
1

HOCTracker: Tracking the Evolution of
Hierarchical and Overlapping Communities in

Dynamic Social Networks
Sajid Yousuf Bhat and Muhammad Abulaish,Senior Member, IEEE

Abstract—In this paper, we propose a unified framework, HOCTracker, for tracking the evolution of hierarchical and overlapping

communities in online social networks. Unlike most of the dynamic community detection methods, HOCTracker adapts a

preliminary community structure towards dynamic changes in social networks using a novel density-based approach for

detecting overlapping community structures, and automatically tracks evolutionary events like birth, growth, contraction, merge,

split, and death of communities. It uses a novel and efficient log-based approach to map evolutionary relations between

communities identified at two consecutive time-steps of a dynamic network, which considerably reduces the number of community

comparisons. Moreover, it does not require an ageing function to remove old interactions for identifying community evolutionary

events. HOCTracker is applicable to diirected/undirected and weighted/unweighted networks. Experimental results have shown

that community structures identified by HOCTracker on some well-known benchmark networks are significant and in general

better that the community structures identified by the state-of-the-art methods.

Index Terms—Social network analysis, Overlapping community detection, Community hierarchy, Community evolution

F

1 INTRODUCTION

COMMUNITY mining research from social net-
works has recently gained significant popular-

ity with an aim of analyzing mesoscopic structure
of networks and their evolution. As a result, nu-
merous methods related to community mining have
been proposed in literature [1], [2]. Communities in
social networks often map to important functional
groups making their detection a highly desirable task.
However, the problem of community detection in
social networks depends on various factors, including
whether the definition of community relies on global
or local network properties, whether communities
overlap, whether communities possess a hierarchical
structure, whether link weights are utilized, whether
outliers are considered, and whether dynamic nature
of networks/communities is considered.

1.1 Overlapping and Hierarchical Communities

An open challenge related to community detection is
the identification of overlapping communities which
exist when a particular node of a network simulta-
neously belongs to several communities. The most
popular method for identifying overlapping commu-
nities is the CPM (aka CFinder), which is based on
percolating k-cliques (i.e., a complete subgraph of k

nodes) from an underlying network [3]. Later on,

Sajid Yousuf Bhat is a Research Scholar at the Department of Com-
puter Science, Jamia Millia Islamia, New Delhi-25, India (E-mail:
s.yousuf.jmi@gmail.com)
Muhammad Abulaish (corresponding author) is an Associate Professor
and Head of the Department of Computer Science, Jamia Millia Islamia,
New Delhi-25, India (E-mail: abulaish@ieee.org)

various methods including MOSES [4] and SHRINK [5]
were proposed to identify overlapping communities
in social networks. Recently, Xie et al. [6] and Gre-
gory [7] proposed overlapping community detection
methods SLPA and COPRA, respectively that are based
on label propagation, wherein community labels are
propagated between nodes according to pairwise in-
teraction rules.

None of the methods mentioned above consider
the hierarchical structure of communities. However,
in order to provide appropriate information about
the modular structure of a network, it is desirable
to detect overlapping communities along with their
hierarchical organization wherein multiple smaller
communities are embedded within larger communi-
ties or a community may be a part of even larger
communities. Kumar et al. [8] proposed HOC which
uses a topological overlap criteria to define the simi-
larity between two arbitrary nodes in a network to
identify clique-based communities. Lancichinetti et al.
[9] presented OSLOM which is able to detect a hier-
archical community structure by repeatedly applying
the community detection algorithm on intermediate
super-networks of detected communities. Both HOC

and OSLOM are multi-resolution community detection
methods as they have a freely tunable resolution
parameter which allows them to identify communi-
ties at varying levels of resolutions, thus forming a
community structure hierarchy.

1.2 Community Evolution in Dynamic Networks

Another major challenge for community analysis lies
in the dynamic and evolving nature of online social

Final version of the accepted paper. Cite as: S. Y. Bhat and M. Abulaish, HOCTracker: Tracking the Evolution of Hierarchical and Overlapping Communities
in Dynamic Social Networks, IEEE Transactions on Knowledge and Data engineering, Vol. 27, Issue 4, pp. 1019-1032, 2014.

Copyright © 2014 IEEE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2014-02-0143 2

networks with time, as most often i) new members
join the network, ii) existing members leave the net-
work, and iii) members establish/break ties and/or
change intensity/weight of interactions with other
members. Consequently, all these evolutionary events
result in birth, growth, contraction, merge, split, and death
of communities with time. Therefore, it is desirable to
identify the structural changes that occur in commu-
nity structures of a social network when nodes and
links are added, removed, or modified.

According to the formulation of the dynamic com-
munity detection problem in [10] and [11], social
interactions of certain individuals of a network are
observed along a discrete time-scale, resulting in
several subgraphs at each time-step. Based on these
subgraphs, communities and their developments over
time are identified in such a way that most interac-
tions are explained by the inferred community struc-
tures. However, the bipartite mapping of communities
for two subgraphs in these methods assumes either
zero-to-one or one-to-one mapping between nodes,
and hence they do not identify merge or split events.
Alternatively, Greene et al. [12] proposed a heuristic
threshold-based method which allows many-to-many
mappings between communities across different time-
steps, thus enabling the detection of merge and split
events. In [9], the authors proposed OSLOM which
starts from any initial partition from the previous
state of a network and uses it for a closer analysis of
communities at next time-step to facilitate community
evolution tracking.

One of the major issues associated with the methods
mentioned above is the determination of an optimal
similarity threshold value. To overcome this problem,
Wang et al. [13] proposed an approach in which im-
portant (core) nodes of communities are determined
on the basis of their centrality values in the network,
and mapping of communities is performed on the
basis of the common core nodes between a pair of
communities at different time-steps. However in this
approach, all possible community pairs of two consec-
utive time-steps need to be considered and checked
against each other.

As pointed out in [14], most of the dynamic commu-
nity detection methods have a common limitation to
study community identification and community evo-
lution problems separately. In other words, communi-
ties are first identified at different time-steps and then
similarities among them at different network states
are established to explain their evolutionary relations.
However, it is possible that community structures
at two different time-steps vary drastically due to
undesirable changes in the network and thus make it
difficult to explain meaningful evolutionary relations
between them. Therefore, it is desirable to analyze
communities and their evolution in a unified manner
where community structure itself provides evidence
about its evolution. To this end, Cazabet et al. [15]

proposed a robust overlapping community detection
method, iLCD, which adapts an initially detected
community structure to track the changes occurring
in a dynamic network. However, it considers only the
addition of new edges and nodes and identifies merge,
growth, and birth events for community evolution.
Similarly, Lin et al. [14] proposed FaceNet, which
adapts an evolutionary clustering algorithm to iden-
tify community sequences with temporal smoothness.
However, the main limitations of FaceNet is the re-
quirement for specifying the number of communities
manually, and low scalability due to large number
of matrix computations involved. Similarly, AFOCS
[16] adapts a previous community structure to the
dynamic changes in a network, including removal of
nodes and edges. However, it complicates the process
by defining a number of distinct actions and cases to
be considered for addition and removal of nodes and
edges in a dynamic network.

An adaptive density-based method, DENGRAPH-IO,
for finding overlapping communities in dynamic-
weighted networks is presented in [17]. However,
some limitations of DENGRAPH-IO include the re-
quirement of two input parameters (ε) and (µ) for
defining the community density, works only for
weighted networks, provides no efficient method to
explicitly map communities at two consecutive snap-
shots of a network to define evolutionary relations
between them (if any), and it requires an ageing
function (often difficult to determine) to remove old
interactions from the network.

1.3 Our Contributions

In this paper, we propose a unified framework,
HOCTracker, which exploits a novel density-based
approach to track the evolution of hierarchical and
overlapping community structures in dynamic social
networks. It is an extended and much improved ver-
sion of our earlier works [18] and [19]. HOCTracker
is generalized to identify community evolution by
detecting birth, death, merge, split, growth, and shrink
events of communities in an evolving network. It
aims to address most of the issues related to the
DENGRAPH-IO and provides a simple and efficient
solution to track the evolution of overlapping commu-
nities in dynamic social networks. Moreover, the pro-
posed framework is applicable to directed/undirected
and weighted/unweighted networks. In summary,
besides the novel features of CMiner presented in
our previous paper [19], HOCTracker possesses the
following unique features:

• Unlike most of the dynamic community detec-
tion methods, HOCTracker adapts a preliminary
community structure (identified through a novel
density-based overlapping community detection
approach) to the changes occurring in a network
and processes only active nodes for the new time-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2014-02-0143 3

step, instead of processing all nodes for every
new time-step.

• It presents the design of an intermediate evo-
lution log and maintains while adapting com-
munities, which later on simplifies the task of
identifying evolutionary mappings between the
community structures of two consecutive time-
steps.

• It provides heuristics to automatically determine
a good approximation for the resolution parame-
ter (η), which is also used to identify hierarchical
structure of overlapping communities.

Table 1 presents a summary of the distinguishing
characteristics of HOCTracker against some of the
recently proposed state-of-the-art methods, and it can
be observed that HOCTracker aims to address all
important issues related to the community analysis
problem.

TABLE 1: Distinguishing characteristics of
HOCTracker

Community Community Community Edge Outliers
Overlap Evolution Hierarchy Weights

HOCTracker X X X X X

AFOCS[16] X X × × X

CFinder[3] X × X X X

SLPA[6] X × X × ×
OSLOM[9] X X X X X

COPRA[7] X × × X ×
MOSES[4] X × × × X

SHRINK[5] X × × X X

iLCD[15] X X × × X

GraphScope[20] × X × × ×

The rest of the paper is organized as follows. Section
2 presents the design of HOCTracker. Sections 3 and
4 present the community evolution tracking process.
The issue of identifying hierarchical communities is
discussed in section 5. Section 6 presents experimental
results, followed by a conclusion in section 8.

2 PROPOSED FRAMEWORK

The proposed framework, HOCTracker, follows a
density-based approach to identify communities in a
social network. For density-based clustering methods
(e.g., DBSCAN[21]), a cluster is searched by detecting
the neighborhood of each object in the underlying
database. The neighborhood of an object p relies on
the distance between p and other objects in the un-
derlying database, wherein an object q belongs to the
neighborhood of an object p if the distance between
p and q is less than or equal to a threshold (ε). In a
graph-based context, however, a node q belongs to the
neighborhood of a directly connected node p only if the
(structural) distance between p and q is less than or
equal to a threshold (ε). If the neighborhood of a given
radius (ε) of an object p contains more than µ objects,
a new cluster with p as a core object is created. The
process then iterates to find density-reachable objects
from the core objects and defines a density-connected
cluster as a maximal set of density-connected nodes,
which is illustrated in figure 1. The main drawback of

�����������	
��
�
�

�

�

�
�

�

�

�

�

�
��

����������	��
����
����

���
�

�
��

���	��
����
����

���
�

��
�
��	
�
���

���	��
����������

�
�
�
�
�
�

�
��
�
����
�

��
�

�
��
���
���
���
���
���
���
���
�

����
����� ����	���
�����

�

Fig. 1: A density-connected cluster

traditional density-based community detection meth-
ods is the requirement of two input parameters – a
global neighborhood threshold (ε) and a minimum
cluster size (µ). Therefore, HOCTracker does not
require the global neighborhood threshold parameter
(ε) to be set manually at the beginning of the process.
Instead, it uses a local representation of the neighbor-
hood threshold which is automatically calculated for
each node locally. Moreover, a local version of µ is
also computed for each node automatically based on
an input resolution parameter (η), which can be tuned
as required or can be estimated using a heuristic ap-
proach presented as Appendix B in the supplementary
document of this paper.

2.1 Preliminaries

An important component of density-based commu-
nity detection methods is a distance function used
to decide whether a pair of nodes can belong to the
same community or not. The commonly used dis-
tance/similarity functions include Jaccard coefficients,
Cosine similarity, and topological overlap which only
consider the undirected and unweighted nature of
networks. For HOCTracker, we define a novel dual-
layered distance function which is generalized for
each directed/undirected and weighted/unweighted
networks. Considering the social network as a graph
G = (V,Ew), where V is the set of nodes representing
users and Ew ⊆ V × V is the set of weighted links
between the users, the proposed distance function is
defined as follows.

