
Information Extraction and Imprecise Query Answering from

Web Documents

Muhammad Abulaish
a
 and Lipika Dey

b

a
Department of Mathematics, Jamia Millia Isamia (A Central University), Jamia Nagar, New Delhi-25, India

E-mail: abulaish@computer.org
b
Department of Mathematics, Indian Institute of Technology Delhi,Hauz Khas, New Delhi-16, India

E-mail: Lipika@maths.iitd.ernet.in

Abstract. Word based searches for relevant information from texts retrieve a huge collection and burden the user with

information overload. Ontology based text information retrieval can perform concept-based search and extract only

relevant portions of text containing concepts that are present in the query or those that are semantically linked to query

concepts. While these systems have better precision of retrieval than general-purpose search engines, problems arise with

those domains where ontological concepts cannot be unambiguously described using precise property descriptors. Besides,

the ontological descriptors may not exactly match text descriptions or the user given descriptors in query. In such

situations, uncertainty based reasoning principles can be applied to find approximate matches to user queries. In this paper

we have presented a framework to enhance traditional ontological structures with fuzzy descriptors. The fuzzy ontology

structure has been used to locate and extract both precise and imprecise descriptions of concepts from Web documents and

then store them in a structured knowledge base. The design of the structured knowledge base, which in our case is a

database, is also derived from the underlying fuzzy ontology representing the domain. User queries are processed in two

stages. In the first stage, precise SQL queries are formulated and processed over the knowledge base to find a possible

answer set. In the second stage, fuzzy reasoning is applied to compute the relevance of the answers in the answer set with

respect to the query. We have provided experimental validation of the approach through knowledge-extraction and query

processing executed over a diverse set of domains.

Keywords: Information extraction, ontology, fuzzy ontology structure, imprecise concept descriptor, imprecise query

processing.

1. Introduction

The World Wide Web (WWW) is a large and growing

collection of texts and the wealth of information available

on it is a valuable resource to the Internet users. However,

text mining or locating, extracting and analyzing required

information from this vast unstructured collection is a

challenging task. Most of the problems are obviously due

to the incapability of the computer in comprehending

natural language texts with all its nuances. Information

extraction from texts chiefly employs pattern matching to

identify predefined sequences in text. There are several

text-mining tools, which can successfully categorize and

index a large collection of documents on a given set of

keywords automatically. However, pattern matching

works only in a very limited context. A more intelligent

way to analyze contents of text is to employ concept

linkage. Concept linkage aims at identifying commonly

shared concepts across documents and helps users to find

information that they perhaps wouldn’t have found using

traditional searching methods. Concept linkage has played

a crucial role in mining information from biomedical

texts, where the text information grows at such a

tremendous rate that without automated tools for

analyzing the collection, it becomes impossible to

assimilate the knowledge embedded in it.

Concepts themselves however may be defined in

different ways, by different authors. Hence one way of

accessing information stored within unstructured or semi-

structured text documents is to go for effective semantic

analysis of texts with the help of a structured collection of

domain concepts in the background. The Semantic Web,

introduced in [28] also aims at providing a new direction

towards manipulating the meaning of Web data along

with the use of ontologies. Ontologies are knowledge-

management structures in which key concepts and their

inter-relationships are stored to provide a shared and

common understanding of a domain across applications

[10]. Ontology based text information processing has

been probed quite successfully for analyzing biomedical

texts, with the help of several biological ontologies like

© Copyright WIAS, IOS Press, 2006

GENIA1 ontology, Gene2 Ontology (GO), Open

Biological3 Ontology (OBO), TAMBIS4 Ontology (TaO)

[19] etc.

Even as the use of ontology for domain-specific

applications are fast gaining popularity, researchers are

actively engaged in tackling some of the chief bottlenecks

that still hinder the use of ontology for general-purpose

applications. Some of these are identified as follows:

(i) Reliable Ontologies do not exist for all domains:

Since ontologies are meant to provide shared

conceptualization of a domain, these have to be

built by domain experts. Hence ontology building

is an expensive task. Integrating knowledge

acquired from text documents may provide an

effective solution to this problem.

(ii) Finding the ideal concept description: It is

impossible to describe all concepts unambiguously.

For example, while it is possible to agree on a

technical definition of proton, it is impossible even

for domain experts to agree on what should be the

ideal set of values for describing wine colors. The

commonly occurring values are red, white and

rose. But one does find descriptors like straw, pink

etc. used for describing wines. However, absence

of an exhaustive set of values does not undermine

the necessity for a wine ontology, which provides a

unified framework for describing concepts related

to wine. What is ideally required is that within the

rigid structure of the ontology, which is dictated by

the application, there should be the flexibility to

adapt new or modified descriptors as novel use of

concepts are encountered.

(iii) Matching ontology-specified descriptions to

documents or user-given descriptions: Since it is

difficult to agree on a unanimous description of a

concept, it is unreal to expect that concepts will

appear in a document in exactly the same way as

they are described in the ontology. This may also

be forbidden by natural language construct

requirements in many cases. Thus, keyword based

searching have to be enhanced with additional

reasoning capability to perform concept-based

search. Similarly, concept descriptions given in

user queries are not likely to be restricted to

ontology descriptions only. Thus, if an ontology is

to be employed for searching related concepts in

texts in response to a user query, uncertainty based

1 http://www-tsujii.is.s.u-

tokyo.ac.jp/~genia/topics/Corpus/genia-ontology.html
2 http://www.geneontology.org/
3 http://obo.sourceforge.net/cgi-bin/table.cgi
4 http://protege.stanford.edu/plugins/owl/owl-library/tambis-

full.owl

reasoning principles have to be employed for

establishing the multi-way relationships among all

these descriptions.

