plots reveals that the
four socialbots show certain periodic patterns depending
on the automation strategy designed by their masters. It
can be observed from the second sub-plot at the bottom of
figure 3(a) that the second socialbot shows a strong periodic
pattern with its inter-activity time distribution, showing a
decaying trend. This figure also shows that the third so-
cialbot uses some complex scheduling algorithm to imitate
random behavior, but its inter-activity time distribution still
shows a moderate pattern though not strong. In contrast, the
uppermost sub-plot of this figure reveals that the benign
user does not show any periodic pattern in posting. All
these analyses reveal the use of scheduling algorithms by
the socialbots.

4.2.3 Activity Sequence Behavior Representation

In OSNs, different socialbot perform different activities as
per the necessity of their masters (botherders). There are
bots who are injected to retweet, whereas some reply to
queries (generally in the case of benign bots). Though social-
bots can perform every possible activity like tweet, retweet,
and reply, they follow certain distribution regarding the type
of tweeting activity to perform next. Therefore, sequence of
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activities is a good indicator for socialbot detection [9]. The
DeepSBD models the activity sequence behavior of a user
using all four activities – tweet, retweet, reply, and quoted
tweet. We select 100 tweets for each user to encode their
activity sequence behavior. An equal number of activities
are selected for each user to ensure that the length of
encoded behavior representation for all users is equal. In the
activity sequence representation, each of the four activities
is encoded using a unique number – plain tweet by 0, retweet
by 1, reply by 2, and quoted tweet by 3. For example, given the
recent 100 activities from the timeline of a user u, its activity-
based behavior can be encoded as {01, 12, 13, 04, . . . , 2100},
where 13 represents that the 3rd activity by u is a retweet.
We also perform a visual analysis of activity sequences to
identify the differences in the behavior of socialbots and
benign users. Figure 3(b) represents the example activity
sequence of a set of four randomly selected socialbots
(one from each socialbot dataset) and one benign user. In
this figure, the lower four sub-plots represent socialbots’
behavior, whereas the uppermost sub-plot represents the
benign user’s behavior. This figure shows that the activity
sequences of socialbots follow a certain pattern, wherein the
second and fourth socialbots only post tweets and do not
perform other activities. An interesting observation from
the third sub-plot of the bottom is that the corresponding
socialbot periodically posts a few tweets followed by a
reply. In contrast, the activity sequence of the benign user
shows very random behavior. Further, the encoded activity
sequence of user u is given as an input to an attention-based
two-layers stacked BiLSTM to learn a low-level activity
sequence-based feature representation Au.

4.2.4 Content Behavior Representation
The existing literature has used the regularities in tweet
content for socialbot detection [7]. The DeepSBD extracts
pattern from intra- and inter-tweets content by encoding
tweets in a matrix form using GloVe word-embedding.
Given that a user u has posted N tweets, say, t1, t2, . . . , tN ,
first, tweets are sorted in chronological order. Thereafter,
each tweet ti is tokenized using blank space and each
token (word) w ∈ W is replaced with the respective
distributional representation of word of dimension d using
GloVe vectors. As a result, ithtweet ti of u is represented as
a matrix mui ∈ R

|W |×d. Similarly, each of the N tweets of u
is modeled as a 2D word-embedding matrix. Finally, all the
matrices are concatenated and represented as a 3D matrix
Mu ∈ R

N×|W |×d, which is passed through a deep CNN
containing 2 max pooling layers, placed after the 2nd and
4th convolutional layers. Each convolutional layer contains
k filters F = f1, f2, . . . , fk, each of size s×s. In this work,
we have organized tweets as a 3D matrix to learn both
intra- and inter-tweets regularities. The output of CNN is
passed through an attention layer to learn content-based
low-level contextual feature representation Cu.