2.1.0.1 Layer-1: It should be noted that the dis-
tance is measured only between those node pairs that
are directly linked and have reciprocating interactions
between them as they are expected to be less distant
(more similar) than otherwise. In case of undirected
networks, each link is considered to be reciprocating
by treating it as a set of two oppositely directed links
with the same weight as the original link. Given these
considerations, the first layer of the distance function
for two reciprocating nodes p and q is represented
by equation 1, where Vp and Vq are sets of nodes to
which nodes p and q have outgoing links/interactions
respectively, and Vpq is the set of common nodes
to which both p and q have outgoing links in the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2014-02-0143 4

network.

dist(p, q) =

{

∆(p, q) if |Vpq | > (η ×min(|Vp|, |Vq |))− 1

1 otherwise
(1)

In equation 1, ∆(p, q) represents the layer-2 of the
distance function which is discussed shortly and η

(0 < η ≤ 1) is an input parameter which specifies the
resolution at which communities need to be identified.
In simple terms, the first layer of the distance function
ensures that the distance between two reciprocating
nodes p and q is computed at the second layer only if
the fraction of their commonly interacted nodes forms
a significant fraction of the total outreached nodes
of either p or q, i.e., min(|Vp|, |Vq|). Otherwise, the
distance between p and q is taken as 1 (maximum).

2.1.0.2 Layer-2: The second layer of the distance
function takes the intensity of interactions between
nodes (link weights) into consideration. It is based
on the assumption that if a node p has outgoing
links (interactions) to a node q and a set of nodes
Vpq (to which q also has outgoing links) then the
similarity/distance between p and q can be measured
in terms of the amount of response from q and nodes
in Vpq to the interactions of p and vice versa. Formally,
the response of node q and the nodes in Vpq to the
interactions of node p is measured as the average
of the amount of per-node reciprocated interactions
(edge weights) of q and the nodes in Vpq towards p,
represented by δ(p, q), as given in equation 2, where
I←→pq represents the amount of reciprocated interactions
(weight) between two nodes p and q, i.e., minimum
of the amount of interactions from p to q and q to p.

δ(p, q) =







(

∑

s∈Vpq
(I←→ps)+I←→pq

|Vpq|+1

)

if I←→pq > 0

0 otherwise
(2)

Finally, the symmetric distance between two nodes
p and q, ∆(p, q), is taken as the maximum of their
mutual directed-response (or minimum of the reciprocals
of their mutual directed-response) values normalized by
their respective total weight of outgoing interactions
(represented by I−→p and I−→q respectively) in the interac-
tion graph, as given in equation 3. The dual-layer dis-

∆(p, q) =







min

(

δ(p,q)−1

I−→p
,
δ(q,p)−1

I−→q

)

if δ(p, q) > 0 ∧ δ(q, p) > 0

1 otherwise
(3)

tance function thus defined measures the amount of
maximum average reciprocity among two nodes p and
q and their common neighbors, provided the overlap
of their neighbors is significant. Smaller values of
∆(p, q) represent higher response between nodes p

and q and translates to more closeness between p and
q.

Given a distance measure, we need to specify a
neighborhood threshold to mark the boundary for any
given node as required by density-based methods.
However, instead of manually specifying the thresh-
old value, we determine a local neighborhood threshold
for a node p as the average per-receiver reciprocated
interaction score of p with all its outreached neigh-
bors. Formally, the local neighborhood threshold of
a node p (εp) is defined using equation 4, where Vp

represents the set of nodes to which p has out-links,
I←→p represents the number of reciprocated interactions
of a node p (i.e.,

∑

∀q∈Vp
min(I−→pq, I−→qp), where I−→pq rep-

resents the number/weight of interactions from node

p to node q, and
I←→p
|Vp|

represents the average number

of reciprocated interactions between p and all other
nodes in V to which p has out-links. The denominator
I−→p represents the total count of outgoing interactions
of node p and it normalizes the value of εp in the
range [0, 1].

εp =











(

I←→p
|Vp|

)−1

I−→p
if |Vp| > 0 ∧ I←→p > 0

0 otherwise

(4)

Based on the distance function dist(p, q) and lo-
cal neighborhood threshold εp, we define a local εp-
neighborhood of a node p as the subset of p’s out-linked
nodes (i.e., Vp) with which its distance is less than or
equal to εp. Formally, the local εp-neighborhood of a
node p can be defined using equation 5.

Np = {q : q ∈ Vp ∧ dist(p, q) ≤ εp} (5)

In simple terms, we can state that Np contains those
neighbors of p in the network that have a significant
topological overlap with p and an above-average in-
teraction intensity with p in the network neighbor-
hood. This approach thus aims to find areas of high
structural density (than the surrounding) to constitute
a community.

Formally, for a given resolution fraction (η), a
density-based community is realized by the following
two key definitions.

Definition 1 (Core node). A node p ∈ V having non-
zero reciprocated interactions with any of its neighbor(s) in
Vp is defined to be a core node if its local εp-neighborhood
contains at least µp (local minimum-number-of-points
threshold for p) of nodes in Vp, as given in equation 6,
where µp = η × |Vp|.

COREη(p) ⇔ |Np | ≥ µp (6)

Definition 2 (Mutual-cores). Two nodes p, q ∈ V are
mutual-cores if both p and q are core nodes, and p be-
longs to local εq-neighborhood and q belongs to local εp-
neighborhood.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2014-02-0143 5

The basic aim is to find all maximal sets of con-
nected core nodes such that for each pair of nodes in a
maximal set there exists a chain of nodes v1, v2, . . . , vn
such that vi and vi+1 are mutual-cores for all i ranging
from 1, 2, . . . , n− 1. The set of all such connected
core nodes forms the mutual-core connected maximal
subgraph (MCMS) of a community. A community is
then defined as the union of an MCMS (backbone
of the community) and local εp-neighborhoods of
each core node p in the MCMS. The set of all such
possible communities identified forms the community
structure of an underlying network.

2.2 Finding Initial Community Structure

To find overlapping community structures from an
initial snapshot ℵt of a dynamic network for a given
resolution η, initially all nodes of the network are
marked un-labeled and un-visited. The process ran-
domly selects an un-visited node, say p, to find the
primary community of p by determining whether it is
a core node, and whether it initiates a new community,
joins an existing community, or causes more than
one existing communities to merge. To this end, local
εp threshold for p is calculated using equation 4. If
εp is greater than zero, then the dual-layer distance
function dist(p, q) is used to determine the Np of
p. Finally, if node p qualifies as a core node then
the following steps are followed to find overlapping
communities:

1) Determine a set V of visited nodes in Np with
which p has mutual-core relations and a set U of
un-visited nodes in Np.

2) If V is empty, then p along with all the nodes
in its Np form a new community and their re-
spective community lists are appended with a
new community ID C. A node is assigned to
a new community irrespective of its previous
community allotments, thus allowing a node to
belong to multiple communities. Here, node p

is called a primary core of community C, and
community C is called the primary community
of p. Any core nodes in Np that are not in the
set V are called secondary core nodes of C, and
community C forms their secondary community.

3) If V is non-empty and all core nodes in V have
the same primary community C then p also
forms a primary core of community C and the
respective community lists of all the nodes in Np

including p are appended with the community
label C.

4) If V is non-empty and some core nodes in V have
different primary communities, then the primary
communities of the nodes in V are merged to
form a single community. The community IDs of
the merged communities for all visited density-
reachable nodes of p are replaced with a new
community ID. The primary core nodes of the

Algorithm 1: AdaptCS(ℵt+1, Cη, η
′

, S)

/* ℵt+1 is the social network state at time

t+ 1 */

/* Cη is the community structure identified by

HOCTracker at a particular value of η on the

network state ℵt */

/* η
′
is the value of η at which new community

structure is to be determined */

/* S is the set of all candidate nodes whose

neighborhood re-computation could result in

the change of the known community structure */

1 begin
2 Mark all nodes of S in the social network ℵt+1 as

un-visited;
3 foreach Remaining un-visited node p in the network do
4 enqueue(p); /* Standard insert operation on

a Queue */

5 while Queue is not empty do
6 p← dequeue(); /* Standard removal

operation on a Queue */

7 p.waiting ← false;
8 Nt

p ← Np; /* Save p’s current local

neighborhood */

9 Re-compute the local neighborhood of p at t+ 1,

i.e., Nt+1
p , based on ℵt+1;

10 Np ← Nt+1
p ; /* Set the new

neighborhood of p as its current

neighborhood */

11 Compare Nt
p with Nt+1

p to check the following
conditions;

12 if p emerges as a new core node then
13 Determine the set S of visited mutual-core

nodes of p from Nt+1
p ;

14 Birth Expand Merge(p, S);
15 else if primary core node p of a community C loses

its core property then
16 Determine the set S of mutual-core nodes of

p from Nt
p;

17 Death Shrink Split(p, S, C);
18 else
19 if Core node p gains a set of nodes ∨ ∃ a visited

mutual-core node of p in Nt+1
p which has a

different primary community than p then
20 S ← Visited mutual-core node of p in

Nt+1
p which have a different primary

community than p;
21 Add p to S;
22 Birth Expand Merge(p, S);
23 end
24 if Primary core node p of community C loses a

set of nodes then
25 S ← Mutual-core nodes of p from Nt

p

which are not in Nt+1
p ; /* Here it

should be noted that to find

the old mutual-core nodes of

p, the current neighborhoods

of the nodes in Nt
p are

considered */

26 Add p to S;
27 Death Shrink Split(p, S, C);
28 end
29 end
30 Mark p as visited;
31 foreach un-visited node q in Np do
32 if not q.waiting then
33 enqueue(q); /* Standard insert

operations on a Queue */

34 q.waiting ← true;
35 end
36 end
37 end
38 end
39 end

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2014-02-0143 6

merged communities along with node p form the
primary core nodes of the new merged commu-
nity, and the community lists of each node in Np

is appended with the new community ID.
5) Mark node p as visited.
6) For each node q in U , if q is not marked as waiting

then mark it as waiting and add into the queue.
7) Repeat steps 1-6 for each node removed from the

queue until it is empty.

In case node p does not qualify as a core node, it
is simply marked as visited (it may be added as a
non-core node for some other communities in later
iterations). Steps 1−7 are repeated for each remaining
un-visited node in the network. This process is gener-
alized for dynamic networks and formally presented
as algorithm 1. To find community structures from
an initial snapshot ℵt of a dynamic network (or a
static network) for a given resolution η, algorithm 1 is
called as AdaptCS(ℵt,∅, η, S) where S is the set of all
nodes in the given network state, and ∅ represents a
previously empty community structure.

Real-world social networks often contain noise or
outliers (i.e., nodes that do not belong to any com-
munity) and hubs (i.e., nodes that do not belong to
a particular community but connect multiple com-
munities and thus play an important role in infor-
mation brokerage and diffusion within a network
and across communities). Therefore, after finding all
possible communities from an underlying network,
HOCTracker labels an un-clustered/un-labeled node
as a hub if it has out-going edges to the primary
core nodes of more than one community, and the
remaining nodes are marked as outliers. However, in
this paper, we have not focused on detecting hubs
from underlying networks.

3 TRACKING EVOLUTIONARY EVENTS

To track the evolving community structures in a dy-
namic network, HOCTracker first finds a prelimi-
nary community structure from an initial state of the
network using the method discussed in section 2.2.
Then for each new state of the network, it identifies
the nodes that have caused the network to change
from its earlier state to the new state. These nodes
are called active nodes as they represent the nodes
among which edge changes occur during a time-
period. The following types of edge changes can occur
in a network:

1) Addition of some edge(s) between a pair of nodes
(either, both, or none of them can be a newly
added node))

2) Removal of some edge(s) between a pair of nodes
3) Removal of all edges between a deleted (re-

moved) node and its previous neighbors.

