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ABSTRACT
With the advent of huge data management systems storing volu-
minous data, there arises a need to develop e�cient data analytics
techniques for knowledge discovery at di�erent levels of granu-
larity. Resource Description Framework (RDF), mainly developed
for Semantic Web, is presumably a good option when considering
graph databases dealing with huge real-world data. RDF models
information in the form of triples <subject, predicate, object>, and
is considered as a useful tool to store graph data (aka linked data)
where each edge can be stored as a triple. Due to existence of
huge amount of linked data, mostly in the form of graphs, graph
mining has been successful in a�racting researchers from di�erent
research �elds for e�cient handling (storage, indexing, retrieval,
etc.) of graph data. As a result, various APIs like GraphX and
GraphFrames are developed to facilitate relational queries over
graph data. �ough GraphX is older than GraphFrames and pro-
cessing SPARQL queries over GraphX has been explored by some
researchers, to the best of our knowledge, SPARQL query process-
ing over GraphFrames has not been explored yet. In this paper,
we present an initial study on query-speci�c search space pruning
and query optimization approach to process SPARQL queries over
GraphFrames in an e�cient manner. �e experimental results, in
terms of low response time for query execution, are encouraging,
and give way to invest more research e�orts in this direction.
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1 INTRODUCTION
�e exponential growth in the amount of information available
online has swayed a need for data analysis at di�erent levels of
granularity. Started with statistical data analysis focusing on draw-
ing inferences from large data using certain summarization and
interpretation techniques, the emerging concept of big data ana-
lytics aims to deal with huge amount of varied and varying data
for pa�ern discovery and uncovering correlations. In general, it
is not possible to treat such data using traditional data analysis
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approaches [17]. Indexing techniques like MapReduce, based on
various tools such as MyHadoop, MongoDB [2] are used to handle
voluminous data. However, some of the issues in handling big data
are related to the analysis and quality of data, e�ciency of search
algorithms, visualization of results, fault tolerance, and handling
heterogeneous data and its security [2, 11].

�e data analysis process becomes more challenging when data
items are not independent, rather they are linked together or to
some other data sources available on social media, and hence visu-
alized in the form of graphs [1]. Joining the dots may reveal some
important non-trivial information, which is otherwise not possible
to reveal through analyzing data items independently. However,
the task of fusing all such information together complicates the
whole data processing task, starting from data storage and data
indexing to data retrieval. It can be seen that the analysis of linked
data in huge graphs such as subgraph isomorphism [14], shortest
paths between the pair of nodes [8] are computationally expensive
and most of them are NP-hard. As a result, some of the research
e�orts have been directed to devise e�cient graph data processing
techniques for analyzing linked data.

Exploring graph-oriented nature of Semantic Web has become
an ideal subject for analysis. Some progress in this direction is
the development of GraphX and GraphFrames APIs for processing
SPARQL (Simple Protocol and RDF �ery Language) queries over
graph data that are stored in RDF (Resource Description Frame-
work) format, although the RDF format is generally used to repre-
sent heterogeneous information on the Web via a labeled directed
graph1. It consists of a triple in the form of <subject, predicate,
object>, wherein the predicate represents the relation shared by the
subject and object [12]. A node in RDF graph is represented by URI
(Uniform Resource Identi�er), literal or a blank node2. SPARQL is
a semantic query processing language to handle relational queries
over RDF data. �e clauses in the query are in the form of triples,
<?x, R, ?y> where variable names are preceded by ‘?’ symbol. In
this triple, x and y represent subject and object respectively, joined
by a predicate R [7]. �e set of such triple pa�erns is called Basic
Graph Pa�ern (BGP).

Initially graph processing tasks like subgraph matching were
based on GraphX framework. In [5], SPARQL queries are evaluated
distributively using the graph computation framework of GraphX
API. �e query processing is based on query plan generator, which
creates an evaluation order and direction of messages to be sent via
edges. However, the proposed approach su�ers with an overhead
due to existence of loop edges, which requires a number of messages
to be passed [5]. Also, the analysis of ordering of triple pa�erns has
not been acknowledged in this work. Authors in [10], present an
algorithm for iterative matching of BGP triples from the query with
1h�ps://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
2h�ps://www.w3.org/TR/rdf-sparql-query/
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graph dataset using RDD (Resilient Distributed Dataset) in GraphX.
�e drawback of this technique is lack of query optimization via
optimal evaluation of BGP triples.