It is possible to reason about ontology entities using

inexact reasoning principles, without affecting the rigidity

of the underlying structure. We illustrate our point using

weather descriptions of various countries as depicted in a

web document. Following are some sample descriptions

of the weather of various countries:

• Belarus: cold winters, cool and moist

summers; transitional between continental and

maritime.

• Belgium: temperate; mild winters, cool

summers; rainy, humid, cloudy.

• Croatia: Mediterranean and continental;

continental climate predominant with hot

summers and cold winters; mild winters, dry

summers along coast

• France: generally cool winters and mild

summers

• Greenland: arctic to subarctic; cool summers,

cold winters

It is easy for human beings to infer that Belarus and

Greenland have similar climate while France is

somewhat similar to Belgium, and different from the

earlier two. However, given the current status of text

information retrieval, it is not possible to automatically

derive these conclusions through text analysis. It is in fact

impossible to do so using simple word-based search

mechanisms. Our aim is to provide a platform where such

reasoning can be performed. Fuzzy reasoning can help in

establishing the degree of similarity between various

linguistic qualifiers like mild, cool, cold etc. For example,

using such a system, user may get to know which country

has winter similar to that of France. This requires not

only identification of concepts and their descriptions from

multiple sources, but also to compare them using

uncertainty based reasoning principles. We have found

that such descriptions occur frequently in various

domains, and hence the methodology can be applied

successfully to build various domain-based applications.

In this paper we have proposed the design of a

complete knowledge-management system for handling

text documents from a known domain, which addresses

some of the concerns expressed above. Starting with a

base ontology, the system extracts key information

through syntactic analysis of text documents in an

ontology-guided way. The information components

extracted are stored in a structured format to help in

future query processing. The system is also equipped with

an ontology enhancing mechanism, which enriches

existing concept descriptions with new descriptors

extracted from web documents. The novelty of the system

lies in using a new fuzzy ontology structure, which is

created as an extension to the standard ontology structure.

Traditionally concepts are described in an ontology using

a <property_name, property_value> framework. The

proposed fuzzy ontology structure stores concept

descriptions in a < property_name, property_value,

qualifier> framework. This framework allows defining a

property_value of a concept with differing degrees of

fuzziness, without actually changing the concept

description paradigm. We have termed such concept

descriptions as fuzzy concept descriptions.

The proposed fuzzy ontology structure is very

different from other similar structures [5,15,29] which

usually store the strength of a relation as a function of the

co-occurrence of two participating concepts. In our case,

qualifiers are chiefly fuzzy linguistic variables, which as a

special case could be numerical values also. Hence in our

framework concepts can be described with varying

degrees of fuzziness. An initial version of the proposed

framework for storing fuzzy concept descriptions was

presented in [13]. However, in [13] ontology

enhancement mechanisms were not proposed. The set of

values and qualifiers used for describing ontology

concepts was fixed a priori. Consequently, only these

descriptors were extracted from text. Presently, our

system starts with an initial ontology and is capable of

enhancing it with more descriptor values and qualifiers.

Knowledge enhancement in the form of recognizing new

property values and qualifiers and integration of these

into the main ontology structure to enhance it is a novel

aspect of the present work.

Integration of a query-processing module capable of

handling imprecise descriptions is also a new aspect of

the system. The query-processing module performs

imprecise query answering. Since exact matches for user-

given concepts may not be found in documents, hence

query-processing module employs fuzzy-reasoning

principles to derive answers that may be imprecise

matches for user-given concepts. The retrieved concepts

are arranged according to their degrees of relevance to

query concepts, where relevance is a function of values

and qualifiers associated to query concepts and the

concepts extracted from text documents. The efficacy of

the system is established through experiments over

several domains.

The rest of the paper is organized as follows. We

review some related works on ontology-based text

processing, fuzzy ontology structures and ontology

enhancement in section 2. In section 3, an overview of the

whole system along with its different modules is

presented. Section 4 presents the document pre-

processing process. Section 5 details the creation of fuzzy

ontology structure. In Section 6 we have discussed the

knowledge distillation process which extracts information

components in an ontology-guided way. Section 7

presents an experimental evaluation of the knowledge

distillation process. Section 8 explains the query

processing mechanism and also presents several sample

queries from different domains. Finally, we conclude and

discuss future work in section 9.

2. Related work on text mining and Ontology-based

text processing

 Text mining refers to the process of extracting

interesting and non-trivial patterns or knowledge from

unstructured text documents. Text mining can provide an

intelligent alternative to the current web querying process,

which is mostly based on keyword searching. Recent

research efforts in text retrieval encompass several areas

including virtual database technology [1], web data

modeling [12], wrapper generation [3,16,18], natural

language processing based extraction [23], and ontology-

based information extraction [6,9,26,27]. All these

systems enable automatic extraction of relevant

information from text documents. However, the first three

techniques are heavily dependent on the structure of a

web page. Natural Language Processing (NLP) based

techniques provide more intelligent technology, but then

understanding natural language texts in an unconstrained

scenario is a complex problem by itself and is an active

research area. Given the current state of research in NLP,

combination of natural language processing principles

within a structured framework promises to be more

effective.