The active nodes and their respective neighbors (to-
gether called candidate nodes) need to be re-processed
to detect and track community evolution induced

Algorithm 2: Tracker(ℵt,ℵt+1, η)

/* ℵt and ℵt+1 are social network states at

time t and t+ 1, respectively */

/* η is the resolution at which community

structures need to be identified */

1 begin
2 S ← Set of all nodes in the network state ℵt;
3 Ct

η ← AdaptCS(ℵt,∅, η, S); /* Identify initial

community structure */

4 Compare network states ℵt+1 and ℵt to identify the set
A of active nodes ;

5 S ← ∅;
6 foreach node q ∈ A do
7 Add immediate neighbors of q to S; /* i.e.,

node with which q has an edge in the

network state ℵt+1
*/

8 end
9 S ← S

⋃

A; /* Set of candidate nodes */

10 Ct+1
η ← AdaptCS(ℵt+1, Ct

η , η, S); /* Call to adapt

previous community structure around the

candidate nodes on new state ℵt+1 of the

network */

11 G←Map(Log); /* Log is the transition log

maintained by AdaptCS */

/* G is the bipartite graph which now

represents the evolutionary relations

between the community structures Ct
η and

Ct+1
η */

12 end

in the community structure by a timely change in
the underlying network. Re-processing involves re-
determining the local ε-neighborhood of each candi-
date node and comparing it to its previous state to
identify any change in the memberships. Any change
in the local ε-neighborhood of any candidate node
considering the new state of the network can also
result in a change in its local community structure.
The reason behind the consideration of the neighbors
of the active nodes is that in HOCTracker the local
εp-neighborhood of a node is also dependent on the
interaction behavior of its neighbor in a network. So
if a node p interacts with some other node q, besides
re-determining the local εp-neighborhoods of p and
q, we need to re-determine the local ε-neighborhoods
of all the neighbors of p and q to detect the in-
duced changes by the active nodes p and q. This
feature allows HOCTracker to detect all possible evo-
lutionary events (birth, death, merger, split, shrinkage,
and growth) on a growing-only network (involving
node/link additions only) without using an ageing
function to remove old interactions, which is often
challenging to determine for other related methods.

For an evolving network, the candidate nodes can
be determined either by considering a live stream of
changes, i.e., a node p and its neighbors are marked as
candidate nodes as soon as p causes a change (online
processing); or by observing the network over a time-
window to determine the set of nodes inducing some
change to the network which are then re-processed
later (offline processing). In either case, edges and
nodes are added/removed to/from the previous state

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2014-02-0143 7

of the network to form a new time-step network,
and the candidate nodes are re-processed to identify
the changes in their local ε-neighborhoods. This ap-
proach (implemented in algorithm 2) is better than
other approaches wherein a re-clustering of the whole
network is required at each given time-step, as in our
case we only need to consider the active nodes and
their direct neighbors that are comparatively less in
sparse real-world networks. It should be noted that
each new state of the network and its final resulting
community structure form the base-line network and
community structure, respectively for the next state of
the network on which the new changes are expected
to occur. Based on the local ε-neighborhoods and core
node properties of the candidate nodes at a particu-
lar time, HOCTracker models the community-related
evolutionary events as summarized below. Algorithm
1 formally presents the implementation of the evolu-
tionary events tracking process. A detailed description
about the various cases highlighted here is provided
in Appendix A, appearing as a supplemental material
to this paper.

• A new core node emerges: In this case, a previous
non-core node (including an outlier or a newly
added node) in the network becomes a core node.
Such a new core node p may either join the
MCMS of an existing community causing its ex-
pansion, form a totally new community (birth), or
may cause two communities to merge by joining
their respective MCMSs through its Np. These
situations are generalized and handled by algo-
rithm 3.

• A core node becomes a non-core: In this case, an
existing core node loses its core node property
due to some change(s) in its neighborhood. Such
a situation could either split a community due to
a cut in its MCMS resulting from a lost core node,
or shrinkage of a community. These situations are
generalized and handled by algorithms 4 and 5.

• A core node gains nodes (or mutual-core relations)
and/or loses nodes but remains a core: In this case,
the gain or loss of nodes from the local neighbor-
hoods of core nodes can either result in a merge
and growth (for gain of nodes), and/or shrink and
split (for loss of nodes) of communities in the
evolving network. These situations are handled
by algorithms 3 (for gain), and 4 and 5 (for loss).

4 MAPPING COMMUNITIES ACROSS TIME-
STEPS

HOCTracker follows a node-based incremental ap-
proach to track community-related evolutionary
events wherein one (possible candidate) node is con-
sidered at a time and changes induced by it in
the network are accordingly incorporated in the re-
sulting community structure, somewhat similar to
DENGRAPH-IO [17]. This approach results in many

Algorithm 3: Birth Expand Merge(p, S)

/* p is the new core node or an existing core

which gained new nodes and/or mutual-core

relations */

/* S is the set of visited nodes with which p
established new mutual-core relations (in case

p is not a new core node then S also includes

p) */

1 begin
2 if S is empty ∧ p has no primary community then
3 Node p causes the birth of a new community to

which p forms a primary core node; /* Log entry

for birth of new community is also made

*/
4 else if S includes nodes that have the same primary

community C then
5 if p does not have a primary community then
6 p is also made a primary core of community C;

/* causing the growth of the

community C */

7 end
8 else if S includes nodes that have different primary

communities then
9 The distinct primary communities of the nodes in S

are merged to form a new community; /* Log

entry for the merge of communities in S
is also made */

10 The merging community IDs assigned to the nodes
are replaced by a new community ID;

11 Node p also forms a primary core node of the new
merged community;

12 end

13 O ← Nt+1
p − S;

14 foreach q ∈ O which is not labeled with the primary
community of p do

15 The ID of the primary community of p is appended
to the community list of q; /* causing the

growth of the primary community of p */

16 end
17 end

intermediate evolution graphs for the same underly-
ing network, depending on the order of processing of
the candidate nodes 1. For example, figure 2 shows
the sequences of changes induced in the same initial
community structure of a particular network by pro-
cessing the same candidate nodes, but in a different
order. Each encircled alphabet in the figure represents
a community and a labeled directed edge represents
the transition event induced in the community, at its
source, on re-computing the neighborhood of some
candidate node, resulting in the community at its
destination. Both the sequences start with the initial
two communities A and B and finally end up with
three same communities, however the intermediate
transitions are different.

As mentioned earlier, DENGRAPH-IO [17] does not
provide a solution to map the evolutionary relations
between communities across a time-step. Though, a
simple approach to find the mappings between the
communities at two consecutive time-steps could be
to define a threshold of overlap to determine the

1. It should however be noted that irrespective of the order of
processing of the candidate nodes, the final resulting community
structure is the same for a particular state of the network

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2014-02-0143 8

Algorithm 4: Death Shrink Split(p, S, C)

/* p is the node which lost its core property

or an existing core which loses nodes from its

local neighborhood */

/* S is the set of nodes with which p had

mutual-core relations at time t, (If p is still

a core node at t+ 1, then S also includes p) */

/* C is the primary community of p */

1 begin
2 if S is empty then /* Log entry for the death of

community Ci is also made */

3 Remove the community ID of C from node p and
each node in its Nt

p;
4 end
5 else
6 Mark each node in S as un-crawled;
7 k = 1;
8 while ∃q ∈ S which is un-crawled do
9 Select an un-crawled node q ∈ S;

10 Wk ← Crawl(q);
11 Replace the community ID C from all nodes in

Wk with a new community ID;
/* More than one crawls (i.e., k > 1)
means a split of community C wherein

log entries are made accordingly */

12 k ++;
13 end
14 O = Nt

p − S;
15 Add p to O;
16 foreach u ∈ O which is still labeled with the community

ID C do /* these nodes are not retained

by any new form of community C */

17 Remove the ID C from u; /* In case a

single crawl resulted earlier, then

a log entry for the shrinkage of

community C is made */

18 end
19 end
20 end

Algorithm 5: Crawl(p)

/* p is a core node from which a BFS crawl has

to be started to find the set of all

density-reachable nodes from p */

1 begin
2 C ← ∅; /* The crawl is initially empty */

3 enqueue(p); /* A standard insertion into a

Queue */

4 while Queue is not empty do
5 p = dequeue(); /* Standard removal from a

Queue */

6 S ← All mutual-core nodes of p; /* The current

local neighborhood of node q, i.e., Nq

is considered for the crawl */

7 foreach u ∈ S ∧ u /∈ C do
8 enqueue(u);
9 end

10 Add p to C;
11 Mark p as crawled;
12 end
13 T ← ∅;
14 foreach v ∈ C do
15 T ← T

⋃

Nv ; /* Where Nv is the current

local neighborhood of node v */

16 end
17 C ← C

⋃

T ;
18 return C;
19 end

(a)

(b)

Fig. 2: Community transitions after processing nodes
in different orders

similarity between two communities across a time-
step [22], deciding an appropriate level of overlap
may often be difficult. To this end, HOCTracker

maintains an intermediate evolution log (IEL) that
records the intermediate transitions induced in the
communities on processing each candidate node. For
each intermediate community C resulting after re-
computing the local ε-neighborhood of a candidate
node at time t + 1, an entry is made in the IEL.
The IEL consists of the following four fields: i) ID:
It represents the label of the resulting community,
ii) ParentsT : It includes the list of IDs of the actual
communities at time t that have resulted in this com-
munity. These parent IDs are propagated forward as
the parents of any future community resulting from
this community on the network state at time-step
t+1, iii) Transition: It represents the immediate event,
including the IDs of the immediate communities that
resulted in this community. This field can be used to
track the transitions of a particular community on
processing the candidate nodes; however, for only
mapping the communities across time-steps this field
is optional and can be omitted, iv) Live: This is a
flag to represent the status of the community. A value
of 1 represents that the community is currently alive,
whereas a 0 entry represents that the community has
transitioned into some other state. For a new entry this
field is set to 1 (except for a death event for which it is
set to 0) until its representative community transitions
to some other state, wherein the value is changed to
0.

Table 2 shows the final log entries after following
the transition sequence of figure 2b. The sequence
results in three final communities K, M, and N at
time t+ 1 (represented by the entries in the final log

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2014-02-0143 9

TABLE 2: Final Intermediate Evolution Log (IEL) for
the transition sequence of figure 2b

ID Parents
t

Transition Live

A A - 0
B B - 0
D A Split(A) 0
E A Split(A) 0
F B Split(B) 0
G B Split(B) 0
- B Death(G) 0
J A,B Merge(E, F) 0
K A Shrink(D) 1
L A,B Grow(J) 0
M A,B Split(L) 1
N A,B Split(L) 1

where the Live field is 1) from two initial communities
A and B at time t. In order to map the evolution
of communities at time t to the communities at time
t+1, we consider the final live log entries (for which
Live field is 1) and form two sets of community IDs.
One set St+1 contains the IDs of the communities
which are live in the log (i.e., the final communities
at time t + 1) and the other set St contains the IDs
of the actual (parent) communities at time t. Now
for each community C ′ in the set St+1, we form an
undirected link from C ′ to each community C of the
set St, which is present in the Parentst field of the
log entry for community C ′, only if the communities
C and C ′ share a primary core node with the same
local ε-neighborhood. For large real-world networks
consisting of hundreds and thousands of communi-
ties, this approach significantly reduces the number
of comparisons to be made between communities as
compared to [13], [22], [23], [24] (to identify evo-
lutionary relations) as it involves comparing a final
community at time t + 1 to only those communities
at time t which are present in the Parentst field of
its log entry. The resultant from this mapping scheme
is a bipartite graph between the sets St and St+1.
A possible bipartite graph for the log entries given
in table 2 is shown in figure 3. This final bipartite

�

�

�

�

�

����������������������������

Fig. 3: A bipartite graph of community mappings
across a time-step

graph explains the actual mapping and evolutionary
relations between the communities at times t and t+1
as follows:

• A degree greater than 1 in the bipartite graph
for a community C of time t represents a split of
community C into the communities of time t+1,
to which C is linked to in the bipartite graph.