4.2.5 Low-level Attention
The previous sub-sections have presented how different
low-level behavior representations (fine-grained features)
can be learned. However, not every feature of a particular
behavior representation is equally important. Therefore, we

TABLE 1: Dataset statistics

Dataset
Number of User Accounts
Original Final

SD1 991 991
SD2 3457 2107
SD3 464 461
SD4 248 248
SD5 5203 3807
GD 3474 1973

use the attention mechanism to assign a variable weight to
all low-level features of a particular behavior representation
depending on their contextual importance. For example,
profile vector Pu of u; if hidden state representation of a
feature f∈Pu is hf , then it is passed to a dense-layer to
learn its hidden representation h′

f , as given in equation 9,
where w and b represent the weight and bias, respectively.
Thereafter, similarity is calculated between h′

f and a vertex
vector vf which represents the importance of f∈Pu. We
also compute the normalized importance score of f using
equation 10. The feature-level context vector vf is randomly
initialized and jointly learned during the training process
[28]. Finally, attention-aware representation of a particular
behavior, say profile, is learned and represented as Pu. It is
computed as a weighted sum of the hidden representation
of each feature f∈P , as given in equation 11. Similarly,
attention-aware representations, T D

u , T P
u , Au, and Cu for

the remaining four behavioral aspects of u are computed.

h′
f = tanh(whf + b) (9)

αf =
exp(h′

fvf )∑
f exp(h

′
fvf )

(10)

Pu =
∑

f

(αfhf ) (11)

4.3 User Representation Layer

This section first combines the low-level feature represen-
tations learned in the previous section such that Bu =
{Pu, T D

u , T P
u ,Au, Cu}. To assign a weight to each of the five

behavior components Bc
u∈Bu, we also apply a component-

level attention using equations 12 and 13, where vc repre-
sents the component-level context vector. The final represen-
tation Uu of u is the weighted sum of the five components,
as given in equation 14.

Bc
u
′ = tanh(wBc

u + b) (12)

αc =
exp(Bc

u
′T vc)

∑
β exp(B

c
u
′T vc)

(13)

Uu =
∑

c

αcB
c
u (14)

4.4 Output Layer (Bot Classification Layer)

The Uu is the higher-level user representation learned from
the low-level representations. At the end, DeepSBD passes
Uu through a dense layer, followed by the softmax function
to classify u as either socialbot or benign user.
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TABLE 2: Parameter Details

Parameter Value
Number of layers in stacked BiLSTM 2
BiLSTM Memory cells 256
Number of CNN layers 6
Number of CNN filters 256
Filter size 3×3 (first three layers) and 2×2

(last three layers)
Max pooling operation 3×3 (after three layers) and 2×2

(after last layer)
Number of neurons in dense layer 1024
Dropout value 0.5
Optimizer Adam
Number of neurons in softmax layer 2

5 EXPERIMENTAL SETUP AND RESULTS

5.1 Dataset Preprocessing

We evaluate DeepSBD over five datasets constructed from
two main datasets out of which one is a benchmark dataset
and second is generated by us. The benchmark dataset is
provided by [33], which contains 4 datasets, namely social
spambots #1 (SD1), social spambots #2 (SD2), social spambots #3
(SD3), and genuine accounts (GD). The DeepSBD is evaluated
over the three socialbot datasets separately to observe its ef-
ficacy over different types of socialbots. We also constructed
a dataset through a socialbots injection experiment on Twit-
ter between January 6, 2016 to February 2, 2016. A detailed
description of the injection process and corresponding sta-
tistical results can be found in one of our earlier works
[34]. In the experiment, we injected 98 socialbots who were
followed by 2907 users consisting of two categories of the
followers. The first category includes users who followed
back the socialbots after being followed by them, whereas
the second category includes users who initiated the con-
nection with the socialbots (i.e., they followed the socialbots
first). Out of these 2907 users, 1248 and 1659 are related to
the first and second categories of the users, respectively. In
this paper, we are concerned only with the second category
because established annotation methods have considered
only the second category of users as probable bots [35].
Finally, we chose a set of 248 users who got suspended by
Twitter as the fourth dataset SD4. The existing literature has
three categories of approaches to create the ground truth
of bots. In the first line of approaches, turkers are hired to
manually annotate a profile as a bot or human using certain
guidelines based on some behavioral characteristics, as used
by the authors who provided the benchmark dataset. The
second category of approaches creates honeypot profiles to
attract users and further label them as bots [35]. Finally,
the third category of methods labels a profile as a bot, if
suspended by the underlying OSN [36]. Based on the second
and third methods [35], [36], we labeled 248 users of SD4 as
bots because these users first created connection with the
injected socialbots (second method) and thereafter Twitter
suspended them (third method). Moreover, to evaluate the
robustness of DeepSBD against different types of socialbots,
we aggregate all the four socialbot datasets to create the fifth
evaluation dataset SD5. We have done it because most of the
existing bots detection approaches show good performance
in detecting a particular category of socialbots, but fail on
other categories of socialbots. In each of the five evaluation