Tan [2] has proposed a general framework for text

mining consisting of two components: Text refining that

transforms free-form text documents into an intermediate

form; and knowledge distillation that deduces patterns or

knowledge from the intermediate form. Nahm and

Mooney [31] have proposed the integration of text mining

and information extraction approaches to deal with the

information stored in unstructured text documents. Their

system called Discovery from Text Extraction

(DiscoTEX) is first trained to extract information and

transform text into more structured data, which is then

mined for interesting relationships. But the system does

not use any domain knowledge due to which the proposed

approach has problems when the same extracted entity or

feature is represented by similar but not identical strings

in different documents.

The use of ontology encourages enterprises to

participate in knowledge-interchange by subscribing to a

common, shared vision of entities and activities in a given

domain [20,21]. Ontology based approaches are

inherently resilient to the format of a web page and can be

easily adapted to work for web pages from many distinct

sources belonging to the same application domain. The

use of ontological models to access and integrate large

knowledge repositories in a principled way has an

enormous potential to enrich and make accessible

unprecedented amounts of knowledge for reasoning [11].

In the next sub-section we will review some of the

recent research efforts that have been directed towards the

problems of ontology learning and design of ontology-

based text processing systems.

2.1. Ontology-Based text processing and Ontology

learning

Ontology is a conceptualization of a domain into a

human understandable, but machine-readable format

consisting of entities, attributes, relationships and axioms

[17]. Ontology uses classes to represent concepts and

supports taxonomy and non-taxonomy relations between

classes. Ontology can be represented in one of the many

languages like OIL [4], OWL
5
, XML

6
 etc. Since ontology

describes a domain of interest in an unambiguous way,

ontology-based text document processing schemes can

help in alleviating a wide variety of natural language

ambiguities present in a given domain.

Andreasen et al. [27] have proposed a system for

content-based querying of texts based on the availability

of an ontology that describes domain concepts. In their

system the retrieval of text passages is based on matching

descriptors from the text against descriptors from the

noun phrases in the query using taxonomic reasoning with

sub- and super-concepts. Snoussi et al. [9] have proposed

an ontology-based approach that facilitates the

formalization and the extraction of data from different

sources. The extracted data is converted into a coherent

structure so that users and agents can query them

regardless of their origin.

Ontology learning helps in induction of new concepts

and concept descriptors into the existing ontology as

novel uses of the domain concepts are encountered while

gathering information. Luke et al. [25] have proposed

SHOE, a set of Simple HTML Ontology Extensions,

which allow World Wide Web authors to annotate their

pages with semantic knowledge. The annotations are used

by a web crawler, which implements a graph traversal

algorithm to discover related web pages. The performance

depends heavily on the quality of annotation. Velardi,

Fabriani, and Missikof [21] suggest a scheme for

enhancing existing ontological structures with new

information extracted from texts. Their work is based on

identification of three primary kinds of concepts: actor

which defines a relevant entity of the domain and is able

to activate or perform process, object which is a passive

entity on which a process operates, process which is an

activity aimed at the satisfaction of an actor’s goal.

5 http://www.w3.org/TR/owl-ref/
6 http://www.w3.org/XML/

Secondary concepts include information components,

which are clusters of information pertaining to the

information structure of an actor or an object, information

elements which are atomic information elements that are

parts of an information component and elementary action

which denote activities that constitute process

components and are not further decomposable. Based on

the above definition of primary and secondary concepts,

candidate terminological expressions are captured using a

host of techniques ranging from stochastic methods to

more sophisticated syntactic approaches. The concept

forest generated is then manually integrated into a hand-

crafted upper level ontology.

Hahn and Marko [30] introduce a dual-use

methodology for learning both grammar and ontologies.

This system automates the maintenance and growth of

knowledge sources that are crucial for natural language

text understanding—background knowledge of the

underlying domain, linguistic knowledge about the

lexicon, and the grammar of the underlying natural

language. Learning occurs simultaneously with the on-

going text understanding process. The knowledge

assimilation process identifies concepts based on

linguistic analysis and assesses them for quality based on

evidence underlying the generation. On the basis of the

strength of evidence, hypotheses are ranked according to

qualitative plausibility criteria, and the most reasonable

ones are selected for assimilation.

Liddle, Hewett, and Embley [26] have proposed an

ontology-based data extraction system, which uses an

application ontology that describes a data-rich,

ontologically narrow domain in a conceptual fashion.

With inputs from a domain knowledge facilitator who can

provide the knowledge for creating application ontology

in an appropriate format, the system automatically

generates a single wrapper that can be applied to any page

relevant to the application domain.

Shamsfard and Barforoush [14] have suggested an

ontology building approach in which the system starts

from a small ontology kernel and constructs the ontology

incrementally through text understanding. The kernel

contains the primitive concepts, relations and operators to

build an ontology. This model uses dynamic categories to

handle changes and floating categories to handle multiple

viewpoints and is implemented to extract information

from natural language texts comprised of simple Persian

(Farsi) sentences.

