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Abstract—Various events and their perspectives around the
world are discussed or posted at every moment on social media
platforms like Twitter in near real-time, forming an enriched
repository of information as historical records or time series.
These include people’s sentiments, emotions, opinions, and other
information such as situational aspects of the spreading of a
particular disease, ailment, or a population explosion of some
vectors or pathogens. Exploring and harnessing such information
about a disease for surveillance to prevent and control its
spreading or becoming epidemic or pandemic is worthwhile for
a country or the world. In this paper, we correlate tweeting
activity with the reported disease cases, and take advantage
of the predictive power of neural networks and auto-regressive
models to estimate disease incidences for the current week (aka
nowcasting) considering the social media data and the disease
case counts reported by the Government agencies. We propose
Long Short-Term Memory (LSTM) network models and autore-
gressive moving average models with two channels of inputs to
incorporate social media and historic disease case count data for
predicting current disease case counts. We employ various LSTM
network models and autoregressive moving average models to
estimate the current week’s disease case count and compared
their performance considering tweets as exogenous input to
these models. The experimental results establish the efficacy of
the LSTM network models with dynamically merged inputs for
predicting disease case count with least prediction error.

Index Terms—Digital epidemiology, Disease surveillance, Time
series forecasting, Social media, Neural network, LSTM, Now-
casting.

I. INTRODUCTION

In recent decades, the world has changed expeditiously with
exceptional growth in population together with the menace of
emerging and re-emerging infectious diseases. As the infectious
diseases spread rapidly throughout the population, their early
warning signs emerge in different media in near real-time
in terms of news, blogs, microblogs, bulletin boards, and
other social media posts. Collecting and analyzing data from
these media sources could be helpful for surveillance systems
to provide information on early warning about the diseases
so that suitable measures could be taken to prevent any
adverse situation to become an epidemic or pandemic [1].
Traditionally many surveillance techniques and systems have
been developed and deployed. Most common among them
include vital statistics about birth and death [2], registries
for particular conditions or defects, a routine survey of the

population, disease reporting to state and national agencies,
adverse event (e.g., drugs and vaccines) surveillance [3],
sentinel surveillance to report disease condition or cases (e.g.,
influenza-like-illness in the United States) [2], zoonotic disease
surveillance to detect infected animals [4], laboratory test
data, and syndromic surveillance [5] using clinical signs and
symptoms about a disease.

Nowadays, the growth and easy access to the internet has
increased its penetration in various regions of the world, and
social media has become ubiquitous in our society. Today social
media is an essential medium of social interaction through
mobile and web-based interfaces. Social media sites, such
as Twitter provides a distinctive platform where people
disclose and share their personal health information. Such
information is distributed in near real-time and accessible to
communities irrespective of location and time. Social media
contents are of shorter length (e.g., tweet-length limited to 280
characters, earlier it was 140 characters) and dynamic in nature
that may represent an opinion, sentiment, trending event, topic,
discussion, and health information. Monitoring and analyzing
these contents would help to understand user behavior, what
is trending topic, what circumstances peoples are concerned
with, and which disease is spreading in a particular location.

Many researchers admit that tracking social media data
for influenza outbreak detection is more efficacious and
authentic than the traditional method of reporting based on
sentinel surveillance [6]–[9]. Despite the increasing interest of
researchers and academicians to exploit social media data and
harness its potential for nowcasting and forecasting disease
outbreak detection, public health professionals are unwilling to
leverage such insights. Traditional surveillance systems depend
on public health authorities involved in hospitals, laboratories,
or over-the-counter drug sales to collect and report disease
incidence data at local, regional, and national levels, which
cause undesirable delays and hinders timely reporting of disease
cases. As a result, an average of two weeks delay happens in
the occurrence of diseases and their official notification [10].
In countries like India, where health is a state subject with
many states not reporting timely to the nodal agencies, such
delay is a major issue [11].

This paper takes advantage of the predictive power of neural
networks and auto-regressive models for estimation of disease
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case count based on social media data and the historic disease
incidence data reported by the Govt. agencies. It provides an
important surveillance application called nowcasting, which
is a form of forecasting in which we predict the present level
of the disease case counts that is yet unknown. We employ
four neural network-based Long Short-Term Memory (LSTM)
network models and two autoregressive moving average models
for nowcasting of disease incidences and compared their
performance. We observe that the models learned on social
media data together with disease case count data outperform
other models. Moreover, the LSTM models with combined
social media and historic case count data perform considerably
better than autoregressive moving average models. Thus, we
anticipate that LSTM models with inputs from social media data
and historic case count data can play a pivotal role in monitoring
and detecting possible threats to public health and capturing
early signals of any epidemic or pandemic. In addition, our
approach is generic and applicable to any infectious disease for
a similar purpose of forecasting. For experimental evaluation,
we have considered dengue as a case study to monitor and
predict the level of dengue disease incidences in India.