datasets, we selected the negative class users (benign) from
genuine dataset GD. The final version of evaluation datasets
includes only those users who have more than or equal to
100 tweets. In the experimental evaluation, DeepSBD uses
100 tweets from each user. Table 1 presents a brief statistic
of all five socialbot datasets and one genuine dataset, where
the original column represents the number of users in the
provided version of the dataset and final column represents
the number of selected users for evaluation who have more
than 100 tweets.

5.2 Training Details
For experimental evaluation, we used 80% data for training
and remaining 20% data for the validation purpose. We
used a two-layers stacked BiLSTM with 256 memory cells
at each layer to learn profile, temporal, and activity-based
behavior representations. Further, we used a six-layers CNN
with 256 filters of size 3×3 at the first three layers, followed
by a max pooling operation of size 3×3. At the last three
layers, another 256 filters of size 2×2 are used, followed by a
max pooling operation of size 2×2. In CNN, we perform 2D
operations like images because tweet contents of a user are
mapped to a 3D matrix similar to image representation. The
3D representation of content captures better hidden features
from both intra-tweet and inter-tweets representations. The
user representation layer is connected to a dense layer having
1024 neurons. A dropout operation of 0.5 is performed on
the dense layer to reduce the over-fitting effect. The dense
layer is followed by a softmax layer having 2 neurons for
classification, and adam is used as an optimizer. All the
experiments presented in this paper are conducted on a
Linux machine with Intel Xeon processor and 64 GB RAM.
Table 2 lists the parameters used in the proposed model.
Further, DeepSBD is implemented using Python Keras.

5.3 Performance Evaluation Results
We performed the evaluation of DeepSBD over five socialbot
datasets using four standard metrics, namely detection rate
(DR), precision (Pr), F-Score (F1), and accuracy (Acc). The first
row of table 3 presents the performance evaluation results of
DeepSBD over all five datasets. It can be observed from this
table that DeepSBD consistently shows good performance
over all datasets, except SD4. Although DeepSBD does not
show significantly good performance over SD4, it is nev-
ertheless competitive to detect very sophisticated socialbots
like the ones present in SD4. It can also be observed from this
table that DeepSBD shows the perfect performance over SD1

in terms of Pr. Overall, DeepSBD shows best performance
over SD1 in terms of all the four evaluation metrics, as
shown in the first row of table 3.

5.4 Comparative Performance Evaluation
5.4.1 Comparative Evaluation with Deep Learning-Based
Approaches
This section presents the performance comparison of
DeepSBD with three state-of-the-art deep learning-based
methods [13], [14], [15] and three baseline methods. We
implemented the three deep learning-based methods using
the parameter settings specified in the respective papers.
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TABLE 3: Comparative performance evaluation of DeepSBD with three deep learning and three baseline approaches over
five datasets