Li and Zhong [32] have described a methodology for

ontology learning over an XML ontology scheme. The

original ontology is in XML and is extended by using a

list of facts and the frequency of their occurrences, which

are provided by the users. Each fact supplies an individual

opinion that specifies which class in the ontology the fact

belongs to. A mass distribution of user profiles on the

ontology is used to incorporate an information object into

the ontology.

Due to an increased interest in Bioinformatics, the

sizes of Biomedical information repositories have gone up

tremendously over the last decade. Ontologies play a very

important role in providing efficient and focused search

from these repositories. Several Biological ontologies like

Gene Ontology, GENIA, TAMBIS ontology etc. have

been built for this purpose. Consequently a lot of attention

has been given towards ontology based processing of bio-

medical texts to enable researchers to search for relevant

information components from a vast collection. Some of

the successful ongoing projects in this area are the

GENIA project, TEXTPRESSO [8], etc. Stevens et al.

[22] have described how a Bioinformatics ontology can

be built using OIL. They have also proposed Transparent

Access to Multiple Bioinformatics Information Sources

(TAMBIS), a mediation system that uses the TaO

ontology to enable biologists to ask questions over

multiple external databases using a common query

interface.

2.2 Fuzzy Ontology structures

Since concept descriptions cannot be unambiguous,

creation of Fuzzy ontology structures have also received a

lot of attention in recent times. Widyantoro and Yen [5]

have shown how fuzzy membership values associated to

ontology concepts, along with a concept hierarchy, can be

used for intelligent text retrieval. Starting with a set of

manually tagged abstracts of papers from several IEEE

Transactions, a fuzzy ontology is built on the collection of

keywords. The abstracts are tagged based on their title,

authors, publication date, abstract body, and author

supplied keywords. The hierarchical arrangement of the

terms in the newly generated ontology is dependent on

their co-occurrence measures. The drawback of this

system is its dependence on user judgment about the

relevance of articles to user queries.

Wallace and Avrithis [15] have extended the idea of

ontology-based knowledge representation to include

fuzzy degrees of membership for a set of inter-concept

relations defined in an ontology. The membership of these

relations are used to judge the context of a set of entities,

the context of a user and the context of the query for the

purpose of intelligent information retrieval. A fixed set of

commonly encountered semantic relations have been

identified and their combinations are used to generate

fuzzy, quasi-taxonomic relations. This system lacks

generality.

Quan, Hui, and Cao [29] have proposed an automatic

fuzzy ontology generation framework – FOGA. They

have incorporated fuzzy logic into formal concept

analysis to handle uncertainty information for conceptual

clustering and concept hierarchy generation. However,

the quality of clustering is dependent on assignment of

meaningful labels to initial class names, attributes and

relations. This is done manually and requires domain

expertise. This system is also not designed to extract

fuzzy relational concepts from unstructured or semi-

structured text documents.

2.3 Features of the proposed framework

The proposed system for information extraction and

imprecise query answering is visualized as a complete

ontology-aided knowledge management system, which

has two main functions – ontology based text pre-

processing and knowledge distillation and imprecise

query processing. Text documents are pre-processed

using shallow parsing techniques to generate semi-

structured records. The knowledge distillation process

performs ontology-based scanning of these records to

extract information components. The information

components are stored in a structured knowledge base for

processing queries. Query processing is based on fuzzy

reasoning. The structured knowledge base acts as a global

repository for combining and collating information

collected from multiple knowledge sources. Users need

not be aware of the heterogeneity of the sources and

query the collection using a common interface. This

facility combines the ease of using a search engine with

the capability of text mining for retrieving information

embedded in texts.

The proposed system is capable of integrating new

values and qualifiers extracted by the knowledge

distillation process into the fuzzy ontology structure.

None of the fuzzy ontology structures discussed earlier

address the issue of incorporation of new values. Adding

more values and qualifiers into an existing ontological

structure helps in retaining the fixed structure of ontology

but at the same time extends its capability to act as

intelligent filters by progressively increasing its

knowledge base. Thus the system has the facility to

increase its lexicon or set of values and qualifiers for

improving retrieval performance over a domain with time.

The fuzzy ontology structure is a novel structure that

is created as an extension of traditional ontology

structures. The novelty lies in describing concepts as a

collection of <property_name, property_value, qualifier>

triplets, where qualifiers can be linguistic variables. This

allows defining the property-value of a concept with

varying degrees of precision. Variable precision helps in

imprecise query processing, where a concept can be

retrieved from text even if it does not match a user given

query exactly, and its relevance can be computed as a

fuzzy similarity to original concepts using fuzzy

reasoning methods. The structure can be easily adapted to

reflect strength of association also, which may be a

numeric value. Hence this structure is more general than

the fuzzy ontology structures discussed earlier since this

can accommodate both linguistic variables and numeric

values.

3. System Architecture

This section outlines the complete architecture of the

proposed system for ontology-based information

extraction and imprecise query answering from text

documents. The system, shown in figure 1, consists of

five main modules – Document Pre-processor, Fuzzy

Ontology Generator, Knowledge Distiller, Query

Processor, and Fuzzy Reasoner. The functionalities of the

modules are stated here briefly.