The remaining part of the paper is organized as follows.
Section II presents a review of the existing state-of-the-arts on
disease surveillance. Section III presents a preliminary study
on various auto regressive models, deep learning-based LSTM
networks, and other background details. Section IV explains
the proposed approach for nowcasting disease incidences. The
experimental setup and performance evaluation are discussed in
section V. Finally, section VI concludes the paper with future
directions of research.

II. RELATED WORK

Monitoring the spreading of diseases to minimize the
potential damage caused by their outbreak has been in focus
for many years [2], [3], [12]. Emphasis is given on two types
of surveillance, of which a traditional approach based on case-
based reporting is termed as passive surveillance while a recent
approach based on Internet-based surveillance is termed as
active surveillance [12]. Internet/Web-based surveillance is
based on news articles, RSS feeds, search engine queries, and
social media content. Social media nowadays has become
a center of attraction for the research community because
of its live streaming, diverse content, real-time availability
of enormous data. Many studies have been accomplished
to analyze sentiments, identify political trends, measure the
intensity of disease outbreaks and public health behaviours
[13]–[16]. Social media in general and Twitter, in particular,
have attracted many researchers for studying public health
perceptions.

In [13], authors reported the link between Google trends
search metrics (i.e., the terms correlated to the disease along
with their frequencies) and Australian weekly notification
data about some diseases. They found a strong correlation
between search metrics and disease notification data. They
applied the concept of a linear model to calculate query lag
between search metrics and disease notification to have the best

model to predict one week or two weeks of disease incidences.
Thapen et al. [14] proposed DEFENDER system by integrating
social media and news media data for outbreak detection,
situational awareness, nowcasting to count current level of
disease activity, and forecasting to predict future symptom
counts based on observation of symptomatic people movement
from neighbouring regions to an area. In [17], authors used
Wikipedia access logs and disease incidence data and language
as a proxy for the location to produce an effective disease
monitoring and forecasting system.

The majority of works in disease surveillance using social me-
dia have emphasized on infectious diseases of which influenza-
like illness [6], [7], [18], [19] has received the greatest attention.
Another notable disease received researchers’ attention for
surveillance is the dengue fever [20]–[22]. Researchers have
also examined other diseases using social and news media
data that include cholera [23], malaria [24], ebola virus
outbreak [25], [26], zika virus outbreak [27], [28], and others.
Non-infectious diseases have also received some attention of
researcher of which cancer [29], [30], asthma [31], diabetes
[32], human immunodeficiency virus [33], [34], to name a few.

Using social media data for surveillance, however, is a
subject of major concerns as limitations have been pointed
out by researchers [35], [36], especially, after the failure of
Google Flu Trend [37]. Social media data are posted or reported
by individuals, which may misreport or under-report their
health issues resulting in over or underestimation that may
aggravate the surveillance [38], [39]. There are other factors
like biases towards representativeness of the data that include
the user’s demographics and lack of domain expertise, bot
accounts that may influence people’s perception towards a
disease or drug, and privacy concerns that may affect the
reliability of surveillance for decision making and health
interventions. Despite these limitations, numerous studies have
continually revealed the strength of social media data in public
health surveillance, more particularly for disease surveillance.
Social media monitoring cannot replace traditional disease
surveillance. However, it can act as a complementary tool
for traditional systems by addressing the knowledge gaps by
reducing the cost and latency of collecting information and
their analysis.

Surveillance systems based on social media data are intended
to sense any abnormalities in the volume of user-generated
content associated with health-related adverse events. The
abnormalities can be detected using statistical models such
as time series models, which are fitted on time series data
to forecast the disease epidemics condition. Time series
forecasting in domains such infectious diseases are traditionally
done using Auto Regressive Moving Average models [40], [41].
Recently, deep learning based models have gained popularity
for text information processing [42], including time series
forecasting in different domains. Researchers in [43], [44]
have shown that the deep learning based models such as
LSTM outperform auto regressive algorithms for time series
forecasting tasks.