• A degree greater than 1 in the bipartite graph
for a community C of time t + 1 means that the
community C has resulted from the merge of a

Algorithm 6: Map(Log)

/* Log is the intermediate transition log

maintained by AdaptCS for each state of the

network for logging the intermediate

transition events */

1 begin
2 St ← ∅;
3 St+1 ← ∅;
4 foreach entry i in the Log do
5 St ← St

⋃

Parentti ; /* The set of all

community IDs of time t */

6 end
7 E ← ∅;
8 foreach Live entry, for a community C, in the Log do
9 Add C to St+1;

10 foreach community-ID C′ in the Parentt set of the log
entry do

11 if Communities C and C′ share a primary core node
then

12 Form an edge e between C and C′;
/* Forming the edges of a

bipartite graph between the set

St+1 of final communities at time

t+ 1 and the set St of communities

at time t */

13 Add e to E;
14 end
15 end
16 end
17 G← (St, St+1, E); /* The bipartite graph */

18 return G;
19 end

set S of multiple communities (to which C is
linked to in the bipartite graph) of time t. In case
a community C ′ of set S, involved in a merge,
has degree greater than 1 in the bipartite graph,
it means that only a split part of the community
C ′ participated in the merge to form community
C. For example, in the bipartite graph of figure
3, community J has resulted from the merge of
the split parts of two communities A and B.

• A community C of time t, which has no link to
any community of time t+1, represents the death
of community C at time t+ 1.

• A community C ′ of time t+1, which has no link
to any community of time t, represents the birth
of community C ′ at time t+ 1.

• Two communities across a time-step that have a
link in the bipartite graph and each has a degree
of 1 are checked as follows:

– If the community C ′ of time t+1 has the num-
ber of nodes less than its connected commu-
nity C of time t, it means that community C ′

has resulted from the shrinking of community
C.

– If the community C ′ of time t + 1 has the
number of nodes greater than its connected
community C of time t, it means that com-
munity C ′ has resulted from the growth of
community C.

– If the community C ′ of time t + 1 has the
number of nodes same as that of its con-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2014-02-0143 10

nected community C of time t, it means that
community C has suffered no change and is
represented by community C ′ at time t+ 1.

It should be noted that while mapping the com-
munities across multiple time-steps of a dynamic
network, a new evolution log is started for each
new time-step t + 1. The final communities from the
previous time-step t form the initial entries in the
new log. For example, the first two entries in table
2 represent the final communities at time t while the
log is maintained for transitions of time-step t+ 1 as
illustrated in figure 2b. This process finally results in
an m-partite graph (where m represents the number
of time-steps), which gives a step-wise evolutionary
mapping of communities across various time-steps of
a dynamic network.

5 FINDING COMMUNITY HIERARCHY

HOCTracker identifies larger communities for small
values of η, whereas larger values of η yield smaller
communities. Thus, η can be tuned to detect commu-
nities at different levels of granularity, naturally form-
ing a hierarchical community structure. This feature
assigns HOCTracker to the multi-resolution class of
hierarchical community detection methods.

Fig. 4: Color coded dendrogram representation of the
hierarchical overlapping community structure identi-
fied by HOCTracker on Dolphin network

Figure 4 presents the hierarchical overlapping com-
munity structure identified by HOCTracker on the
Dolphins network [25], which reveals that the commu-
nities at η = 50% almost perfectly match the ground
truth (represented by leaf-node shape and color in the
dendrogram). Increasing the value of η from 50% to
60% breaks one of the two communities into three
smaller communities, thus resulting in a total of four
communities with no outliers, and so on.

Unlike traditional community detection methods,
HOCTracker defines the relation between community
structures identified at a level L (for a smaller value
of η) and level L − 1 (for a larger value of η) in
terms of evolutionary mapping between communities
at two consecutive snapshots as discussed earlier.
Communities at level L + 1 can be viewed as re-
sulting from the merge and growth of communities at
level L, besides the birth of new communities, due

to the formation of new core nodes or expansion of
the local neighborhoods of existing core nodes at a
smaller value of η. We call this process as a RollUp
operation on the communities at a given level which
is formally presented as algorithm 1 in Appendix
C. On the other hand, community structure at level
L− 1 can be viewed as resulting from the death, split,
and shrinkage of communities at level L due to core
nodes losing their core property or reduction of the
local neighborhoods of sustaining core nodes at a
larger value of η. We call this process as a DrillDown
operation on the communities of previous level which
is presented as algorithm 2 in Appendix C.

6 EXPERIMENTAL RESULTS

We compare HOCTracker2 with some state-of-the-
art community detection methods on dynamic real-
world networks. The methods include overlapping
community detection method MOSES [4] which has
also been used for dynamic community tracking
in [12]; the dynamic community detection method
AFOCS [16]; and SHRINK [26]. Other methods include
overlapping community detection methods COPRA

[7], SLPA[6], CPM (CFinder) [3] used for detecting
dynamic communities in [23] , OSLOM [9], and iLCD

[15]. For comparison, we have used the best results
generated by each method. It should be noted that, to
the best of our knowledge, no method in literature
implements an explicit way (in its source-code) to
track the evolution of the communities across time-
steps and only gives the final community structure
at the specified time-step. Therefore, we compare the
methods by considering their results at different time-
step graphs of a dynamic network individually and
provide the evolution results for HOCTracker only.

6.1 Results on DBLP Co-Authorship Network

The DBLP Co-authorship network is a subset of the
DBLP 3 dataset consisting of 2, 723 vertices represent-
ing authors. An edge exists between two authors if
they have written a paper together during 1990 to
2010. The dynamic network is divided into 9 time-step
graphs, each depicting co-authorship relations over 5
years ([1990 − 1994][1992 − 1996][1994 − 1998][1996 −
2000][1998 − 2002][2000 − 2004][2002 − 2006][2004 −
2008][2006 − 2010]). In addition, for each time-step
graph, every vertex is associated to a set of 43 at-
tributes corresponding to the number of publications
in each conference/journal during the respective time-
period. The conferences/journals are grouped on the
basis of their concerned areas as listed in table 3. The
information about the number and venue of author

2. The binaries of the implemented algorithms
along with a proper documentation are available at
http://www.abulaish.com/HOCTracker-Binaries-and-
NetworkExamples.zip

3. http://dblp.uni-trier.de/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2014-02-0143 11

TABLE 3: Publication venues of the authors in DBLP
co-authorship network

Group Conferences/Journals

Bio-
Informatics

BioInfo, BMCBio

Data Mining
DMKD, ICDM, PAKDD, KDD, TKDD, StatAnalDtMining,
SIGKDDExp, IDA, SDM, SAC, WWW

Knowledge,
Data and
Information
Systems

IEEETransKnowlDtEn, IEEEIntSys, ICDE, CIKM, KnowlInf-
Syst, ACMTransInfSys, JIntellInfSys, DataKnlEng, InfSys, In-
tellDtAnal, SIGMOD, VLDB, DASFAA, DEXA, WWW

Artificial
Intelligence

IJCAI, AAAI, ECML PKDD, ICML, MachineLearning, ECAI,
JMLR, JIntellInfSys, IntellDtAnal, IEEEIntSys, PatternRecog,
ILP, IDA

Database Sys-
tems

PVLDB, VLDB, VLDBJ, PODS, EDBT, SIGMOD, ACMTrans-
DBSys, DASFAA, ICDT, DEXA

General CommunACM

publications for each time-step is used to evaluate
the significance of authors’ communities identified
by various community detection methods. For per-
formance comparison, we measure the fraction of
nodes in each community that collectively have the
maximum number of publications in the same Jour-
nal/Conference group shown in table 3. This measure,
called as the maximum grouping fraction of a commu-
nity, is averaged for top-10 (largest 10) communities
identified by each method for each time-step graph
of the dynamic DBLP network separately as shown
in figure 5a. A higher value for the grouping fraction
means that the identified communities contain more
authors which tend to publish in related areas. On
analyzing the results shown in figure 5a, it can be
seen that CFinder(CPM), HOCTracker, and COPRA

identify more significant grouping on the individual
time-step graphs of the co-authorship network.

However, it is possible that the higher grouping
score is the result of many tiny communities that
contain very few authors publishing in the same areas.
To further evaluate the significance of the community
structures, we compare the size distribution of the
top-10 communities identified by various methods
on each time-step graph, as shown in figure 5b,
wherein each plot line corresponds to communities
of equivalent size for various time-steps. From figure
5b it can be observed that AFOCS, iLCD, SHRINK, and
MOSES tend to identify small communities (less than
100 nodes) and their grouping fractions (from figure
5a) are also low. SLPA and OSLOM tend to identify
larger communities, but their grouping fraction is still
low. Moreover, OSLOM yields good grouping fractions
for time-steps 1 and 3, but verifying it in figure
5b reveals that it is caused by the large number of
tiny communities (≤ 10 nodes) at these time-steps.
A similar pattern is shown by CFinder as most of
its identified largest communities are tiny. Moreover,
the largest community (blue line in figure 5b) for
CFinder appears to contain the majority of nodes
of the whole network as the time-steps pass. This
may not reveal an acceptable community structure
of the underlying network. The single big commu-
nity problem also appears to occur with COPRA, but
only towards the last three time-steps. It can be thus

1 2 3 4 5 6 7 8 9
35

40

45

50

55

60

65

70

Network Time−Step

A
v
e
ra

g
e

 L
a
rg

e
s
t−

G
ro

u
p

 F
ra

c
ti

o
n

 o
f

T
o

p
 1

0
 C

o
m

m
u

n
it

e
s AFOCS

CFinder

SLPA

COPRA

SHRINK

iLCD

HOCTracker

MOSES

OSLOM

(a) Largest grouping fractions of top-10
communities

2 4 6 8
10

0

10
1

10
2

10
3

(a) AFOCS

2 4 6 8
10

0

10
1

10
2

10
3

10
3

(b) CFinder (CPM)

2 4 6 8
10

0

10
1

10
2

10
3

(c) COPRA

2 4 6 8
10

0

10
1

10
2

10
3

(d) HOCTracker
C

o
m

m
u

n
it

y
 S

iz
e
s

2 4 6 8
10

0

10
1

10
2

10
3

(e) iLCD

2 4 6 8
10

0

10
1

10
2

10
3

(f) SHRINK

2 4 6 8
10

0

10
1

10
2

10
3

(g) SLPA

2 4 6 8
10

0

10
1

10
2

10
3

(h) MOSES

2 4 6 8
10

0

10
1

10
2

10
3

(i) OSLOM

Network Time−Stamps

(b) Size distribution of top-10 communities

Fig. 5: Experimental results on dynamic DBLP co-
authorship network

argued that only HOCTracker and COPRA produce
communities from the DBLP network with significant
real-world grouping and size distribution.

A word-cloud representation of the authors’ publi-
cations for each of the top-5 (largest 5) communities
identified by COPRA, CFinder, and HOCTracker on
each time-step network is shown in figure 6. The size
of a tag (Conference/Journal name) in each word-
cloud represents the fraction of papers published by
all authors in the respective community (represented
by rows with decreasing community size from top
to bottom) for a particular time-step (represented
by columns). From figure 6 it can be argued that
HOCTracker identifies the Bio-Informatics community
earlier (in 6th time-step) than COPRA (8th time-step)
and CFinder (7th time-step) as a second largest com-
munity which can be considered as a distinguishing
feature.

As mentioned earlier, none of the dynamic commu-
nity detection methods explicitly implements commu-
nity evolution mapping. Therefore, we present evolu-
tionary mapping results of HOCTracker among top-5
communities identified for each time-step. However,
in this case, changes are added to the network at each
time-step instead of considering each time-step graph

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2014-02-0143 12

T1 T2 T3 T4 T5 T6 T7 T8 T9

(a) COPRA

T1 T2 T3 T4 T5 T6 T7 T8 T9

(b) CPM

T1 T2 T3 T4 T5 T6 T7 T8 T9

(c) HOCTracker

Fig. 6: Word-cloud representation of the communities
identified from DBLP network

�� �� �� �� �� �� �� �	 �

Fig. 7: Community Mapping

separately which can result in communities different
than figure 6. The mapping results of HOCTracker
are shown in figure 7, wherein arrows indicate evo-
lutionary relations and the events like birth, death,
merge, and split are represented by markers −, o,
>, and <, respectively. A key observation from fig-
ure 7 is that HOCTracker identifies Bio-Informatics
community being initiated at time-step 4 within the
Machine-Learning community which tends to grow till
time-step 6 after which it splits to form a separate
community at time-step 7.