• The Document Pre-processor accepts free-form text

documents and identifies information components by

dividing them into individual record-size chunks after

cleaning the Meta Language (ML) tags. This module

uses a Parts-Of-Speech (POS) tagger that assigns

parts-of-speech to individual words. The identified

information components along with their

corresponding POS tags are stored in a semi-

structured form for the use of the other modules.

• The Fuzzy Ontology Generator extends an existing

ontology structure to a fuzzy ontology structure, by

incorporating fuzzy classes into the existing

ontology. Fuzzy classes are defined using multiple

inheritances from values and qualifiers. The fuzzy

ontology structure is then used to create the schema

for a structured knowledge base that will store the

information extracted from the texts.

• The Knowledge Distiller is responsible for extracting

relevant concepts from the semi-structured

intermediate records generated by the document

processor, in an ontology guided way. The module

uses a bi-directional inferencing mechanism for

identifying relevant concepts. This module uses the

domain concepts present in the ontology structure in

a guided fashion to scan the record components and

extract relevant information. The extracted concepts

are used to populate the structured knowledge base

and the fuzzy ontology structure appropriately.

• The Query Processor accepts user queries through an

ontology-guided query interface and converts them

into equivalent SQL queries. The SQL queries are

passed on to the database engine, which extracts

relevant instances from underlying structured

knowledge base.

Fig. 1. System architecture

Document Pre-

processor

Semi-structured

Intermediate

Form

Fuzzy

Ontology

Schema

Fuzzy Ontology

Generator

Domain

Ontology

Knowledge

Base Schema

Fuzzy Ontology

Structure

Structured

Knowledge

 Base

Q
u
er
y
 P
ro
ce
ss
o
r

Fuzzy

Reasoner

Web

Documents

 Knowledge Distiller

User

• The Fuzzy Reasoner implements fuzzy reasoning

principles to reason with the extracted instances.

Fuzzy reasoning is used to calculate the similarity

between the concept descriptions present in user

queries and those present in the extracted instances.

A set of relevant instances, along with their degrees

of relevance to the query concepts, is presented to the

user.

The functional details of these modules are given in

the following sections.

4. Document Pre-processor

The document pre-processor identifies and extracts

segments from unstructured text documents. The

processor consists of a Markup Language (ML) tags filter

which removes the ML tags from a document before

further processing. It then divides the document into

individual record-size chunks, and stores them as

unstructured records. Each record consists of a collection

of sentences that are a part of the same paragraph, where

a sentence termination is identified by the occurrence of a

full stop.

Parts-Of-Speech (POS) plays an important role in

information extraction. The records are subjected to POS

analysis using a POS tagger. The tagger assigns a POS tag

to each word in a sentence. We have used a Tagger that

has been developed by the Specialized Information

Services Division (SIS) of the National Library of

Medicine
7
 (NLM). Concept names are usually nouns,

concept descriptors are adjectives, and description

qualifiers mostly consist of adverbs. Thus our aim is to

extract words with these POS tags from sentences since

these can possibly contain imprecise concept descriptions.

 The entire sentence is first divided into segments on

the basis of stop words like commas, semicolons,

conjunctions, etc. These segments are thereafter stored in

a ternary tree. Other than the first segment in a sentence,

wherein a noun is searched for, a segment is incorporated

into the tree provided it has at least one adjective tag since

this word is likely to contain a property value. If the first

segment has at least one adjective tag it is added as a sub-

tree in the document tree otherwise it is merged with the

next segment having adjective tag(s). The ternary tree

structure is defined as follows:
Structure Tree {

String *Value;

Struct Tree *Lchild;

Struct Tree *Mchild;

Struct Tree *Rchild; }

Each sentence of a document and thereby the whole

document is converted into an instance of the tree by

distributing the tags in the following way:

7 http://tamas.nlm.nih.gov/taggercgi.html.

Dolcetto is a red table wine which is quite dry and has a slightly fruity flavor.

N X T J N N P X A J C X T A J N

Jordan: mostly arid desert; rainy season in west.

N A J N J N R N

Fig. 2. Texts with POS tags

Fig. 3. Sample Ternary tree structures created from text documents

 Arid, J

Jordan, N

Mostly, A

Desert, N

Red, J

Dolcetto, N Dry, J Table, N

Quite, A Null

Flavor, N Slightly, A Null

Fruity, J

Rainy, J

Null Season, N

West, N

Null
Wine, N

Root (R): A node that contains the right most adjective

word of a segment.

Lchild (L): A node that contains all the extracted words

that are to the left of the word considered at R.

Mchild (M): A node that contains all words that are to the

right of the word considered at R

Rchild: points to the root of the sub-tree constructed from

the next segment.

The equivalent context-free grammar for this is given

as follows:

Document (D) → LRMD | ∈

L → (N+P+A+V+J)
*

R → J

M → (N+P+V)
*
, where N, P, A, J, and V denote

nouns, pronouns, adverbs, adjectives and verbs

respectively.

Figure 2 shows two sample sentences, one describing

a wine, and another describing the climate of a country,

with POS tags assigned to the words. Figure 3 illustrates

the ternary tree structures created from these tagged

sentences. Multiple sentences of the same paragraph are

linked through the lowest, rightmost child. This structure

will be used by the Knowledge-Distillation process

described in the next sub-subsection.