III. PRELIMINARIES

Time series data represents a set of data points at a consec-
utive time arranged in chronological sequence and common
in many fields, including science, engineering, business, and
economics. We need to fit an appropriate model to the time
series data and estimate parameters such that the learned
mathematical model can be used to forecast or predict the future
values. Based on the predicted value, the policymakers take
precautionary measures and make interim decisions. Therefore,
selecting an appropriate model is essential to represent the time
series data so we could use the fitted model for forecasting.

There are two important linear time series models, namely
Auto Regressive (AR) [45] and Moving Average (MA) [45]
models. The AR model regresses a time series value from
the past values (lagged values) of the given time series. It
can be represented using equation 1, where the dependent
variables yt−1, yt−2, ..., yt−k are the response variables of
the past k time periods, εt is the error term (white noise) in
regression model, β0 is a constant term, and β1, β2, β3, ..., βk
are coefficients of the past k response variables, and k is the
order of AR model.

yt = β0 +β1yt−1 +β2yt−2 +β3yt−3 + ...+βkyt−k + εt (1)

The MA model, on the other hand, uses past forecast errors to
make current forecast using a regression like model represented
by equation 2, where µ is the mean of the series, εt−1, εt−2,
εt−3, ..., εt−k represent past error terms, εt is the current error
term, and θ1, θ2, θ3,...,θk are coefficients of the past k error
terms.

yt = µ+ εt + θ1εt−1 + θ2εt−2 + εt−3 + ...+ θkεt−k. (2)

The combination of these two models results in more sophisti-
cated models that include both the auto regressive and moving
average components, which are discussed in the following
subsections.

A. ARMA, ARIMA, and ARMAX Methods

Auto Regressive Moving Average (ARMA) model: It involves
two parts, namely Auto Regressive (AR) and Moving Average
(MA) parts of which the AR part regresses the past values to
time series while the MA part models the prior error terms.
The ARMA model is represented by equation 3, where p and
q represent the order of AR and MA parts, respectively.

yt = β0 +

p∑
i

βiyt−i + εt +

q∑
j

θjεt−j (3)

The ARMA model can be fitted on stationary times series. A
series is said to be stationary if its mean is constant and does
not vary as a function of time. Similarly, the variance of the
stationary series does not depend on time. If the series does not
meet the stationary criteria, we need to make it stationary using
suitable techniques that include detrending, differencing, and
seasonality. The most common technique for making a series
stationary is differencing, in which we model the differences
of terms instead of actual terms. The differencing is referred
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Fig. 1: A Long Short-Term Memory network with LSTM units

to as integration part (I) in the ARMA model, and this gives
rise to a new model called Auto Regressive Integrated Moving
Average model which is discussed as follows:

Auto Regressive Integrated Moving Average (ARIMA) model:
It is a generalized version of the ARMA model with an
additional component called integration (I). It is denoted
by ARIMA(p,d,q), where the parameters p represents lag
order, d represents the degree of differencing, and q represent
the moving average window. One needs to prepare the data
according to the differencing order to construct the ARIMA
model.

Auto Regressive Moving Average with Exogenous Inputs
(ARMAX) model: ARMAX is a generalized version of the
ARMA model that incorporates exogenous input variable X.
This model contains p auto regressive terms, q moving average
terms, and a linear combination of b terms of an external time
series. The model can be represented by equation 4, where
dt represents the external time series and the η1, η2, ..., ηk
represent parameters of the series dt.

yt = β0 +

p∑
i

βiyt−i + εt +

q∑
j

θjεt−j +

b∑
k

ηkdt−k (4)

B. Long Short-Term Memory Network

Long Short-Term Memory (LSTM) neural network is a
recurrent neural network that has embedded LSTM units with
each unit comprising a memory cell to store information and
three gates including an input, forget, and output gate to regulate
information flow within the memory cell [46]. The input gate
provides new information as input to the cell and regulates the
recent information using activation function, while the forget
gate discards some information from the existing content of the
memory cell. Likewise, the output gate determines the amount
of information to be transmitted to the next hidden state. LSTM
networks store recent short-term history as activation of neurons
and long-term history as weights, which get modified during
backpropagation. The memory cell learns through the iterative
process of guessing, back-propagating errors, and modifying
weights through gradient descent for regulating information,
preventing any vanishing and explosion of gradients. The values
of input, output, forget gates, and the candidate memory cell at
a time-step t with input vector wt are updated using equations
5, 6, 7, 8, 9, 10. In these equations, � represents element-wise
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multiplication, σ represents sigmoid function and Wi, bi, Wf ,
bf , Wo, bo represent input, forget and output gates parameters.
The final hidden vector representing high level features is fed
into dense layer.

it = σ(Wi.[ht−1;wt] + bi) (5)

ft = σ(Wf .[ht−1;wt] + bf ) (6)

ot = σ(Wo.[ht−1;wt] + bo) (7)

gt = tanh(Wr.[ht−1;wt] + br) (8)

ct = it � gt + ft � ct−1 (9)

ht = ot � tanh(ct) (10)

LSTMs are very effective in modeling sequential data
because of their capability of learning and remembering long
input sequences, and hence, they have been successfully applied
for sequence labeling, speech recognition, image captioning,
and language modeling [47].