Approach
SD1 SD2 SD3 SD4 SD5

DR Pr F1 Acc DR Pr F1 Acc DR Pr F1 Acc DR Pr F1 Acc DR Pr F1 Acc
DeepSBD 99.64 100.00 99.81 99.83 99.43 99.45 99.42 99.51 98.40 99.45 98.86 99.38 75.86 81.88 75.34 94.60 97.10 98.85 97.94 97.40
DNNBD 73.72 77.66 75.63 78.20 79.50 79.62 79.56 79.72 43.38 80.32 56.33 66.48 40.32 88.49 55.40 66.17 62.21 67.82 64.89 65.68
DBDM 97.83 100.00 98.82 99.32 98.66 98.00 98.25 98.80 94.27 98.26 95.89 98.54 52.90 61.40 54.10 88.98 94.31 98.95 96.49 95.41
DeBD 97.49 97.73 97.59 97.74 98.39 99.10 98.76 99.12 95.54 96.01 95.81 97.92 52.34 48.98 46.17 88.62 94.49 97.11 95.66 94.97
Baseline-1 98.89 97.91 98.93 98.37 97.80 99.12 98.81 98.89 95.00 96.42 95.53 98.76 47.29 69.61 52.22 90.56 95.76 97.84 96.71 95.84
Baseline-2 99.19 98.39 98.79 98.78 98.46 99.30 98.87 99.01 96.41 99.26 97.61 98.76 53.95 65.08 55.79 90.78 94.06 98.90 96.34 95.58
Baseline-3 98.38 96.91 97.64 97.61 98.10 99.06 98.65 98.83 98.34 96.83 97.92 98.97 78.35 75.31 74.51 94.05 95.34 98.56 96.84 99.17

In [13], Cai et al. presented DBDM to jointly model temporal
and textual information of users for socialbot detection. Sim-
ilarly, Ping et al. [15] presented another deep learning-based
model, DeBD, for socialbot detection by joint modeling of
users based on their temporal, textual, and other informa-
tion like mention, hashtag, and URL. These two approaches
do not incorporate any information regarding the activity
sequence behavior of the users. Moreover, they do not
consider the profile and inter-tweets temporal behavior to
model the automation of users or socialbot detection. In [14],
Kudugunta et al. presented another deep neural network-
based model, DNNBD, which uses only profile information
along with SMOTE for socialbot detection. Additionally, we
created three baselines using the DeepSBD model, based
on the exclusion of different neural network components to
observe their impacts on model performance. It is like an ab-
lation analysis to observe the impact of different components
over performance. In an ablation analysis, a feature/feature
vector/component is excluded from the classification model
to observe its impact on performance evaluation results. In
the first baseline (Baseline-1), we used LSTM in place
of BiLSTM without attention mechanism. Second baseline
(Baseline-2) used LSTM with the attention mechanism.
Finally, third baseline (Baseline-3) excluded the attention
mechanism from DeepSBD to observe its impact on its
performance.

Table 3 presents the comparative results of DeepSBD
with three deep learning and three baseline approaches. In
this table, the best performance for each of the five datasets
is shown in bold typeface. It can be observed from this table
that DeepSBD outperforms the comparison approaches over
all five datasets in terms of all four evaluation metrics,
except for four instances. Over SD5, DeepSBD shows poor
performance in comparison to DBDM and baseline-3 in
terms of Pr and Acc, respectively. DeepSBD also shows
poor performance in comparison to baseline-3 and DNNBD
over SD4 in terms of DR and Pr, respectively. During the
experiment, we found that the DNNBD model is highly incon-
sistent in terms of performance when the same experiment
is repeated multiple times. Therefore, the average evaluation
results for this approach is significantly low in comparison
to DeepSBD and other comparative models. Another inter-
esting observation is that over a large dataset like SD2, all
the approaches show comparative performance. Among the
baselines approaches, it can be observed that the more a
baseline is close to DeepSBD in terms of model configuration
(e.g., Baseline-2 and Baseline-3) closer is its result to the
DeepSBD.

On investigating the baseline results, it is observed that

TABLE 4: Performance evaluation results of BotOrNot and
DeBot approaches

Dataset Bots Statistic
Evaluation Methods

BotOrNot DeBot

Original Suspended or Deleted Active TP FN TP FN
SD1 991 696 295 254 41 6 289
SD2 3457 138 3319 3280 39 4 3315
SD3 464 83 381 338 43 10 371
GD 3472 1011 2461 2410 51 2453 8

exclusion of attention mechanism has the highest impact on
the results over the SD1, SD2, and SD5 datasets. On contrast,
exclusion of attention mechanism along with the replacement
of BiLSTM with LSTM shows the highest impact on the per-
formance over the SD3 and SD4 datasets. Following a critical
analysis of all the evaluation results, we conclude that the
performance of existing methods is dataset dependent and
specific to a socialbot category.