5. Fuzzy Ontology Generator

It has been established in the earlier sections that in

some cases, concepts are best described through the use

of imprecise property descriptors rather than through a

<property_name, property_value> kind of structure.

Incorporating imprecision into the ontology structure

itself can help in resolving ambiguities arising due to

differences in user requirement specification and concept

descriptions embedded in text documents.

We propose a framework in which a property value

can be specified to various degrees of precision using

additional qualifiers. Thus in the proposed framework, an

object description comprises of <property_name,

property_value, qualifier>. Our aim is to extract elements

from domain documents that fill up the slots in this triplet

and provide valid descriptions of domain objects.

To accommodate imprecise concept descriptions, the

fuzzy ontology structure uses modified concept descriptor

classes. The fuzzy ontology structure contains two

generic classes - a “Value” class and a “Qualifier” class.

For each property descriptor class in the original ontology

structure, two sub-classes are included in the fuzzy

ontology structure - a “PropertyValue” class and a

“PropertyQualifier” class, which are subclasses of the

“value” and “qualifier” classes respectively. A qualifier

class is constrained to have a collection of linguistic

qualifiers. A set of linguistic qualifiers can be modeled as

a graded set. The qualifier class along with its value is

used to describe the property of a concept with varying

degrees of precisions. A property value can also be

associated with a NULL qualifier. In the fuzzy ontology

structure a FuzzyProperty class is created through

multiple inheritances from the value class and the

qualifier class.

In order to illustrate the usefulness of the proposed

ontology structure, consider the following descriptions

picked up from a web document, which contains

information about used vehicles put up for sale.

• 2000 Porsche Boxster: This car just in light damage

on a 2000 model Porsche Boxster. Running and

driving REPO clean title, very light damage (see

photos)..... parts needed are low cost and available,

very easy repair.... this car packed w/ potential..the

perfect repairable Porsche...call now.

• 2000 Ducati 900 SS: This super clean 2000 Ducati

900 Super Sport looks like it's never even been dirty

... only 4100 miles, has front and light left side

damage (minor), priced to sell at $2775.

Fig. 4. A partial ontology for a Vehicle Description

 Vehicle

Model Look Damage Mileage

Has

Has
Has

Has

The way these descriptions would be accommodated

with usual property descriptors and the proposed fuzzy

property descriptors, are illustrated in Figures 4 and 5

respectively. Figure 4 shows a partial view of property-

descriptors to represent a “Vehicle”. Using this structure

the Damage conditions of the“2000 Porsche Boxster”

and the“2000 Ducati 900 SS” can be defined in one of

two ways. In the first case both of them can be defined as

“light”. In the second case, one can be defined as “very

light” and the other as “light”. With the first

representation, the difference in the degree of damage, if

any, is missed. With the second representation, their

similarity of being damaged to similar extents with very

little difference is not captured. However, using the

structure of Figure 5, the value of damage for both the

vehicles will be stored as “light”, though the damage

qualifier values will be different. For the first car it will

be “very”, and for the second one it will be “Null”. This

representation unambiguously captures the essence of

both the vehicles being slightly damaged, with the second

one having slightly more damage than the first one.

Table 1 represents the redefined constraints, for the

properties used to describe vehicles. For example the first

row states that the attribute HasLook of a vehicle will be

at most one instance of the FuzzyLook class. Similarly

other rows define constraints for other slots.

 Once the fuzzy ontology structure is created, the

fuzzy ontology parser parses it to create an SQL schema

for the structured knowledge base. This is accomplished

through embedded SQL statements. Fuzzy property

values and fuzzy qualifiers are attributes in this table. The

ontology parser generates the list of objects, relationships,

and constraints, which provide a basis for mapping the

relationships in the ontology and the table declarations in

the SQL schema. It also provides the cardinality

constraints on the relationships like one-one, one-many,

and many-many. The general layout of a knowledge base

structure that is generated from the fuzzy ontology

structure is shown in table 2.

Fig. 5. Fuzzy property descriptors for the car properties shown in Fig. 4

 Value

Model Look Damage Mileage

Qualifier

Look

Qualifier

Damage

Qualifier

Mileage

Qualifier

Fuzzy

Look

Fuzzy

Mileage
Fuzzy

Damage

Vehicle

Has Look

Has

Damage Has Mileage

Table 1. Redefined constraints for the Vehicle slots

Template Slots of Vehicle description classes

Slot name Type Allowed Values/Classes Cardinality

HasLook Instance FuzzyLook 0:1

HasDamage Instance FuzzyDamage 0:1

HasMileage Instance FuzzyMileage 0:1

Table 2. Structured knowledge base schema

Entity

Name

Property-1

Qualifier

Property-1

Value

Property-2

Qualifier

Property-2

Value

… Property-n

Qualifier

Property-n

Value

6. Knowledge Distiller

This module uses the ternary tree representation of the

documents along with parent domain concepts present in

the ontology structure, to populate the fuzzy ontology

structure as well as the structured knowledge base with

information extracted from web documents. Some of the

key behavioral features of the instance generation

mechanism are:

(i) A particular object may have been described in a

document by using some or all properties present in

the ontology structure or by some other values, which

are not present in the ontology structure.