In this paper, we present an e�cient processing technique of
SPARQL queries using GraphFrames API, which is a new graph pro-
cessing platform developed over Apache Spark using the concept of
dataframes. It represents two dataframes – an edge dataframe and a
vertex dataframe. �e GraphFrames supports query processing, pat-
tern matching and optimizing computations across joins [4]. Along
with the capabilities of GraphX, it provides additional functionality
executing queries based on views stored and maintained by the
system3. �e GraphFrames query planner itself suggests views
to rewrite the query for e�cient results. �is paper introduces
an optimal processing of SPARQL query utilizing the dataframe
approach. In addition, a basic approach for optimizing the response
time of SPARQL query over GraphFrames and its implementation
is proposed. Our method employs GraphFrames API for reducing
query search space and argues for the reordering of SPARQL query
statements for faster execution.

�e rest of the paper is organized as follows. Section 2 presents
a brief overview of the existing state-of-the-art on graph data pro-
cessing. Section 3 presents our proposed approach for processing
SPARQL queries over GraphFrames and their optimization. In sec-
tion 4, we describe our experimental setup and evaluation results.
Finally, section 5 concludes the paper with future directions of
research.

2 RELATEDWORK
�e research in the �eld of data analytics initially started with
simple statistical methods like summarization [17]. However, for
analysis of huge data, Hadoop and several other platforms follow-
ing the MapReduce paradigm have been developed by the research
community [13]. Hadoop framework is used for distributed data
processing, which can scale up from a single server to multiple ma-
chines. Further, a system called H2RDF is developed for combining
MapReduce features with NoSQL data store, enabling processing of
simple as well as multi-join queries [16]. However, the drawback of
Hadoop like systems is that they reside in disk, resulting in excess
execution time[5].

To handle large distributed graphs, a scalable and fault-tolerant
platform called Pregel is developed in [15]. For each iteration, a
user-de�ned function on each vertex sends and receives messages
to and from other vertices respectively. �ough the implementation
is based on main memory, with some data residing on disk, it cannot
handle terabytes of data. Also, the partitioning of vertices onto
speci�c machines is a static process.

Later, Spark came up with an in-memory based framework for
query evaluation called GraphX. It is one of the graph process-
ing systems running on the Spark data parallel framework [18].
GraphX provides data abstraction in the form of RDD (Resilient
Distributed Dataset) [10], which increases the e�ectiveness of each
iteration as the required data is always in memory. In [10], GraphX
framework is employed for subgraph (or query pa�ern) matching,
through matching RDF graph data with BGP triples extracted from
SPARQL query. For example, the query shown in �gure 3(a) has

3h�ps://graphframes.github.io/

two BGP triples. �ough the order of clause matching, i.e., BGP
triples extracted from the query, with the given graph data a�ects
the optimality of the search operation, ordering of clauses is not
taken into consideration in the technique proposed in [10].

In [19], the authors proposed a system for scalable and e�cient
handling of SPARQL queries based on gStore. �eir system handles
queries consisting of aggregate functions and wildcard operators
over dynamic datasets. Another similar work related to the evalua-
tion of SPARQL queries using functions on vertices is implemented
in [7]. It uses GraphLab as the platform for execution of Semantic
Web queries. However, the implementation su�ers with the over-
head of converting RDF data into the format interpretable by the
GraphLab.

As discussed above, Pregel and GraphLab are graph-parallel ap-
proaches based on vertex programming models. �ey partition the
vertices among several machines to reduce computation load. How-
ever, a real-world data graphs like online social networks follow
power law degree distributions, implying that a small subset of
the vertices connect to a large fraction of the graph. �ese type of
graphs are di�cult to partition for a distributed environment. To ad-
dress these challenges PowerGraph is introduced, bene��ing from
the structure of vertex-programs and computation over edges as an
alternative to vertices [6]. It promotes greater parallelism, reducing
network communication and cost. A study in [3] presents Grapha-
lytics, a framework for benchmarking big data for graph-processing
platforms, which is best suited for data-intensive algorithms. �e
implementation of one such platform is Neo4j4.