6.2 Wikipedia Election Network

The Wikipedia Election network [27] is a dynamic
directed network of about 8000 users from the English
Wikipedia who voted for and against each other in
admin elections from year 2004 to 2008. Nodes rep-
resent individual users and directed edges represent

votes. Edges are positive (”for” vote) and negative
(”against” vote) represented by the edge weights 1
and −1, respectively. The dataset is divided into
five sub-networks based on the year of voting, and
the results are only generated for HOCTracker as
other methods do not consider the directed nature
of networks. Starting with the network of year 2004,
HOCTracker identifies the initial community struc-
ture. Then for each subsequent year, it adds the
respective sub-network to the current state of the
network and identifies the changes induced to the
existing community structure for the new state of
the network. HOCTracker finds highly overlapping
communities from each state (year) of the voting
network.

Birth Death Merge Split Growth Shrink

2004

2005

2006

2007

2008

Evolution Events

Y
e

a
r

0 10 20 30 40 50

(a)

Community Size

Y
e
a
r

0 100 200 300 400

2004

2005

2006

2007

2008

0 5 10 15 20

(b)

Fig. 8: Heat-map representing year-wise distribution
of the number of communities and evolution events
identified by HOCTracker on Wikipedia Election net-
work

The number of various evolution events identified
by HOCTracker according to the m-partite evolution
graph (discussed in section 4) from the year-wise
Wikipedia Election network is presented in figure
8a. In this figure, the heat-map represents the count
of the various community evolution events for each
year from 2004− 2008, wherein dark color represents
more events and white color represents less events
as indicated in the colormap. Similarly, figure 8b
shows the yearly size distribution of the communities
identified by HOCTracker on the dynamic Wikipedia
Election network. In figure 8b, the x-axis is a log-
scale representing the community size and the colored
contour lines represent the count of communities
for each year, with red and blue colors representing
more and less number of communities respectively
as indicated in the colormap. From figure 8 it can
be seen that the evolution of the network mainly
involves birth, death, and growth events with birth
and growth being more significant. Moreover, both
the size and count of the communities is less in the
beginning years but increase significantly towards the
later years wherein relatively larger communities are
also found. The analysis of the community evolution
trend on the Wikipedia Election network reveals that
each year new nodes either tend to join existing

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2014-02-0143 13

larger communities (and cause their growth) or form
completely new communities. Moreover, some young
communities tend to dissolve (death) and their nodes
join other existing communities (relatively older) in-
stead of involving in merge, split, or shrinkage of
communities. Such a behavior of joining a network
can often be shown by the nodes (individuals) of real-
world networks, wherein they tend to join a popular
group existing in the network or completely form
a new group within known acquaintances only, or
arbitrary join and withdraw from groups until they
know the network and decide their place within it.
Experimental results on some additional networks can
be found in Appendix E provided as the supplemen-
tary material to this paper.

7 COMPARISON OF RUNNING TIME

Considering time complexity, the main part of
HOCTracker involves analyzing the local neighbor-
hood of each node in the network, and for each
node this cost is proportional to its out-degree. Hence,
total cost for this step on a network with n nodes is
O(deg(p1) + deg(p2) + . . .+ deg(pn)), where deg(pi) is
the out-degree of the node pi. For a complete graph of
n nodes, the degree of each node is n−1, leading to a
worst case complexity for this step as O(n2). However,
in general, real-world networks show sparser degree
distribution, resulting in an O(n) or more generally
O(m) (m is the number of edges) average case com-
plexity. In reality, HOCTracker also involves a post-
merge step (detailed in Appendix D) whose complex-
ity depends on the number of identified overlapping
communities having relatively many common nodes,
and the heuristics for estimating η whose complexity
depends on the number of edges in the networks.
Moreover, while tracking the evolution of communi-
ties, it also involves the sub-process of crawling the
mutual-core relations of the nodes to identify splitting
and re-labeling of nodes which makes it difficult to
provide a true computational analysis of the method
in both static and dynamic contexts.

5 10 15 25 50 100 150 200

10
0

10
1

10
2

10
3

10
4

Network Size (Number of Nodes)

T
im

e
 i

n
 S

e
c
o

n
d

s

MOSES

SHRINK

CFinder

SLPA

COPRA

HOCTracker(η)

AFOCS

OSLOM

iLCD

HOCTracker(auto)

x 103

Fig. 9: Comparison of running time

Figure 9 compares the running time required by the
various methods on a range of synthetic networks
of different sizes. The networks used for figure 9
are the LFR-benchmarks [28] generated by varying
the number of nodes from 5, 000 to 200, 000, with

average degree < k >= 10 and max. degree <

k >= 50. To generate the results for figure 9, we use
two versions of the proposed method which include
HOCTracker(η) (requiring the resolution value η

as input), and HOCTracker(auto) (automatically
determining a value of η using the heuristics given
in Appendix B) along with the other methods. The
results show that AFOCS runs faster than all other
methods; HOCTrackerη, HOCTrackerauto, MOSES,
COPRA, and iLCD perform comparable to each other.
However, HOCTrackerη runs slightly faster for larger
networks. Moreover, SHRINK, CFinder, and SLPA

run slower for larger networks and OSLOM takes
largest time to generate the results. From these results,
we conclude that, in general, the time complexity of
HOCTracker is comparable to some faster methods
in literature and better that some benchmark methods
like OSLOM and CFinder.

8 CONCLUSION

In this paper, we have proposed a novel density-
based framework, HOCTracker, to track community
evolution in dynamic social networks. Unlike existing
methods, HOCTracker adapts a preliminary commu-
nity structure (identified through a novel density-
based overlapping community detection approach) to
the changes occurring in a network and processes
only active nodes for the new time-step. It uses an
efficient log-based approach to map evolutionary re-
lations between communities identified at two con-
secutive time-steps of a dynamic network. Moreover,
HOCTracker identifies all community evolutionary
events, and it does not require an ageing function to
remove old interactions for identifying these events.
Experimental results have shown that community
structures identified by HOCTracker on some well-
known benchmark networks are significant and better
than the community structures identified by the state-
of-the-art methods. Moreover, the nature of dynamic
communities identified from Wikipedia Election net-
work reflects that HOCTracker can be used to iden-
tify real-world community evolution patterns.

APPENDIX

Various appendices cited in this paper can be found
in the supplementary material provided with this
submission.

REFERENCES

[1] J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping commu-
nity detection in networks: the state of the art and comparative
study,” arXiv preprint arXiv:1110.5813, 2011.

[2] S. Y. Bhat and M. Abulaish, “Analysis and mining of online
social networks: emerging trends and challenges,” WIREs:
Data Mining and Knowledge Discovery, vol. 3, no. 6, pp. 408–
444, 2013.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2014-02-0143 14

[3] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering
the overlapping community structure of complex networks in
nature and society,” Nature, vol. 435, no. 7043, pp. 814–818,
2005.

[4] A. McDaid and N. Hurley, “Detecting highly overlapping
communities with model-based overlapping seed expansion,”
in Proceedings of the 2010 International Conference on Advances
in Social Networks Analysis and Mining, ser. ASONAM ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 112–
119.

[5] J. Huang, H. Sun, J. Han, and B. Feng, “Density-based shrink-
age for revealing hierarchical and overlapping community
structure in networks,” Physica A: Statistical Mechanics and its
Applications, vol. 390, no. 11, pp. 2160–2171, 2011.

[6] J. Xie and B. K. Szymanski, “Towards linear time overlapping
community detection in social networks,” in Proceedings of the
16th Pacific-Asia conference on Advances in Knowledge Discovery
and Data Mining - Volume Part II, ser. PAKDD’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 25–36.

[7] S. Gregory, “Finding overlapping communities in networks by
label propagation,” New Journal of Physics, vol. 12, no. 10, p.
103018, 2010.

[8] P. Kumar, L. Wang, J. Chauhan, and K. Zhang, “Discovery
and visualization of hierarchical overlapping communities
from bibliography information,” in Proceedings of the 2009
Eighth IEEE International Conference on Dependable, Autonomic
and Secure Computing, ser. DASC ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 664–669.

[9] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato,
“Finding statistically significant communities in networks,”
PLoS ONE, vol. 6, no. 5, 2011.

[10] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan,
“Group formation in large social networks: membership,
growth, and evolution,” in Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data
mining, ser. KDD ’06. New York, NY, USA: ACM, 2006, pp.
44–54.

[11] C. Tantipathananandh, T. Berger-Wolf, and D. Kempe, “A
framework for community identification in dynamic social
networks,” in Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, ser. KDD ’07.
New York, NY, USA: ACM, 2007, pp. 717–726.

[12] D. Greene, D. Doyle, and P. Cunningham, “Tracking the
evolution of communities in dynamic social networks,” in
Proceedings of the 2010 International Conference on Advances
in Social Networks Analysis and Mining, ser. ASONAM ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 176–
183.

[13] Y. Wang, B. Wu, and N. Du, “Community Evolution of
Social Network: Feature, Algorithm and Model,” arxiv, vol.
physics.soc-ph, 2008.

[14] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng,
“Analyzing communities and their evolutions in dynamic
social networks,” ACM Trans. Knowl. Discov. Data, vol. 3, pp.
8:1–8:31, April 2009.

[15] R. Cazabet, F. Amblard, and C. Hanachi, “Detection of over-
lapping communities in dynamical social networks,” in Social
Computing (SocialCom), 2010 IEEE Second International Confer-
ence on, aug. 2010, pp. 309–314.

[16] D. Greene, D. Doyle, and P. Cunningham, “Tracking the
evolution of communities in dynamic social networks,” in
Advances in Social Networks Analysis and Mining (ASONAM),
2010 International Conference on, aug. 2010, pp. 176–183.

[17] T. Falkowski, Community Analysis in Dynamic Social Networks.
Sierke, 2009.

[18] S. Y. Bhat and M. Abulaish, “OCTracker: A density-based
framework for tracking the evolution of overlapping commu-
nities in OSNs,” in Advances in Social Networks Analysis and
Mining (ASONAM), 2012 IEEE/ACM International Conference
on, aug. 2012, pp. 501–505.

[19] ——, “A density-based approach for mining overlapping com-
munities from social network interactions,” in Proceedings of
the 2nd International Conference on Web Intelligence, Mining and
Semantics, ser. WIMS ’12. New York, NY, USA: ACM, 2012,
pp. 9:1–9:7.

[20] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu, “Graph-
scope: parameter-free mining of large time-evolving graphs,”

in Proceedings of the 13th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2007, pp. 687–
696.

[21] M. Ester, H. Kriegel, S. Jörg, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases
with noise,” in Proceedings of the International Conference on
Knowledge Discovery from Data, 1996, pp. 226–231.

[22] T. Y. Berger-Wolf and J. Saia, “A framework for analysis of
dynamic social networks,” in Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data
mining, ser. KDD ’06. New York, NY, USA: ACM, 2006, pp.
523–528.

[23] G. Palla, P. Pollner, A.-L. Barabási, and T. Vicsek, “Social group
dynamics in networks,” in Adaptive Networks. Springer, 2009,
pp. 11–38.

[24] S. Asur, S. Parthasarathy, and D. Ucar, “An event-based
framework for characterizing the evolutionary behavior of
interaction graphs,” ACM Transactions on Knowledge Discovery
from Data (TKDD), vol. 3, no. 4, p. 16, 2009.

[25] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten,
and S. M. Dawson, “The bottlenose dolphin community of
doubtful sound features a large proportion of long-lasting
associations,” Behavioral Ecology and Sociobiology, vol. 54, pp.
396–405, 2003.

[26] J. Huang, H. Sun, J. Han, H. Deng, Y. Sun, and Y. Liu, “Shrink:
a structural clustering algorithm for detecting hierarchical
communities in networks,” in Proceedings of the 19th ACM in-
ternational conference on Information and knowledge management,
ser. CIKM ’10. New York, NY, USA: ACM, 2010, pp. 219–228.