(ii) A document may or may not use the property name

in conjunction with the property values for describing

a concept. For example, in the document –

Roussanne is a light bodied, light red and very sweet

wine from France's Loire Valley, often blended with

Merlot, though the property name body is mentioned

explicitly; the property descriptors taste and color

appear only implicitly through their values.

Guided by these observations, we have employed a

two-pronged approach to populate the Fuzzy ontology

structure. Given a property name, the instance generator

looks for values to fill up the object description. This

method allows accommodating object descriptions with

property values that are not present in the underlying

ontology. In the absence of a property name, a property

value from the underlying ontology is used as a pointer to

fill up the particular property slot.

Algorithm Knowledge-Distillation implements this

approach to populate the knowledge base. This algorithm

accepts as input the Fuzzy ontology structure schema,

ontological entities, the ternary tree structure generated

from the parsed documents, and the structured knowledge

base schema as input. The output of this algorithm

consists of information components, which are used to fill

up the slots of the Fuzzy ontology structure as well as the

structured knowledge base. Detailed discussion on each

step of the algorithm follows.

Algorithm: Knowledge-Distillation

Input: Root node R of the tree structure generated from

document; Fuzzy ontology structure schema; List of

ontological concepts and their relationships, Structured

knowledge base schema generated by Ontology Parser

Output: Instances of concepts for populating fuzzy

ontology structure and structured knowledge base.

Step1: Search the left child L of R for the entity name

and put it in the column entity_name of the knowledge

base.

Step2: Search the middle child M for a property name.

When a property name explicitly appears in the

document, it occurs either as a noun tag or a verb tag.

Since a property name may or may not be explicitly

present, the following two cases have to be considered.

Case 1: If Property name found – In this case, the value

can be used directly.

Extract the value appearing in the value field of the root

node and store it in the corresponding property_value

column of the knowledge base as well as in the

corresponding slot of the Fuzzy ontology structure, and

go to step 4.

Case 2: If Property name not found – In this case, the

value appearing in the value field of the root node can

be used to identify the property.

Search the ontology structure to determine whether the

value is present in the property-value set of a property.

Since a value or a qualifier may be associated to more

than one property, we use the property with which it

has maximal co-occurrence.

Algorithm Knowledge-Distillation (ROOT)

Input: Ternary tree structure generated from Web documents (ROOT is the pointer to the tree structure), List of objects and
relationships, fuzzy ontology structure schema, and structured knowledge base schema

Output: Instances of the Fuzzy Ontology structure and structured knowledge base.

Steps:
1. Ptr = ROOT // Start from root node
2. Entity_Name=Null

3. If (Ptr ≠ Null) // If the tree is non-empty

 Property_Name=Null; Property_Value=Null; Qualifier_Value=Null;
a. Property_Name = SEARCH_PROPERTY_NAME (Property_name_list, Ptr -> MChild) // Search property name in the middle

 // child node.

 If Property_Name is not Null // Property name is explicitly mentioned in the document and found.
 Property_Value = Ptr -> Value // Value field of the root node is a property-value of the property stored in Property_Name

 Go to step 3 (b) // Proceed to search qualifier value

 Else // Property name is not explicitly mentioned in the document
 Property_Name = SEARCH_PROPERTY_VALUE (Property_Value_Lists, Ptr -> Value) // Search for a match of the Ptr

 // value field in the property value sets. In case of a valid match, return the corresponding property name.

 If Property_Name is not Null // The value at root node is a valid property value
 Property_Value = Ptr -> Value // Assign the content of Ptr value field to Property_Value.

 Go to step 3 (b) // Proceed to search qualifier value

 Else // The value at root node is not a valid property value
 Property_Value = SEARCH_PROPERTY_VALUE (Property_Value_Lists, Ptr -> LChild) // Search the Property value in

 // the left child node.

 If Property_Value is Null // The sub-tree does not have any property value.
 Go to step 3 (e) // Proceed to search the next sub-tree for property value and qualifiers (if any).

 End if

 End if
 End if

 b. Qualifier_Value = SEARCH_QUALIFIER_VALUE (Ptr -> Lchild) // Search qualifier value in the left child of the Ptr node.
 c. Instantiate the respective classes of the Fuzzy Ontology structure with Property_Value and Qualifier_Value.

 d. If Ptr=ROOT // The subtree rooted at ROOT node of the tree is under consideration.

 Entity_Name = SEARCH_ENTITY_NAME (ROOT -> Lchild) // Call this function exactly once
 Store Entity_Name, Property_Value, Qualifier_Value into Knowledge base // If entity name already exists in the knowledge

 // base, update only those fields that have Null values.

 Else // Remaining sub-trees are under consideration
 Store Property_Value, Qualifier_Value into Knowledge base // Update only those fields that have Null values.

 e. Ptr = Ptr -> Rchild // Proceed for the next sub-tree

 f. Go to step 3. // Repeat the above process for the next sub-tree

4. End if

Fig. 6. Knowledge-Distillation algorithm

Case2.1: The value is present in the property-value set

of some property - In this case extract the value

appearing in the value field of the root node and store it

in the corresponding property_value column of the

knowledge base as well as in the corresponding slot of

the Fuzzy ontology structure, and go to step 4.