In this paper, we use Spark framework for graph processing,
called GraphFrames. �e queries �red for analysis using Graph-
Frames are broken into fragments and matched against the views
stored previously. It models multiple views of graphs and matches
pa�erns iteratively [4]. �e concept of dataframe provides inter-
active queries. It also enables parallel execution and expedites
completion of interactive queries by registering the appropriate
view [4].

3 PROPOSED APPROACH
In this section, we present our proposed approach for e�cient
processing of SPARQL queries over GraphFrames. �e aim is to
query RDF graph data in an e�cient and optimized manner using
GraphFrames API. To retrieve results at a faster pace, search space
pruning and ranking of query clauses is also implemented. For
matching a given SPARQL query graph (aka subgraph) the extracted
BGP triples from query graph are matched against the RDF graph
data (dataset to be queried). It is studied that the order in which the
clauses of a query are �red, a�ects the processing time of the query.
�e research work presented in [5, 10] highlights the importance
of sequencing BGP triples for be�er performance of the system. It
also suggests that direct loading of graph data into RDD saves time,
in comparison to loading it into memory and then transferring
back to RDD [10]. For reducing query search space (aka graph
data pruning), certain predicates (or the edge labels) that need not
to be matched as per the given query are removed. �is reduces
the number of candidate values for variables in the query, also
limiting the data to be matched. Moreover, the query is optimized by

4h�ps://neo4j.com/product/
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Figure 1: Work-�ow diagram of the proposed approach for e�cient processing of SPARQL queries over GraphFrames

matching certain triples prior to others based on a ranking criteria.
�e idea behind query optimization is to check di�erent clauses of
the given query and rearrange them according to a ranking criteria
to minimize response time.

Figure 1 presents the work-�ow of the proposed approach for pro-
cessing SPARQL queries over GraphFrames, which consists of �ve
working modules – data graph generation, query graph generation,
query optimization, local search space pruning, and query processing
to perform various inter-related tasks. Functioning details of these
modules are presented in the following sub-sections.

3.1 Data Graph Generation
�e data graph generation module aims to scan RDF graph dataset
and generate two separate lists as CSV �les – (i) nodeList con-
taining the list of all node labels, and (ii) edgeList containing all
edges connecting a pair of nodes in nodeList. �e edgeList con-
tains edge information in the form of <subject ,predicate,object>
triples. Using nodeList and edgeList, RDF data can be modeled as
an unweighted and directed graph.

For an exemplar data given in the following paragraph, the
list of extracted <subject ,predicate,object> triples from di�erent
statements is shown in table 1. It should be noted that in many
cases same node acts as a subject for one triple and as an object for
another triple. All such triples extracted from the original data are
stored in a separate �le for answering SPARQL queries.

Exemplar Data: Dr. Mark, who is junior of Dr. Henry, works at
St.John hospital. Dr. Henry and Dr. Pam work at St.Paul. Dr. Henry
is treating Eric and Dr. Pam is treating Tanya.

Figure 2 presents a visualization of the RDF data triples given in
table 1.

3.2 �ery Graph Generation
As shown in Figure 1, this module aims to analyze SPARQL queries
to identify BGP triples for query graph generation. �e BGP triples
form the fundamental units for query graph, which is searched
in the RDF data graph for query answering. �ere are generally
two types of SPARQL queries – (i) Chain queries, and (ii) Star-join

Table 1: RDF triples extracted from the exemplar data given
in section 3.1

Subject Predicate Object
Mark juniorOf Henry
Mark worksAt St.John
Mark colleague Henry
Dr. title Mark
Dr. title Henry
Dr. title Pam
Henry treats Eric
Henry worksAt St.Paul
Pam worksAt St.Paul
Pam treats Tanya

Figure 2: Data graph corresponding to the RDF triples given
in table 1

queries. In chain queries, object of one triple is used as the subject of
another triple, whereas in star-join queries all triples share the same
subject [10] . For example, “?p relatedTo ?q, ?q manages budget”
is a chain query, whereas “?p relatedTo ?q, ?p supervisedBy ?r” is
a star-join query. Figure 3 presents an exemplar SPARQL query,
extracted BGP triples from the query statements, and query graph.