5.4.2 Comparative Evaluation with State-of-the-Art Tools
In addition to deep learning-based models, existing liter-
ature has various state-of-the-art feature engineering and
behavior modeling-based methods like BotOrNot [6] and
DeBot [10] which present their approach in the form of
API services. Both are well-known methods for socialbot
detection. For an account, BotOrNot assigns a bot score
between 0 to 5, instead of a binary classification. We used a
bot score of 4.0 as the threshold, and a user having the bot
score greater than this is labeled as bot. On contrast, DeBot
performs a binary classification to label a user as either
socialbot or genuine. Further, we verified the status of each
user account to filter the suspended and deleted accounts
from the four socialbot datasets and one genuine dataset.
We did this because Twitter has already brought down the
suspended and deleted accounts; therefore, exposed APIs of
[6] and [10] can not verify their status. We do not evaluate
the efficacy of these two methods on SD5 because it is the
aggregation of all four types of socialbots. A brief statistics
of user accounts from the three socialbot datasets and one
genuine dataset in terms of original number of users, suspended
and deleted users, and active users is given in the second,
third, and fourth columns of table 4, respectively. We do not
present the statistics and results of SD4 because all the users
of this dataset are already suspended. Table 4 shows that
approximately 70%, 4% and 18% of the socialbots from SD1,
SD2 and SD3, respectively are already suspended. Further,
we verify the status of identified active accounts passing
their user ids to the exposed APIs of the two methods. Table 4
presents the detection results for both the methods in terms
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TABLE 5: Performance evaluation results of DeepSBD with different ratio of socialbots and benign users

Socialbots and
Benign Users Ratio

Dataset
SD1 SD2 SD3 SD4 SD5

DR Pr F1 DR Pr F1 DR Pr F1 DR Pr F1 DR Pr F1
1:1 100.00 100.00 100.00 98.83 99.33 99.09 100.00 100.00 100.00 87.53 97.09 92.01 97.41 97.11 97.26
1:2 99.64 100.00 99.81 97.87 97.18 97.52 99.28 100.00 99.62 78.63 86.25 82.17 97.32 96.24 96.78
1:5 94.41 97.89 96.12 95.43 95.91 95.67 97.96 95.31 96.62 75.86 81.88 78.34 93.63 95.83 94.72

of TP and FN. It can be observed from the fifth and sixth
columns of this table that BotOrNot shows comparative
performance and detects a significant number of socialbots
as per the defined threshold. However, it is still low in
comparison to the deep learning-based approaches. On con-
trast, the seventh and eighth columns of this table show that
DeBot completely failed to detect the socialbots. However,
at this point, we cannot ascribe the theoretical foundations
of the poor results of DeBot. We also present the results for
genuine users in the last row of table 4.

5.4.3 Comparative Evaluation with State-of-the-Art Feature
Engineering-Based Approaches
The existing literature has many approaches, which use
different categories of information to extract hand-crafted
features for learning classification models. The authors in
[8] and [18] also used profile, content, and interaction-based
hand-crafted features for socialbots detection. The adver-
saries bypass feature engineering approaches like [8] and
[18] by manipulating their behavior as per the designed
features. Although DeepSBD uses a given set of information
along with other information for modeling the automation
and suspicious behavior of users, it does not employ any
manual feature engineering process. The DeepSBD uses
profile, content, temporal, and activity information to observe
the automation cues from each aspect of a user activity to
monitor different types of socialbots. We implemented both
[8] and [18] and trained the Naive Bayes, Decision Tree, and
Random Forest classification models. Table 6 presents the
underlying evaluation results over the four datasets SD1,
SD2, SD3, and SD5. We did not perform the experimental
evaluation over SD4 because values for most of the required
attributes are missing in this dataset. Since Twitter has
already suspended the socialbot accounts of SD4, we could
not extract the missing information. It can be observed from
this table that except for one instance, DeepSBD performs
better than both [8] and [18] over all datasets.