[27] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting
positive and negative links in online social networks,” in
Proceedings of the 19th international conference on World wide web,
ser. WWW ’10. New York, NY, USA: ACM, 2010, pp. 641–650.

[28] A. Lancichinetti and S. Fortunato, “Benchmarks for testing
community detection algorithms on directed and weighted
graphs with overlapping communities,” Physical Review E,
vol. 80, p. 016118, 2009.

Sajid Yousuf Bhat received the Masters
degree in Computer Applications from the
University of Kashmir, Srinagar, and the PhD
degree in Computer Science from Jamia Mil-
lia Islamia (A Central University), Delhi in
2009 and 2014, respectively. While at Jamia
Millia Islamia, his research was supported by
the UGC-BSR Fellowship for meritorious stu-
dents. He is currently an Assistant Professor
at the Computer Science department of IP
College (University of Delhi). His research

interests include data mining, social network analysis, and machine
learning.

Muhammad Abulaish received the Masters
degree in Computer Applications from the
Motilal Nehru National Institute of Technol-
ogy, India, and PhD degree from the In-
dian Institute of Technology Delhi in 1998
and 2007, respectively. He is currently an
Associate Professor and Head of the Com-
puter Science department at the Jamia Mil-
lia Islamia (A Central University), Delhi. His
research interests span over the areas of
data mining, web intelligence, and security

informatics. He is a senior member of the IEEE, ACM, and CSI.
He has published over 65 research papers in reputed conference
proceedings and journals related to his area of interests.

SUPPL. MATERIAL FOR HOCTRACKER: TRACKING THE EVOLUTION OF HIERARCHICAL AND OVERLAPPING COMMUNITIES IN DYNAMIC SOCIAL NETWORKS1

APPENDIX A
TRACKING EVOLUTIONARY EVENTS

In a generalized case, after identifying a base-line
community structure, for a new time-stamp network the
candidate-nodes are identified, their respective local ε-
neighborhoods are re-computed and their core-node prop-
erties checked on the new network state. Based on the local
ε-neighborhoods and core-node properties of the candidate-
nodes of a particular time, HOCTracker models the
community related evolutionary events as presented in the
following sub-sections.

A. A New Core Node Emerges

In this case, a previous non-core node (including an out-
lier or a newly added node) in the network becomes a core
node. The evolutionary event induced due to this particular
role change of a node is detected by HOCTracker on
checking the following conditions.

If the new core-node p has mutual-core relations with
nodes (visited) that have the same primary community
C, then p also forms a primary core of community C
by appending this community label to itself and to the
nodes in its local ε-neighborhood. This simply results in
the expansion of community C.

For the new core node p, if there exist a set of visited
core-nodes in the local εp-neighborhood of p with which the
node p has mutual-core relations and these core-nodes are
primary-core nodes of different communities, then p causes
the primary communities of these core nodes to merge into
a single community. This is because p causes the MCMSs
of these communities to join and form a single MCMS
for the new merged community. The merged community
also forms the primary community of the new core node p
and nodes in its local neighborhood are also added to the
merged community.

In some other cases, a new-core node may only cause
two communities to overlap and not merge. For example,
in figure 1a an outlier p at time t qualifies as a core node
at time t + 1 and establishes mutual-cores relationship(s)
with the primary-core node(s) of community C, thus also
forming a primary-core of community C. Node p causes
the outlier q to join the community C at time t + 1 as
it belongs to the local neighborhood of p at time t + 1.
Node p also includes a primary-core r of community D
in its local neighborhood but does not show a mutual-core
relation with it. This results the two communities C and D
to overlap with node r at time t + 1. Similar, results are
demonstrated by figure 1b, however in this case an existing
non-core member p of community C at time t qualifies as
a core-node at time t + 1 and causes two communities to
overlap.

If the new core node p has no mutual-core relations, then
p forms a new community and appends the new community
label to its local neighborhood and itself. This causes the
birth of a new community with p being its only primary
core.

C

D

q

p

C

q

p

D

t t+1

r r

(a)

C

D

q

p

C

q

p

D

t t+1

r r

(b)

Fig. 1: New core-node causing two communities to overlap

A special case results when a non-core member of
a community C at a previous time qualifies as a core-
node at a later stage but its local neighborhood contains
nodes that already belong to community C only and it
also shows mutual-cores relation(s) with the primary-cores
of community C only. In this case the new core-node
formed does not result in a visible structural change to any
community but only changes the role of a node.

B. A Core Node Becomes a Non-Core

In this case, an existing core node no longer remains a
core node due to some change(s) in the network. This could
trigger either a split or a shrink event in the evolution of a
community as follows.

Let p be a primary core node of a community C at an
earlier time t, and p seize to exist as a core-node on the
re-computation of its local neighborhood at a later time
due to a change in the network. Let S be the set of core-
nodes with which p had mutual-core relations considering
its previous local neighborhood at time t. We mark the
nodes in S as un-crawled. For a core node q ∈ S, let B
be a simple BFS Crawl of nodes starting from q, wherein
all the nodes in the local neighborhood of q at time t + 1
are appended to the crawl and the mutual-cores of q are
added to a queue. Another core-node then is selected from
the front of the queue, its local neighborhood appended
to the crawl and its mutual-cores (if any) added to the
queue before it is removed from the queue. The crawl B
is completed by repeating this process for each core-node
in the queue until the queue is empty. It should however
be noted that during a crawl, new local ε-neighborhoods of
nodes being explored are not re-computed but the existing
neighborhoods are used.

If a crawl B does not include all the core nodes in
S, then the nodes in B form a new community, i.e., the
original community C is split as the lost core property of
p causes a cut in the MCMS of C. New community labels

SUPPL. MATERIAL FOR HOCTRACKER: TRACKING THE EVOLUTION OF HIERARCHICAL AND OVERLAPPING COMMUNITIES IN DYNAMIC SOCIAL NETWORKS2

are appended to the nodes in B to represent a new split
part of community C and the community label C for any
nodes in this crawl B are removed. A new crawl is started
in a similar fashion for each remaining un-crawled core
nodes (selected at random) in S until no further split of
community C is possible, i.e., no node in S remains un-
crawled after a crawl. For all the nodes in the last crawl a
new community label is appended and the old community
label C of the original split community removed from any
nodes possessing it. At the end, if node p and/or any node,
which belonged to the local neighborhood of p at time t,
are still labeled with community label C, it means that they
do not belong to any intermediate split of community C. In
this case, the community label C for these nodes is simply
removed.

However, if B includes all the core nodes in S, then p is
simply removed from being a primary core of community
C. Moreover, if p and/or any other node that belonged to the
earlier local neighborhood of p are not in the crawl B, then
they are removed with the community label of C, causing
C to shrink. Similarly, a lost-core can cause a community to

C

t t+1

D

E
q

p

q

p

Fig. 2: Lost core-node p causing a community to split into
two overlapping communities

split into overlapping communities. For example, in figure
2 a core-node p at time t loses its core property at time t+1
and causes the split of community C into two communities
D and E leaving out node q as an outlier. Moreover, in
some cases a core-node may lose its core property but its
local neighborhood and/or itself may still belong to the
local ε-neighborhood of some other primary-core node(s)
of its earlier primary-community causing no change to the
community except a lost core-property. In this case the lost
core-property of node p does not cause a visible structural
change to the community C. It is also worth to note that
in case a lost core node p was the only primary core-node
of a community C, then it causes the death of community
C as no representative primary-core node for community
C remains.

C. A Core Node Gains nodes (or mutual-core relation(s))
and/or Loses Nodes but Remains a Core

Due to dynamic nature of social networks, changes in
them may cause a core node to gain or lose nodes(or
mutual-core relations) or both but still hold the core-node
property. In this case, the addition or removal of nodes
from the local neighborhoods of core-nodes are handled as
follows.

1) Gain: On re-computing the local εp-neighborhood,
a core-node p can gain a set G of nodes to its local
neighborhood and/or establish new mutual-core relation
with a set M of existing node(s) in its neighborhood, and
still hold the core property. In order to handle these cases,
the following steps need to to be followed for a sustaining
core-node.

• Firstly, we determine the set of visited mutual-core
nodes G ⊆ N t+1

p (wherein N t+1
p represents the set of

nodes in the local ε-neighborhood of node p at time
t+1) which have a different primary-community than
that of p (if any). In this case, for each node o ∈ G the
primary-communities of o and p are merged to form a
new community (by replacing the merging community
labels of the involved nodes with a new community
label for the merged community) and this new merged
community now represents the primary-community for
both p and o.

• Secondly, for any nodes in in the set N t+1
p − G the

primary-community label of p is appended to their
respective community lists if they do not contain it
resulting in expansion of the primary-community of
p. For example, figure 3 shows a primary core-node q
of community D gain a node p at time t + 1 which
is already a member of a different community C.
However, in case of figure 3a the gained node is a
non-core while in case of figure 3b the gained node
p is a primary core-node of community C but does
not show a mutual-core relation with q. In both the
cases the two distinct communities C and D, at time
t, form two overlapping communities, at time t + 1,
which overlap at the common node p.

It is notable that if a primary-core node x of a community
C gains a new node y in its local neighborhood but y is
already a member of the primary community of x, then no
visible structural change occurs to the community C.

C

D

C

D

q q

p p

t t+1

(a)

C

D

C

D

q q

p p

t t+1

(b)

Fig. 3: A core-node gaining other core nodes causing merge
of two communities

SUPPL. MATERIAL FOR HOCTRACKER: TRACKING THE EVOLUTION OF HIERARCHICAL AND OVERLAPPING COMMUNITIES IN DYNAMIC SOCIAL NETWORKS3

2) Loss: On re-computing the local εp-neighborhood, if
a primary core-node p of a community C loses a set of
nodes S and still remains a core-node, then the following
procedure is followed.

We mark each node in S as un-crawled and then for each
core-node in M ⊆ S which had mutual-core relation with p
earlier, we start the crawls in a similar way as discussed in
section A-B. If more than one crawls are required to include
all the nodes in M , then each resulting crawl represents
a split part of the original community and forms a new
community. A single crawl including all nodes in U does
not result in a split of the original community and if this
crawl includes all the nodes in S, then no visible structural
change is caused to the original community. If any node
r in S remains which is not included in some crawl(s),
then community label of the community whose core-node
p had lost some nodes including r is removed from node
r causing a shrinkage of that community.

APPENDIX B
HEURISTICS FOR PARAMETER η

It is desirable to find an optimal value for parameter η
which reveals the best possible community structure for a
given network. It is observed that a good approximation of
η is the value at which the resulting community structure
has best modularity score [1]. A sensitivity analysis of
parameter η at resolution values in the range 0 < η ≤ 1
with step size of 0.1 on two networks with 50,000(synthetic
network) and 236(real-world) nodes is provided in figures 4
and 5. Figure 4 gives the size distribution of communities
identified at different values of η, wherein x-axis repre-
sents community size in a log-scale and y-axis represents
the number (in a log-scale) of communities identified by
HOCTracker. Figure 5 presents a description of the

100 101 102 103 104 105
100

101

102

103

Community Size

N
um

be
r o

f C
om

m
un

iti
es

 = 0.3
 = 0.1-0.2
 = 0.4
 = 0.5
 = 0.6
 = 0.7
 = 0.8
 = 0.9
 = 1.0

100 101 102 103
100

101

102

103

Community Size

N
um

be
r o

f C
om

m
un

iti
es

=0.1-0.5
=0.6
=0.7
=0.8
=0.9-1.0

(b) Real Network (N=236)(a) Synthetic Network (N=50000)

Fig. 4: Size-Density distribution of communities identified
by the proposed framework on two networks at different
values of η

quality of identified communities based on the modularity
score Q. Although, the values of Q can range between
[−1 to 1], we only consider positive values of Q and mark
negative values (if any) as 0. In addition to this, fractions of
total nodes marked as outliers detected at different values of
η are also given. Based on the results presented in figure 4 it
can be argued that HOCTracker identifies less number of
large-sized communities for smaller values of η but a large
number of small-sized communities for larger values of η.
Figure 5 illustrates that HOCTracker yields low quality

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Resolution Threshold

M
od

ul
ar

ity
 S

co
re

Real Network N=236 Synthetic Network N=50,000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Resolution Threshold

Fr
ac

tio
n

of
 N

od
es

 a
s

O
ut

lie
rs

Fig. 5: Modularity score of the community structure and
fraction of outliers detected at different values of η

communities (in terms of modularity score) at very small
and very large values of η and good quality communities
in between. However, it is difficult to directly define a
generic value for η to detect best community structure in
all networks. Although, a trend that can be observed from
figure 5 is that for increasing values of η between 0 and 1,
modularity of identified community structure first increases
very sharply and then decreases slowly. Moreover, higher
values of η also result in a large fraction of outliers from
underlying networks as it makes the criteria to qualify as
core node difficult.