3



(a) SPARQL query (b) BGP triples

(c) �ery graph

Figure 3: An exemplar (a) SPARQL query, (b) Extracted BGP
triples from the query and (c)�ery graph

3.3 �ery Optimization
�e query optimization module takes BGP triples extracted from an
SPARQL query as input and reorder the query clauses to generate
an optimized query execution plan. For an SPARQL query with n
clauses there can be n! number of query execution plan with the
clauses in a speci�c order, which is a very large number if the query
has many clauses. �erefore, the aim of this module is to identify
the best possible order of �ring the query clauses such that the
response time of the subgraph (query) matching is lowest.

In order to determine the optimal ordering of clauses in a query,
we consider the frequency count of each predicate (or edge) in the
underlying RDF data graph. �e least frequent occurring edges
in RDF data graph are given higher priority, and accordingly the
clauses of the SPARQL queries are rearranged in non-decreasing or-
der of their respective predicates’ frequency count. �is reordering
can be proved to be bene�cial in terms of response time reduction
for huge data graphs. �e overhead of frequency calculation is very
low as compared to the results it may provide – as it needs to be cal-
culated only once for a given data graph. Hence, this technique can
be deployed for optimizing the subgraph (query graph) matching
process.

Table 2: Frequency count of the edges (predicates) in the
RDF data graph shown in �gure 2

Edge Label Frequency
juniorOf 1
colleague 1
treats 2
title 3
worksAt 3

Table 2 shows the frequency count of the edges in the RDF
data graph shown in �gure 2. �e SPARQL query in Figure 3(a)
comprises of two clauses (each of which forms a BGP triple) as
shown in �gure 3(b). Hence, there can be two ways in which the

query clauses can be ordered – (i) <?x worksAt ?y > followed by
<?x treats ?Eric >, and (ii) <?x treats ?Eric > followed by <?x
worksAt ?y >. Since the frequency count of the triple <?x treats
?Eric > is lower than the frequency count of <?x worksAt ?y >
, the second ordering of the query clauses is considered as the
optimized query execution plan.

3.4 Local Search Space Pruning
Like query optimization module, this module also aims to minimize
response time of query execution through reducing the number of
RDF triples to be searched in the dataset. Since both RDF data graph
and SPARQL query graph are converted by the Data Graph Genera-
tion and �ery Graph Generation modules respectively in the form
of <subject ,predicate,object> triples, a table lookup mechanism
is implemented to remove irrelevant triples from data graph with
respect to the given query with the help of an in-built function of
GraphFrames library. �is reduces the number of triples in the RDF
�le, leading to a substantial amount of reduction in the search space
(original data graph). Since the removal of triples from original data
graph is always with respect to a particular query, this pruning is
termed as local search space pruning.

For example, consider the RDF triples extracted from the RDF
dataset given in table 1 and the BGP triples extracted from the
SPARQL query of �gure 3(a) shown in �gure 3(b). Considering only
the predicate values of BGP triples, it can be observed that only
those edges of the data graph labeled as either “worksAt” or “treats”
are required by this query. �erefore, RDF graph data is scanned
for these predicate values and remaining predicate values along
with their subjects and objects data are removed from the original
dataset to create a temporary reduced dataset for query processing.
For the given SPARQL query in �gure 3(a), the pruned RDF triples
and the corresponding data graph are shown in table 3 and �gure
4, respectively.

Table 3: PrunedRDF data triples with respect to the SPARQL
query shown in �gure 3(a)

Subject Predicate Object
Henry treats Eric
Henry worksAt St.Paul
Pam worksAt St.Paul
Pam treats Tanya
Mark worksAt St.John

3.5 �ery Processing
�is module takes the optimized BGP triples and locally pruned RDF
data triples as inputs and performs a subgraph matching to identity
relevant triples for the query. �e subgraph (or query) matching
starts with the �rst clause of the query. A clause consisting of
a �xed value for a vertex (subject/object) would further narrow
down the search space, reducing the response time of the query.
�is is because, �xed value for either subject or object leads to the
reduction in the candidate set of values for the other vertex variables
joined by an edge (converse of subject/object). On contrary, if there
is no �xed-value vertex in the given query, then the set of candidate

4



Figure 4: Data graph corresponding to the pruned RDF
triples shown in table 3

values for subject/object is equal to the entire pruned dataset. �is
reasoning works well when the size of the data is huge. Figure
5 exempli�es the subgraph (or query) matching process. It also
shows the number of triples extracted against normal ordering of
query clauses (order-1) and the optimized ordering of the query
clauses (order-2). Figure 6 shows the resultant RDF triples and the
corresponding data graph for the SPARQL query of �gure 3(a).