IV. PROPOSED NOWCASTING APPROACH

In this section, we present an approach of nowcasting disease
incidences based on social media data and the actual disease
case count data reported to government health agencies. Figure
2 presents an overall work-flow of the proposed nowcasting
approach. It involves data collection, processing, and use
of time series models for nowcasting disease cases using
Twitter data and the data reported through Integrated
Disease Surveillance Programs (IDSP) by the Govt. of India.

A. Dataset Acquisition

We have used two relevant data sources for event detection
and nowcasting of the number of disease incidences. As a case
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Fig. 3: LSTM network with two channels of inputs for
nowcasting of disease cases. The merging of outputs from
the LSTM layers is done either by concatenation or by average
resulting in two different models TweetX-LSTMConcat and
TweetX-LSTMAverage, respectively.

study, we have considered dengue, which is endemic in India
and most prevalent in tropic and sub-tropic regions because of
favourable climatic conditions for the breeding of vectors and
pathogens in these regions. The following subsections present
the details of these data sources.

1) Twitter Data: We collected tweets originated from India
during June 18, 2017, to July 14, 2018, using the Twitter4J
Java library. During the given period, we collected 30 million
tweets using a geographic bounding box around India. However,
for experimentation, we used only English language tweets
associated with dengue disease that consists of 0.239 million
tweets.

2) IDSP Case Count Data: Integrated Disease Surveillance
Program1 (IDSP) is a significant initiative by National Health
Mission for monitoring and reporting epidemic-prone disease
as a part of National Health Programme for all States and
UTs of India. It uses trained Rapid Response Team (RRTs)
based on the decentralized laboratory to monitor disease trends
and to identify and report the disease outbreaks in its nascent
stage. IDSP reports the weekly case count and deaths due to 22
disease/illness reported to it by states and UTs. We collected
weekly dengue case count data from June 2017 to July 2018
for our experimentation. We represent the weeks from 17W23
to 18W28 to reflect the year and week number of that year
such that the epidemiological week 17W23 represents the 23rd

week of the year 2017.

B. Tweet Pre-processing and Aggregation

To address the noise-related issues of the data, we pre-
processed the raw tweets and transformed them into a readily
processable form appropriate for representing as input to the

1https://idsp.nic.in/index.php



machine learning algorithm for classification. The tweet texts
are pre-processed by eliminating URLs, user mentions, stop
words, punctuation, numerals, and extra spaces, and the text
tokens are converted to lowercase. We then employed a basic
CNN-based classifier discussed in [48] to identify disease-
related tweets. The disease-related tweets thus collected are
aggregated into weekly tweet counts for the given disease and
thus formulated a time series data for experimentation.

C. Outbreak Patterns Detection

To detect outbreak patterns, we examined the distribution
or trends of tweets volumes generated per week, and their
correlation with the dengue case counts throughout the entire
data collection period discussed in section IV-A. Figure 4
presents the weekly dengue cases reported through IDSP,
and the tweets count during the same epidemiological weeks
(henceforth mentioned as Epi weeks). The graphs and the
spikes in this figure suggest that there is a close association
between the volume of tweets and the reported dengue cases.
Further, it can be observed from figure 4 that the tweet volume
and the disease case count shares a similar trend. In figure 4
the case count has a different numerical range with respect to
the tweet volume per week, as marked on the y-axis. We can
observe from figure 4 that the dengue case counts show peaks
in June, July, and August during Epi weeks 17W27, 17W29,
17W31, and 17W34 for the year 2017. It further shows peaks
during weeks 17W38 to 17W40. Thereafter, we see a sharp
decrease in the number of dengue cases during November and
December 2017, and it continues to be low until April 2018.
However, from May 2018 onward, we again see an increase
in the number of dengue cases and some peaks (18W22 and
18W25) during June 2018. The highest peak is seen in July
2017 in Epi Week 17W31, with a total number of dengue cases
in that week exceeds 5,000 and the total number of dengue
cases detected during July 2017 to be 7,921. Further, we can
observe from figure 4 that the trends of tweet volumes are also
able to detect most of these outbreaks by depicting surge in
tweets during the peak periods. However, the tweet volumes
were unable to capture certain major peaks, like the peak in
Epi week 18W22 in May 2018. Further, we can also observe
that spikes in tweet volumes per Epi Weeks occur immediately
before the dengue case count reports, and there are one to
two weeks lag between spikes in tweets and the peak value in
immediate dengue case count reports.