In order to reduce the domain of η for HOCTracker,
community structure is identified at each value between the
interval ηmin to ηmax (starting from ηmin) with increment
step until the next community structure does not result
gain or no-change in modularity score Q [1]. It means
starting from a coarser community structure (large and less-
dense) HOCTracker moves toward a finer community
structure (smaller and more-dense) with a constant step-
size of step. Now the problem of deciding the value of η
involves identifying the values for ηmin, ηmax and step for
a given network. To define such a domain of η for a given
network, HOCTracker considers the topological-overlap
ϕ (equation 1) between a pair (i, j) of nodes connected with
an edge.

ϕ =
|Ni ∩Nj |

min(|Ni |, |Nj |)
, (1)

In equation 1, Ni and Nj represents sets of nodes to
which nodes i and j have out-links respectively. The mean
(ϕmean) and standard deviation (ϕstd) of ϕ are taken over
all pairs of nodes between which there exists an edge in
the underlying network (rounded-up to two decimal places).
Now, the values for ηmin and step are taken as follows:

ηmin =

{
ϕmean if ϕmean > ϕstd

ϕmean + ϕstd

2 otherwise
(2)

step =

{
ϕstd if ϕmean > ϕstd
ϕstd

2 otherwise
(3)

Once value for ηmin is decided, the value for ηmax is taken
as follows:

ηmax = ηmin + ϕstd (4)

It should be noted that for a dynamic network, the value
of η is estimated for each new state of a network. In
the worst case, for any given state of a dynamic network,

SUPPL. MATERIAL FOR HOCTRACKER: TRACKING THE EVOLUTION OF HIERARCHICAL AND OVERLAPPING COMMUNITIES IN DYNAMIC SOCIAL NETWORKS4

An Illustration of Community Detection and Tracking by HOCTracker on a Dynamic Network with 3 Time-Steps
Ti

m
e-

St
ep

 3
Ti

m
e-

St
ep

 1
Ti

m
e-

St
ep

 2

 η Log State Communities Modularity Mapping (From Log)

ηmin

ηmin + step

ηmax

ηmin

ηmin + step

ηmax

ηmin

ηmin + step

ηmax

low

high

low

high

low

high

low

New

Save

Save

New

Save

New

Save

The community structure and
the log-state for the previous

level is restored

The community structure and
the log-state for the previous

level is restored

Fig. 6: An illustration of community detection and tracking
by HOCTracker on a dynamic network with 3 time-steps

HOCTracker involves using only 2 values for η in case
ϕmean > ϕstd and 3 values for η otherwise. Before com-
munity structure is identified for a new level, community-
structure and state of evolution-log for the previous level
are saved. If the modularity score for next level is less
than previous, the saved state is reloaded to represent
communities for current-state of the network and used for
mapping evolutionary relations. A simple illustration of
community detection and tracking by HOCTracker on a
dynamic network involving 3 time-steps is shown in figure
6.

APPENDIX C
HIERARCHICAL DRILLDOWN AND ROLLUP

OPERATIONS

As mentioned in the paper, using DrillDown and RollUp
operations, the hierarchical mapping between the communi-
ties at two consecutive levels can be identified by the same
method used for tracking community evolutionary events.
It can be seen that in terms of identifying a community
hierarchy, the approach followed for DrillDown operation
(algorithm 1) is more efficient than the RollUp operation
(algorithm 2), as the former involves processing only core
nodes of the communities at higher level to identify com-
munities at a lower level. On the other hand, algorithm
2 involves processing all nodes in the network to identify
communities at a higher level from communities at a lower
level.

APPENDIX D
OVERLAPPING COMMUNITIES AND POST-MERGE

As mentioned in the paper, the proposed community de-
tection method identifies overlapping community structure
in a social network. It does so by allowing a node q to
belong to the εp-neighborhood of a core-node p irrespec-
tive of q’s previous community assignments in a density-
based context as discussed in the paper. Thus a node can
belong to multiple communities representing a node where

Algorithm 1: DrillDown(ℵ, CLη , η+)

/* CLη is the community structure of level L
identified at a particular value of η */
/* ℵ is the network state for which the
hierarchy is to be determined */
/* η+ is the new higher value for parameter η
at which the communities for level L− 1 need
to be determined */

1 begin
2 S ← The set of all core nodes in Cη ;
3 CL−1

η+
← AdaptCS(ℵ, CLη , η+, S);

4 G←Map(Log); /* Log is the transition log
maintained by AdaptCS */
/* G is the bipartite graph which now
represents the hierarchical relations
between the community structures CLη and

CL−1
η+ */

5 return G;
6 end

Algorithm 2: RollUp(ℵ, CLη , η−)

/* CLη is the community structure of level L
identified at a particular value of η */
/* ℵ is the network state for which the
hierarchy is to be determined */
/* η− is the new lower value for parameter η
at which the communities for level L+ 1 need
to be determined */

1 begin
2 S ← The set of all nodes in the network state ℵ;
3 CL+1

η−
←AdaptCS(ℵ, CLη , η−, S);

4 G←Map(Log); /* Log is the transition log
maintained by AdaptCS */
/* G is the bipartite graph which now
represents the hierarchical relations
between the community structures CLη and

CL+1
η− */

5 return G;
6 end

multiple communities overlap. It is often possible that two
communities overlap in such a way that majority of nodes
(more than 50%) of one community (in some cases both the
communities) are involved in the overlap between the two
communities. In such cases two overlapping communities
can be merged to represent a single community.

Following a similar approach, HOCTracker takes ηmax
(discussed in Appendix B) as the overlapping threshold
to define the merging criteria as follows. After a commu-
nity structure is determined by HOCTracker from some
state of the underlying network at a particular value of
η, HOCTracker merges two overlapping communities if
the fraction of nodes, involved in the overlap, for the
smaller community is more than or equal to ηmax. For
HOCTracker this process is termed as post-merge and is
formalized in algorithm 3 and the post-merge step is applied
after the main community detection process is completed
for a particular value of η. Moreover, it should be noted
that post-merge is applied in all the experiments performed
in this paper.

SUPPL. MATERIAL FOR HOCTRACKER: TRACKING THE EVOLUTION OF HIERARCHICAL AND OVERLAPPING COMMUNITIES IN DYNAMIC SOCIAL NETWORKS5

Algorithm 3: PostMerge(Cη, ηmax)
/* Cη is the community structure identified
from the underlying network at a given value
of η and for which the maximum value for η is
taken as ηmax */

1 begin
2 MergeList is empty;
3 FinalList is empty;
4 foreach pair of overlapping communities (Cη [i], Cη [j]) in Cη

do
5 if (Cη [i]

⋂
Cη [j]) ≥

(ηmax ×min(Cη [i].size, Cη [j].size)) then
6 add i to the set MergeList[j];
7 add j to the set MergeList[i];
8 end
9 end

10 k ← 1;
11 l← 1;
12 while l ≤ Cη .size do
13 if MergeList[l] is not empty then
14 push(l);
15 while Stack is not empty do
16 m← pop();
17 foreach n in MergeList[m] do
18 if not Cη [n].merged then
19 add n to FinalList[k];
20 Cη [n].merged← true;
21 push(n);
22 end
23 end
24 end
25 k ← k + 1;
26 end
27 l← l + 1;
28 end

/* At the end of the process, each entry in
the array, FinalList, represents the set of
IDs (indices) of communities in the actual
community structure Cη which are merged to
represent a single communities */

29 end

APPENDIX E
ADDITIONAL EXPERIMENTAL RESULTS

This section presents the experimental evaluation of
HOCTracker in comparison some state-of-the-art commu-
nity detection methods on real-world and synthetic social
networks presented in the paper. These methods include the
overlapping community detection method MOSES which
has also been used for dynamic community tracking in
[2]. Another method used here is the dynamic community
detection methods AFOCS which also adapts an initially
found community structure to the changes in the under-
lying network. However, this method does not define an
explicit way to track the evolution of the communities
across time-steps so as to define the evolutionary events
like birth, merge, growth and so on, and only gives the
final community structure at the specified time-step. The
third method used here SHRINK involves a density-based
approach (similar to the proposed method here) to identify
disjoint communities from networks along with hubs and
outliers. The method SHRINK is included here to show
the variation in the identified community structure (if
any) by using two related approaches (i.e. SHRINK and
HOCTracker). The remaining methods used here include

COPRA, SLPA, CFinder, OSLOM and iLCD.

A. Results on Real-World Static Networks

We have used six well-known static real-world network
benchmarks to evaluate the performance of HOCTracker
and compare it with other state-of-the-art methods based on
the NMI (generalized to overlapping communities) [3] and
Modularity [1] scores obtained as shown in figure 7.
The six networks include the Zachary’s network [4] which
is a weighted interaction network between 34 members of
a Karate club that split into two communities, the NCAA
College football network [5] which is a social network
consisting of 115 college football teams divided into eleven
conferences and five independent teams, the Dolphin net-
work [6] which is an un-directed and un-weighted social
network of frequent associations between 62 Dolphins
consisting of two communities, the US political books
network is a network of 105 books about US politics1 sold
online by Amazon, and a collaboration network [7] of 241
physicians. For all six real-world networks, the ground truth
community structures are known and are used to calculate
the performance scores.

As can be seen from figure 7, for each of the six real
world networks used, HOCTracker (HT) performs better
than all the other methods in question on both the NMI
and modularity scores. This is because HOCTracker gets
NMI score closer to 1 for all the networks used here and
also provides a better Modularity score (closer to 1) for
each of the networks.

B. Results on Dynamic Networks

It is difficult to evaluate the performance of a dynamic
community detection method. This is mainly due to the
non-availability of proper benchmarks on which the evo-
lutionary characteristics of communities (birth, death, split
and so on) could be explained. Even though, there exist
some datasets which involve the dynamics of discussion
topics, interests and so on, their underlying interaction
networks rarely show characteristics of true social networks
(like existence of groups).

Alternately, some synthetic network generation methods
(with embedded communities) like the LFR-benchmarks
[8] have been proposed. However, as indicated by some
researchers like [9] these synthetic network generation
methods are often seen to make un-realistic assumptions
to generate the networks and hence may not resemble the
real-world social networks in the true sense. Moreover, in
case of the synthetic networks with embedded overlapping
communities, generated by the [8], we have observed
that the overlapping nodes (nodes at which communities
overlap) indicated by the generator actually qualify as
hubs (i.e., nodes which do not belong to any community
but connect multiple communities). These hubs are not
true overlapping nodes considering the multiple community

1http://www.orgnet.com/

http://www.orgnet.com/

SUPPL. MATERIAL FOR HOCTRACKER: TRACKING THE EVOLUTION OF HIERARCHICAL AND OVERLAPPING COMMUNITIES IN DYNAMIC SOCIAL NETWORKS6

HT MO SH AF OS CO iL CF SL
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Methods

M
od

ul
ar

ity
 (c

um
ul

at
iv

e)

Dolphins Karate Polbooks Physicians School-1 School-2 Football

HT MO SH AF OS CO iL CF SL
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Methods

N
M

I (
cu

m
ul

at
iv

e)

Fig. 7: Experimental results on static real-world benchmarks

A

B

C

D
E

F

G

H1

H2

A

B

C

D
E

F

G

H

Birth: 0

Death: 0

Merge: 0

Split: 1

Expand: 6

Shrink: 0

No Change: 1

Birth: 8

Death: 0

Merge: 0

Split: 0

Expand: 0

Shrink: 0

No Change: 0

DAY 1 DAY 2

Fig. 8: The evolution of communities over two days in the primary school face-to-face proximity network

membership shown by true overlapping nodes in real-
world social networks. In this regard this paper presents
a simple analysis of the community structure identified by
HOCTracker on some real-world and synthetic networks
(where ground truth is known).