4 EXPERIMENTAL SETUP AND RESULTS
�is section presents the experiment setup and evaluation results
of the proposed approach for e�cient SPARQL query processing
over GraphFrames. �e dataset used in this study is produced by
the Lehigh University benchmark5 (LUBM) data generator [9]. A
synthetic OWL (Web Ontology Language) dataset for a university
which corresponds to a university domain ontology is created. Table
4 presents the statistics of the generated dataset. �e LUBM data is
converted into RDF format using the JAR �le rdf2rdf-1.0.1-2.3.1.jar.
A data preprocessing module is implemented using Java to extract
nodes and edges from RDF data and store them into CSV �les. Table
5 shows the original queries �red on the LUBM dataset and the
optimized version of these queries using the optimization process
discussed in section 3.3 is shown in Table 6.

For a given query, if all edges in the query have �xed labels
then they are �ltered to create a new pruned graph. �is idea
is implemented by �ltering the given dataset based on the edge
labels from the individual clauses of the query. Hence, we take
into account the frequency of the edge labels that are part of the
query for deciding the order of �ltering. �e edges of the dataset
are ranked in non-decreasing order of their frequency count and
the edge having least count is considered as highest ranked edge.
Filtering of the ranked edges can be done using two approaches.
In �rst approach (Approach-I ), edges are �ltered based on their
ranks, prior to motif creation. �e motif is a template created
from the query for pa�ern matching and data retrieval. As an
example, for the query, “?X <takesCourse> <GraduateCourse6>;
?X <type> <GraduateStudent>”, the corresponding motif will be
(X)-[e1]->(Y); (X)-[e2]->(Z), which can be represented as a relation
schema Motif(X, e1, Y, X, e2, Z). �is implies that there are two
edges originating from node X to two di�erent nodes Y and Z. �e
second approach (Approach-II ) �rst retrieves the motif and then
5h�p://swat.cse.lehigh.edu/projects/lubm/

�lters the edges according to their ranks. �ough the �rst approach
gives a lower execution time, it works only when all edge labels
are known. Hence, it is observed that in most of the cases, �rst
approach of edge �ltering gives e�cient results, as shown �gure 7.

Table 7 shows the partial results obtained through executing the
optimized queries given in table 6. Figure 8 presents a comparison
results in terms of execution times (in seconds) for normal and
optimized queries. It can be observed from this �gure that �ltering
and reordering works in majority of the cases. Despite of the fact
that this approach may not provide much di�erence in execution
times for small datasets, the cost of reordering depends on frequency
calculation of the edges, which takes a linear scan of the original
dataset. But, it seems very useful for processing SPARQL queries
over large graph datasets.

Table 4: A statistics of LUBM graph dataset

Vertex categories and their
numbers

Total
#vertices

Total
#edges

Department: 15

17191 67466

FullProfessor: 125
AssociateProfessor: 176
AssistantProfessor: 146
Lecturer: 93
UndergraduateStudent: 5916
GraduateStudent: 1874
TeachingAssistant: 407
ResearchAssistant: 547
Course: 828
GraduateCourse: 799
Publication: 5999
ResearchGroup: 224

5 CONCLUSION
In this paper, we have presented an e�cient SPARQL query process-
ing approach over GraphFrames. Starting from extracting triples
from RDF graph data, we have shown how ordering of query clauses
and pruning of original graph dataset help in reducing response
time of SPARQL queries. It can be observed from the experimen-
tal results that the time needed to fetch data from graph can be
curtailed by reducing the search space using the predicates of the
query clauses. Also, reordering the query clauses is bene�cial in re-
ducing search time for subgraph (or query) matching. �e proposed
approach works well for large datasets. For smaller dataset, the
e�ect of query clause reordering becomes data dependent, which
can be improved in our work by taking into account the frequency
count of the vertices along with the edge labels.
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ling, and Peter Boncz. 2015. Graphalytics: A Big Data Benchmark for Graph-
Processing Platforms. In Proceedings of the GRADES’15. ACM, New York, USA,
7:1–7:6.