5.5 Results on Different Ratio of Socialbots and Benign
Users
Table 1 reveals that the ratio of socialbots and benign users
in all five datasets is not balanced. For example, the ratio
of socialbots and benign users in SD1 is approximately
1:2, whereas it is nearly 1:8 in SD4. Further, in OSNs like
Twitter and Facebook, the percentage of socialbots is
generally low in comparison to the benign users. In a study,
Varol et al. [2] estimated that approximately 9% to 15%
of Twitter accounts are bots. Therefore, to investigate
the efficacy of DeepSBD on real-network like situation,
this section presents evaluation results on different ratios
of socialbots and genuine users, viz 1:1, 1:2, and 1:5. We
repeated the experimental evaluation over these three ratios

of datasets and observed the respective evaluation results
in terms of DR, Pr, and F1. The dataset with user ratio as
1:1 has an equal number of socialbots and benign users,
whereas dataset with 1:2 ratio has two benign users for
each socialbot. Table 5 presents the evaluation results. On
investigation, we observe that the performance of DeepSBD
is adversely impacted by the ratios of socialbots and benign
users, though not significant. Table 5 shows that when we
increase the ratio of socialbots and benign users (i.e., when
the number of genuine users increases) for all five datasets,
the performance of DeepSBD goes down, and it is significant
in case of SD4. Based on these analyses, we conclude that
an unbalanced dataset adversely affects the performance of
the socialbot detection approaches.

5.6 Behavior Ablation Analysis

This section evaluates the contribution of each of the five
behavioral components using behavior ablation analysis. In
order to observe the impact of a particular behavior, its
underlying behavior vector is excluded from the model, and
the respective result represents the impact of the behavior.
For example, in order to investigate the impact of the profile
feature, its feature vector is excluded from the model and the
performance of the modified model is observed, as shown
in the third row of table 7. Similar experiment was repeated
for all behavior vectors to observe their impact on the model
performance. The behavior ablation analysis results are shown
in table 7. In this table, the evaluation result corresponding
to the behavior component having the highest impact on the
performance is shown in bold typeface. It can be observed
that profile feature shows the highest discriminating power
over SD4, and moderate discriminating power over the
remaining datasets. Similarly, content feature shows good
discriminating power over SD3 and SD5, and little impact
on the remaining datasets. Likewise, periodic temporal be-
havior also shows good and moderate performance over
different datasets. Among the five behavior components,
diurnal behavior shows the least impact on the performance
of DeepSBD. An interesting observation from this analysis is
that different behavioral components show disparate perfor-
mance over different datasets, emphasizing the significance
of using different behavioral features for socialbot detection
which is a limitation of the existing behavior modeling
and deep learning-based approaches. It also endorses the
fact that socialbots are injected in OSNs for distinct rea-
sons, and accordingly their operating behavior and other
characteristics are designed by their botmasters. Therefore,
using a comprehensive set of behavioral features is essential
and effective for modeling different categories of socialbots
which is one of the strengths of DeepSBD model.
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TABLE 6: Comparative evaluation results of DeepSBD with [8] and [18]

Approach SD1 SD2 SD3 SD5

DR Pr Acc DR Pr Acc DR Pr Acc DR Pr Acc
DeepSBD 99.64 100.00 99.83 99.43 99.45 99.51 98.40 99.45 99.38 98.22 98.92 97.80

Naive Bayes
[8] 95.81 93.09 96.82 97.77 88.42 85.74 93.02 94.11 96.39 89.15 95.33 89.26

[18] 66.50 98.38 76.82 96.33 80.45 92.73 63.84 83.83 79.34 87.57 98.46 87.98
Decision Tree

[8] 96.60 97.61 97.07 97.28 94.75 95.67 91.95 94.11 96.06 97.18 97.77 96.82
[18] 96.84 94.92 98.04 96.61 97.27 97.57 92.78 90.90 94.75 95.06 99.02 96.72

Random Forest
[8] 98.52 97.63 96.77 97.75 98.50 96.21 94.86 91.46 97.37 98.09 97.47 96.24