1) Primary School Proximity Network: In section E-A of
this supplement, we presented results on a primary school
network which consisted of two networks representing the
proximity of individuals over the period of two days. Figure
7 showed that HOCTracker performed better than the
other methods in question considering the two networks
separately. However, this section considers the dynamic
aspect of the network, i.e., two days representing two
snap-shots of the network where the day 1 network is the
whole network at the end of first day and day 2 network
represents the changes/additions made to this network in
the second day. In this setting, HOCTracker first iden-
tifies the preliminary community structure from the day
1 network and then adapts this community structure to
the changes/additions from the day 2 network. Figure 8
gives a brief representation of the evolutionary relations
between the communities identified by HOCTracker on
this dynamic network for the two snap-shots.

For the day 1 network, HOCTracker identifies the birth
of 8 communities represented by the circles in figure 8
and labeled from A − H wherein communities D and
E overlap (represented by black color). After adding the

changes/additions from the day 2 network to the underlying
network, HOCTracker adapts the communities for day 2
network as shown in figure 8 resulting in 9 communities.
Here, community H from day 1 is seen to split into two
communities H1 and H2 on day 2 and community F
remains un-changed. The remaining 6 communities from
day 1 are seen to gain some nodes from their neighboring
communities on day 2 and hence causing their expansion.
This expansion also causes some communities to overlap
on day 2, represented by black colored regions in figure
8. The ground-truth for the primary school network con-
tains 10 communities. The community structure identified
by HOCTracker is seen to come more close to the
ground truth after adding the information from day 2 to
the information from day 1 in terms of the number of
communities as well as the quality of the communities
based on modularity and NMI scores.

2) Synthetic Dynamic Network: The LFR-Benchmark
generator [8] can be used to generate synthetic power-law
networks with embedded distinct or overlapping communi-
ties. However, this generator does not consider the dynamic
or longitudinal characteristics of evolving networks. On the
other hand, Greene et al. [2] extend the LFR-generator to
include the dynamic behavior of evolving networks by pro-
cess of rewiring the edges after networks are generated by
LFR-generator. The rewiring involves supervised changes
in the community memberships of some nodes thus induc-

SUPPL. MATERIAL FOR HOCTRACKER: TRACKING THE EVOLUTION OF HIERARCHICAL AND OVERLAPPING COMMUNITIES IN DYNAMIC SOCIAL NETWORKS7

1 2 3 4 5 6 7 8 9 10
0.94

0.95

0.96

0.97

0.98

0.99

1

Birth-Death

N
M

I S
co

re

1 2 3 4 5 6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

Grow-Shrink

1 2 3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

1

Merge-Split

OSLOM COPRA SLPA HOCTracker MOSES SHRINK CPM iLCD AFOCS

Fig. 9: The NMI scores on synthetic networks with distinct communities

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Birth-Death

N
M

I

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Grow-Shrink

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Merge-Split

OSLOM COPRA SLPA HOCTracker MOSES SHRINK CPM iLCD AFOCS

Fig. 10: The NMI scores on synthetic networks with overlapping communities

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Mixing parameter u1+u2

N
M

I

second
first

N=10000
u1=0.0

0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Mixing parameter u1+u2

N
M

I

N=10000
u1=0.1

Fig. 11: Results of HOCTracker on un-weighted and un-directed Hierarchical LFR-benchmarks with two levels

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Mixing parameter u1+u2

N
M

I

first
second

N=10000
u1=0.0

0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Mixing parameter u1+u2

N
M

I N=10000
u1=0.1

Fig. 12: Results of Infomap on un-weighted and un-directed Hierarchical LFR-benchmarks with two levels

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Mixing parameter u1+u2

N
M

I

first
second

N=10000
u1=0.0

0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Mixing parameter u1+u2

N
M

I N=10000
u1=0.1

Fig. 13: Results of OSLOM on un-weighted and un-directed Hierarchical LFR-benchmarks with two levels

SUPPL. MATERIAL FOR HOCTRACKER: TRACKING THE EVOLUTION OF HIERARCHICAL AND OVERLAPPING COMMUNITIES IN DYNAMIC SOCIAL NETWORKS8

TABLE I: LFR-Benchmark parameter description and val-
ues

Parameter Description Value
Distinct Overlapping

N number of nodes 15000 15000
k average degree 20 20

kmax max degree 40 40
Cmin minimum community size 20 20
Cmax maximum community size 60 60
τ1 degree exponent -2 -2
τ2 community exponent -1 -1
µ mixing parameter 0.2 0.3
On overlapping nodes 0 10% of N
Om communities per node 1 3

ing a particular number of specified evolutionary events into
communities within networks. Using their method, we gen-
erate two sets of dynamic networks containing distinct and
overlapping communities respectively. The basic parameter
settings used to generate the LFR-benchmarks are shown in
table I. In order to introduce community-based evolutionary
events in the networks, the approach of Greene et al. [2]
has been used to generate 10 snap-shots per event-pair for
each set as follows.
Birth and Death- For each new time-step, it is specified

that 40 new communities be introduced (birth) and 40 old
communities be removed (death) from the network state
of the previous snap-shot. The dynamic graph generator of
Greene et al. [2] accordingly introduces 40 birth and death
events each in the networks for every snap-shot.
Merge and Split- For each new time-step, it is specified

that 40 merge events and 40 split events be introduced
in each new network state. However, it is seen that the
dynamic graph generator of Greene et al. [2] introduces
an arbitrary number of these events for each new network
state.
Shrinkage and Growth- For generating the networks

involving shrinkage and growth events, it is specified that
40 shrinkage events and 40 growth events be introduced
in each new network state. These events are accordingly
introduced in the benchmarks by changing the memberships
such that communities lose or gain 25% of their nodes
respectively.

In order to provide the performance comparison of the
each method in question, we give the NMI score of its
identified community structure on various networks. Figure
9 presents the NMI scores of the community structure iden-
tified by various methods on synthetic dynamic networks
(of 10 snapshots each) containing distinct communities with
embedded Birth/Death, Shrink/Growth and Merge/Split. In
case of HOCTracker, a preliminary community structure
is identified from the first snapshot for each dynamic
network. Then for each consecutive network snapshot, the
changes are added to the underlying network and the
community structure is adapted as described in the paper.
For AFOCS, we observe that it does not perform correctly
(in a dynamic context) on the current networks as they
involve removal of some old edges to generate a new
network state. In this case we generate results for AFOCS

on each snapshot of a dynamic network separately (i.e.,
considering each snapshot as a static network). This is also
the approach followed to generate the results for rest of the
methods used here.

Similarly figure 10 presents the NMI scores of var-
ious methods on synthetic dynamic networks contain-
ing overlapping communities with embedded Birth/Death,
Shrink/Growth and Merge/Split. As mentioned in sec-
tion E-B, the overlapping nodes in the synthetic LFR-
benchmarks actually qualify as hubs (at-least in a
density-based context). In this regard, for SHRINK and
HOCTracker, we enable hub detection in case of net-
works with overlapping communities and consider the
identified hubs as overlapping nodes (besides the actual
overlapping nodes detected by HOCTracker) to generate
the scores.

Figure 9 indicates that for the case of synthetic dynamic
networks with distinct communities, HOCTracker and
SLPA perform comparable to each other and better than
the other methods as their NMI scores are mostly close
to 1 for all the three case. Method OSLOM also performs
well but it scores poorly for the case of Growth and
Shrinkage of communities. On the other hand, for synthetic
networks with overlapping communities, HOCTracker is
seen not to perform so well when compared to SLPA and
AFOCS. However, given that the overlapping nodes in these
synthetic networks do not qualify the same in the proposed
approach, the results of HOCTracker are still comparable
and better than SHRINK which is a related density-based
method, and some other state-of-the-art community detec-
tion methods.

3) Results on Hierarchical LFR-benchmarks: In this
section we compare the results of HOCTracker with
the results of two state-of-the-art methods for detecting
hierarchical communities viz Infomap [10] and OSLOM
[11] on un-weighted and un-directed hierarchical LFR-
benchmarks with two levels of community structures as
reported in [11]. In order to generate a two level hierarchical
structure, two topology mixing parameters are required:
µ1, the fraction of neighbors of each node belonging to
different macro-communities; µ2, the fraction of neighbors
of each node belonging to the same macro-community but
to different micro-communities. Two sets of hierarchical
benchmarks have been generated, once by setting µ1 = 0.0
and then varying µ2 between 0.0 − 0.5, and second by
setting µ1 = 0.1 and varying µ2 between 0.0−0.5. Figures
11, 12 and 13 show the plots for NMI scores of the hierar-
chical community structures identified by HOCTracker,
Infomap and OSLOM respectively. The x-axis shows the
sum µ1 + µ2, representing the fraction of neighbors of a
vertex not belonging to its micro-community. The plots
show how well a method identifies both the first and
the second level of communities from the benchmarks.
In order to identify the first level community structure by
HOCTracker, the global percentage parameter η is varied
between 45% − 50% for both µ1 = 0.0 and µ1 = 0.1
benchmarks to get the best results. To identify the second
level community structure, η = 13% for µ1 = 0.0

SUPPL. MATERIAL FOR HOCTRACKER: TRACKING THE EVOLUTION OF HIERARCHICAL AND OVERLAPPING COMMUNITIES IN DYNAMIC SOCIAL NETWORKS9

benchmarks and η is varied between 30% − 35% for
µ1 = 0.1 benchmarks to get the best results. We find that
for µ1 = 0.0 and µ2 between 0.0 − 0.5, HOCTracker
performs better than both Infomap and OSLOM as most
of the times its NMI score for both the levels in the
benchmarks is 1 representing a perfect match with the
underlying hierarchical community structure. However, for
µ1 = 0.1 and µ2 between 0.0− 0.5 HOCTracker finds it
more difficult than Infomap and OSLOM to identify the
second level communities. Moreover, the performance of
all the methods starts to decrease as µ2 = 0.5.

REFERENCES

[1] M. E. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review E, vol. 69, 2004.

[2] D. Greene, D. Doyle, and P. Cunningham, “Tracking the evolution
of communities in dynamic social networks,” in Proceedings of
the 2010 International Conference on Advances in Social Networks
Analysis and Mining, ser. ASONAM ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 176–183.

[3] A. Lancichinetti, S. Fortunato, and J. Kertész, “Detecting the over-
lapping and hierarchical community structure in complex networks,”
New Journal of Physics, vol. 11, p. 033015, 2009.

[4] W. W. Zachary, “An information flow model for conflict and fission
in small groups,” Journal of Anthropological Research, vol. 33, pp.
452–473, 1977.

[5] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” in Proceedings of the National Academy of
Sciences, vol. 99, 2002, pp. 7821–7826.

[6] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten,
and S. M. Dawson, “The bottlenose dolphin community of doubtful
sound features a large proportion of long-lasting associations,”
Behavioral Ecology and Sociobiology, vol. 54, pp. 396–405, 2003.

[7] R. S. Burt, “Social contagion and innovation: Cohesion versus
structural equivalence,” American Journal of Sociology, vol. 92,
no. 6, pp. 1287–1335, 1987.

[8] A. Lancichinetti and S. Fortunato, “Benchmarks for testing com-
munity detection algorithms on directed and weighted graphs with
overlapping communities,” Physical Review E, vol. 80, p. 016118,
2009.

[9] R. Cazabet, F. Amblard, and C. Hanachi, “Detection of overlapping
communities in dynamical social networks,” in Social Computing
(SocialCom), 2010 IEEE Second International Conference on, aug.
2010, pp. 309–314.

[10] M. Rosvall and C. Bergstrom, “Multilevel compression of random
walks on networks reveals hierarchical organization in large inte-
grated systems,” PLOS ONE, vol. 6, p. e18209, 2011.

[11] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato,
“Finding statistically significant communities in networks,” PLoS
ONE, vol. 6, no. 5, 2011.

	TKDE14