D. Nowcasting

The purpose of nowcasting is to estimate the current case
count using the past reported disease case count by Govt.
agencies available till the previous time point T ′ and the tweet
count up to the current time point T . As the reports published
by Govt. agencies (e.g., IDSP) generally gets delayed by one
week to one month. Considering delay of one time point say
∆ = T ′ − T = 1, we can assume that the current tweet count
available till T will help in estimating the current case count.
This can be considered as one step ahead estimation of the
disease case count.

1) Auto Regressive Moving Average Models: We con-
sider two auto regressive moving average models – i)
CaseCount-ARMA and ii) Tweet-ARMAX models. The
CaseCount-ARMA model is based on the ARMA model, and
Tweet-ARMAX is based on the ARMAX model discussed in
section III. The CaseCount-ARMA model takes only one
input time series data, which is the historical case count data
reported by the Govt. health agencies. On the other hand, the
Tweet-ARMAX model incorporates two input time series data
with external input as the weekly tweet volumes available until
time point T.

2) Long Short-Term Memory Network Models: We consider
four different LSTM models – i) a CaseCount-LSTM,
ii) TweetX-LSTMConcat, iii) TweetX-LSTMAverage,
and iv) MultiVariate-LSTM. The CaseCount-LSTM
is a simple LSTM model that considers a LSTM layer
followed by a dense layer to predict the disease case
count. It considers only one input channel for nowcasting.
TweetX-LSTMConcat and TweetX-LSTMAverage are
merged forms of LSTM models that take two channels of
inputs and the outputs of LSTM layers from two channels are
dynamically merged by concatenation and average respectively
before they are padded to the fully connected dense layer.
The TweetX-LSTMConcat model takes two channels of
inputs to two different LSTM layers with similar structure and
parameters, of which one for previous disease case counts and
the other for weekly tweet counts. The outputs of the LSTM
layers are merged by concatenation before they are passed to a
fully connected dense layer to predict the disease case counts.
Similarly, the TweetX-LSTMAverage model takes two
channels of inputs to two different LSTM layers with similar
structure and parameters of which one for previous disease case
counts and the other for weekly tweet counts. The outputs of
the LSTM layers are merged by element-wise average before
they are passed to a fully connected dense layer to predict
the disease case counts. The MultiVariate-LSTM on the
other hand takes two parallel series as input to a single LSTM
model and predicts the output for the next time steps based
on the two series. MultiVariate-LSTM is different from
the merged models in the sense that it has a single input of
two parallel series and have only one LSTM layer followed by
a fully connected dense layer. We employed the dense layer
in all these models without any activation as we predict the
numerical value directly, just like a regression task.

V. EXPERIMENTAL SETUP AND RESULTS

For experimental setup, we used python library keras2

especially designed for deep learning models, and an important
python packages statsmodels3, which provides functions
and classes helpful for estimating various statistical models,
exploring statistical data, and conducting statistical tests. All the
experiments are conducted using python 3.6.5. For evaluation,
we divided the available case count data and the tweet volumes

2https://keras.io/api/
3https://www.statsmodels.org/stable/index.html



Fig. 4: Graph showing the relationship between the tweets count and the reported dengue cases. Note, the dengue case counts
are at different numerical range with respect to the tweets count.

into training and validation sets (training : validation ratio as
80 : 20) and used the validation set to evaluate the estimated
case count. The time slot for the training period is from June
5, 2017, to April 22, 2018, and for evaluation is from April
23, 2018, to July 16, 2018. The performance of nowcasting is
evaluated based on ground truth reports of the IDSP data.

For CaseCount-ARMA, and Tweet-ARMAX models, we
used the orders p=1, and q=1 for these models. Similarly, for
deep learning-based LSTM models – CaseCount-LSTM,
TweetX-LSTMConcat, TweetX-LSTMAverage, and
Multivariate-LSTM, we set the number of LSTM units
to 256 neurons and used ReLU [49] activation function. The
models are trained for 500 epochs using Adam [50] optimizer
to update parameters. We applied the mean square error loss
function to minimize the error and used the fully connected
dense layer without any activation because we are predicting
numerical value like regression tasks.