5
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Table 6: Optimized version of the SPARQL queries given in Table 5

�ery
ID

Optimized SPARQL�ery

OptQ1 ?X <h�p://www.w3.org/1999/02/22-rdf-syntax-ns#type> <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#GraduateStudent> .
?X <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#takesCourse> <h�p://www.Department3.University0.edu/GraduateCourse6>

OptQ2 ?X <h�p://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?Y.
?X <h�p://swat.cse.lehigh.edu/onto/univ–bench.owl#publicationAuthor> <h�p://www.Department7.University0.edu
/AssociateProfessor12>

OptQ3 ?X <h�p://www.w3.org/1999/02/22-rdf-syntax-ns#type> <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#GraduateStudent> .
?X <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#takesCourse> ?Z

OptQ4 ?X <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#subOrganizationOf> <h�p://www.Department8.University0.edu> .
?X <h�p://www.w3.org/1999/02/22-rdf-syntax-ns#type> <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#ResearchGroup>

OptQ5 ?X <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#memberOf> ?Y .
?X <h�p://www.w3.org/1999/02/22-rdf-syntax-ns#type> <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#GraduateStudent> .
?Y <h�p://www.w3.org/1999/02/22-rdf-syntax-ns#type> <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#Department>

OptQ6 ?X <h�p://www.w3.org/1999/02/22-rdf-syntax-ns#type> <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#GraduateStudent> .
?Y <h�p://www.w3.org/1999/02/22-rdf-syntax-ns#type> <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#University> .
?Z <h�p://www.w3.org/1999/02/22-rdf-syntax-ns#type> <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#Department> .
?X <h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#memberOf> ?Z

Table 7: Execution results of the optimized SPARQL queries given in Table 6

�ery
ID

#Triples shown/
#Retrieved triples

Resultant triples

OptQ1 3/4 1. h�p://www.Department3.University0.edu/GraduateStudent80
2. h�p://www.Department3.University0.edu/GraduateStudent13
3. h�p://www.Department3.University0.edu/GraduateStudent16

OptQ2 3/14 1. h�p://www.Department7.University0.edu/AssociateProfessor12/Publication4,
h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#Publication
2. h�p://www.Department7.University0.edu/AssociateProfessor12/Publication2,
h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#Publication
3. h�p://www.Department7.University0.edu/AssociateProfessor12/Publication9,
h�p://swat.cse.lehigh.edu/onto/univ-bench.owl#Publication

OptQ3 3/3738 1. h�p://www.Department0.University0.edu/GraduateStudent52,
h�p://www.Department0.University0.edu/GraduateCourse16
2. h�p://www.Department1.University0.edu/GraduateStudent61,
h�p://www.Department1.University0.edu/GraduateCourse36
3. h�p://www.Department1.University0.edu/GraduateStudent82,
h�p://www.Department1.University0.edu/GraduateCourse22

OptQ4 3/18 1. h�p://www.Department8.University0.edu/ResearchGroup12
2. h�p://www.Department8.University0.edu/ResearchGroup11
3. h�p://www.Department8.University0.edu/ResearchGroup14

OptQ5 3/1874 1. h�p://www.Department11.University0.edu/GraduateStudent79,
h�p://www.Department11.University0.edu
2. h�p://www.Department4.University0.edu/GraduateStudent3,
h�p://www.Department4.University0.edu
3. h�p://www.Department4.University0.edu/GraduateStudent6,
h�p://www.Department4.University0.edu

OptQ6 4/1834646 1. h�p://www.Department11.University0.edu/GraduateStudent79,
h�p://www.University740.edu,
h�p://www.Department11.University0.edu
2. h�p://www.Department11.University0.edu/GraduateStudent79,
h�p://www.University453.edu,
h�p://www.Department11.University0.edu
3. h�p://www.Department11.University0.edu/GraduateStudent79,
h�p://www.University157.edu, h�p://www.Department11.University0.edu
4. h�p://www.Department11.University0.edu/GraduateStudent79,
h�p://www.University252.edu,
h�p://www.Department11.University0.edu
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Figure 7: Comparison of two approaches (Approach-I and
Approach-II ) of graph �ltering

Figure 8: Comparison of execution times of original and op-
timized SPARQL queries
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