[18] 99.01 98.46 98. 54 99.21 98.37 98.43 96.04 90.90 94.75 97.86 97.32 97. 59

TABLE 7: Performance evaluation results of DeepSBD for behavior ablation analysis

Model
SD1 SD2 SD3 SD4 SD5

DR Pr F1 Acc DR Pr F1 Acc DR Pr F1 Acc DR Pr F1 Acc DR Pr F1 Acc
DeepSBD 99.64 100.00 99.81 99.83 99.43 99.45 99.42 99.51 98.40 99.45 98.86 99.38 75.86 81.88 75.34 94.60 97.10 98.85 97.94 97.40
DeepSBD-P 96.92 99.58 98.11 97.81 96.01 99.62 97.71 97.67 91.05 98.68 94.38 98.35 50.67 47.28 44.90 88.53 94.49 98.98 96.56 95.67
DeepSBD-T D 98.50 97.43 97.92 98.98 99.55 98.21 98.84 98.77 96.20 97.96 96.92 98.76 71.98 73.99 70.14 93.70 94.90 98.18 96.40 95.76
DeepSBD-T P 99.49 97.00 98.19 99.32 99.75 96.61 98.11 96.92 94.40 96.71 95.33 98.76 67.62 59.44 60.05 86.58 97.23 96.79 96.96 96.02
DeepSBD-A 99.50 98.74 99.07 99.30 98.77 98.85 98.78 98.77 92.10 96.65 93.83 97.96 63.49 65.24 60.63 92.13 96.37 97.72 96.99 96.19
DeepSBD-C 97.19 97.56 97.37 96.78 98.46 99.30 98.87 99.01 95.00 96.42 95.53 98.14 73.95 75.08 74.51 90.78 94.06 98.90 96.34 95.58

TABLE 8: Training time of DeepSBD and other deep
learning approaches

Dataset
Training time (in sec)

DeepSBD DBDM DeBD DNNBD
SD1 311.59327 289.5386 161.6182 11.0073
SD2 428.5452 397.6422 273.6716 12.7356
SD3 255.7353 238.9604 107.120 9.8362
SD4 248.5316 218.3477 85.5257 8.7645
SD4 634.9055 564.2776 441.3769 19.9573

5.7 Training Time Analysis
This section investigates the training time cost/epoch (in
seconds) of both DeepSBD and existing deep learning-
based socialbot detection approaches. Table 8 presents the
underlying evaluation results. It can be observed from this
table that the training time cost of DeepSBD and DBDM
is comparable. Furthermore, both are the best performing
approaches in terms of F1-score and accuracy. DNNBD is com-
putationally fast, having a smaller training time cost/epoch
because it trains the model using a small set of profile
attributes. However, DNNBD is unstable and shows poor
evaluation results. Though DeepSBD is comparatively slow,
such a small difference in computation cost is not an issue
in the current era of GPU and TPU. However, in terms of
accuracy, DeepSBD performs better than the SOTA deep
learning, feature engineering, and behavior modeling-based
approaches. Hence, considering both accuracy and compu-
tational efficiency, DeepSBD is better.

6 CONCLUSION AND FUTURE WORK

This paper presents a deep neural network-based model,
DeepSBD, for detecting socialbots on Twitter. It is an
attention-aware deep neural network model, which jointly
integrates the cues from four information categories using
five behavior representations. Unlike existing approaches
which exploit only one or two behaviors, DeepSBD is the

first deep learning approach which models user represen-
tations using a comprehensive set of profile and behavior
information, because socialbots are injected in OSN with
different targets and thereby they show different behavioral
patterns. DeepSBD jointly models users’ behavior using
CNN and BiLSTM architectures. It models the profile, tem-
poral and activity information as sequences, which are fed to
a two-layers stacked BiLSTM, whereas content information
is given to a deep CNN. The DeepSBD is evaluated over
five real-world datasets and performed better in comparison
to the existing state-of-the-art deep learning, feature engi-
neering, and behavior modeling-based methods. Extending
DeepSBD for other social media platforms and developing
its API for academic and research use are the potential
future directions of research.
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