A. Nowcasting Evaluation

We compared the performance of the auto regressive
moving average models and LSTM models for nowcasting
task. In the case of CaseCount-ARMA model, we
incorporated the ARMA model into the IDSP disease
case count data to estimate the current case count during
the validation period. CaseCount-ARMA model does
not use any exogenous input for the estimation of case
counts. Similarly, the CaseCount-LSTM model uses only
the IDSP disease case count data without any exogenous
input to estimate the current case count. Contrary to
this, the Tweet-ARMAX model, TweetX-LSTMConcat,
TweetX-LSTMAverage, and Multivariate-LSTM
models use twitter and IDSP data to estimate the current
case counts. The twitter data in these models are used as

exogenous input to incorporate the information embedded
within the trends of tweets. Figure 5 presents line graphs of
one-step-ahead case count estimation of dengue cases using
CaseCount-ARMA, Tweet-ARMAX, CaseCount-LSTM,
TweetX-LSTMConcat, TweetX-LSTMAverage, and
Multivariate-LSTM models during the validation period.

We used the Normalized Root Mean Square Error (NRMSE)
[51] to compare the case count estimations by each model
during the evaluation period. The NRMSE is calculated using
equation 11, where RMSE is the root mean square error
given by equation 12, and ymax and ymin respectively are
the maximum and minimum number of cases during the
validation period. In equation 12 yt and ŷt represent observed
and predicted dengue cases, respectively.

NRMSE =
RMSE

ymax − ymin
(11)

RMSE =

√√√√ 1

N

N∑
t=1

(ŷt − yt)2 (12)

TABLE I: Performance comparison of CaseCount-ARMA and
Tweet-ARMAX for 1-step ahead estimation of dengue case
counts

Models Normalized RMSE
CaseCount-ARMA 0.294
Tweet-ARMAX 0.220

CaseCount-LSTM 0.215
TweetX-LSTMConcat 0.179
TweetX-LSTMAverage 0.217
Multivariate-LSTM 0.184



Fig. 5: The graph showing relationship between the actual dengue cases and the case counts estimated by various models
during the validation period

Table I presents the performance of all the models for case
count estimation in terms of NRMSE. The NRMSE values from
table I clearly show that the LSTM-based models outperform
the auto regressive moving average models as the NRMSE
values are smaller for LSTM-based models in comparison to the
auto regressive moving average models. If we compare the two
auto regressive moving average models (CaseCount-ARMA
and Tweet-ARMAX), we observe that the NRMSE value is
significantly smaller in the case of the Tweet-ARMAX model
in comparison to the CaseCount-ARMA model, indicating
that the tweet volumes per week as an exogenous variable can
improve the performance for estimating the disease case count.
Further, we observe from table I that TweetX-LSTMConcat
has the least NRMSE value suggesting that it is the best
performing model for predicting dengue cases while the
CaseCount-ARMA model having the highest NRMSE value
indicates worst performing model for predicting dengue cases.
Moreover, the LSTM models having inputs both the historic
dengue case count data and the dengue tweet volumes perform
better than the models having input only the historic dengue
case count data. Thus, we can infer that the Twitter data
can be instrumental in determining the dengue cases and
can act as a complementary source of information for early
reporting of dengue outbreaks. The early estimation of disease
case counts can help Govt. health agencies to take suitable
precautionary and preventive measures to prevent a disease to
become epidemic or pandemic.

VI. CONCLUSION AND FUTURE WORK

Estimation of disease incidences is a major task in identifying
and monitoring of the disease outbreak, tracking infection rate,
and reporting them to public health authorities responsible for
intervention. In this paper, we have presented an approach for
the monitoring and estimation of disease cases using neural

network-based LSTM models with input data from disease-
related tweets volumes and the disease case count data reported
through the Govt. health agencies. Capturing the trends of
the disease-related social media data is useful for forecasting.
However, insufficient and inconsistent coverage of the disease
in social media resources during the outbreak may adversely
affect the nowcasting or forecasting accuracy. We observed
that social media data could be used as a complementary
source of information for nowcasting or estimating the current
disease case counts. There is still scope of improvement in
nowcasting in the scenarios when little or inadequate coverage
of the disease by social media. We can supplement the model
with additional information such as climatic conditions like
temperature, humidity, rainfall, and other seasonal features to
enhance the disease incidence accuracy.
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