Case 2.2: The value is not present – In this case go to

step 3.

Step 3: Search the left child L for a property-value

Case 1: A property-value is found – In this case extract

the found value and store it in the property_value

column of the knowledge base as well as in the

corresponding slot of the Fuzzy ontology structure and

go to step 4.

Case 2: No property-value found – In this case the sub-

tree under consideration is assumed not to contribute

any value for the Fuzzy Ontology structure. Go to step

6.

Step 4: Search the left child L of R for a qualifier. The

qualifier for a value is likely to appear in this as an adverb

or adjective tag. This node may have more than one

qualifier so, the search proceeds from right-to-left. Hence

the first qualifier to the left of a value found earlier is

accepted as the qualifier for the value. If a valid qualifier

is found, extract and store it in the corresponding

Qualifier_value column of the knowledge base as well as

in the corresponding slot of the Fuzzy ontology structure.

Step 5: If any of the above steps have yielded a match,

block the matched property-value set from further search

in the tree under consideration.

Step 6: Follow the right child pointer and replace R by it

to consider the next sub-tree and repeat steps 2-6 until the

vale of the right child pointer is NULL.

In order to build a sound knowledge base, a document

collection should be used, where all documents belong to

the same domain. The above steps are applied to all

documents in the collection. In order to decide the correct

class for new qualifiers and values extracted, we have

applied statistical analysis on the learned value and

qualifier sets independently. For all unique values in the

set, frequencies of their occurrences with different

properties are computed and a value is assigned to the

property with which it has maximum number of

occurrences. The same is done for the assignment of

qualifiers to different properties. The above steps are

applied iteratively till the state of the knowledgebase

stabilizes. Thus the Knowledge Distiller module can start

with a seed ontology, which contains a small set of

property values and qualifiers, and then iteratively

accumulate new values and qualifiers from text

documents.

Figure 6 presents the algorithm formally.

7. Experimental Results for text processing and

Ontology enhancement

The overall system performance is dependent on the

performance of two units - the Knowledge distiller and

the Query Processor separately. We have evaluated the

two components separately and provide here the

experimental details of evaluation. In this section we will

present a performance analysis of the knowledge

distillation process. To evaluate this module, we have

collected documents from the Web and then evaluated the

effectiveness of the distillation process in identifying

concept descriptors from these. The evaluation process

judges the effectiveness of the method in extracting both

old and new values and qualifiers from domain

documents. We have provided performance analysis over

four domains. For analysis of wine documents, we have

used the wine ontology developed by W3C and extracted

information from a large collection of web documents to

enrich it further. For the other three domains, we started

with seed ontologies that contain property names and

some values. We created initial ontology structures for

these domains using Protégé8, and then enhanced these

using the values and qualifiers extracted through text

mining. Protégé is an integrated software tool used by

system developers and domain experts to develop

knowledge-based-systems. It may be noted that all

qualifier sets associated with the fuzzy ontology structure

are initially empty and gets populated with qualifiers

extracted from the text sources.

 Section 7.1 presents the nature of the fuzzy ontology

8 http://protege.stanford.edu

Fig. 7. Wood Ontology structure Fig. 8. Fuzzy Wood Ontology structure

structures for the various domains and illustrates the

instantiation of these with information extracted from

documents. In section 7.2 we provide an evaluation of the

distillation process in terms of precision and recall. Later,

we will illustrate how concept descriptions including the

imprecise descriptors extracted from web documents are

used for answering user queries. This is presented in the

next section in which we have shown some query

processing examples over these domains to illustrate how

the user gets information about wines, wood, vehicles or

weather even with imprecise descriptions about the

concepts or qualities of the desired entity.

7.1 Fuzzy Ontology creation and instantiation

 To start with, an ontology is described as a collection

of a root concept, property descriptor concepts and

relations describing associations among these concepts.

Since the wine
9
 ontology structure is already available,

we will describe the process of creating a fuzzy ontology

using another domain. Information on various types of

wood are stored in this new ontology, which we call the

wood ontology. The wood ontology uses three properties

for describing wood, with the value sets initialized as

follows:

9 http://protege.stanford.edu/plugins/owl/owl-library/

• {Cream, Red, Brown, White, Yellow, Orange, Gray,

Black, Pink} for color property

• {Straight, Open, Close, Even, Curly, Wavy} for

grain property, and

• {Light, Heavy, Medium} for weight property, and

Using these property descriptors, the fuzzy properties

for this domain, created through multiple-inheritance are:

• fuzzy_color, which is a subclass of color_value class

and color_qualifier class.

• fuzzy_grain, which is a subclass of grain_value class

and grain_qualifier class.

• fuzzy_weight, which is a subclass of weight_value

class and weight_qualifier class.

Now, any instance of wood would be described by

these three properties using varied degrees of precision.

Hence color slot of class wood is constrained to take its

values as an instance of fuzzy_color class. Similarly other

slots are constrained to accept their values as an instance

from their respective fuzzy classes. The original and the

redefined taxonomic structure of the wood ontology, its

classes and constraints are shown in Fig. 7 and 8

respectively.

Fig. 9 shows the instances of wood descriptions

extracted through knowledge distillation from a collection

Instances of fuzzy_grain class

Grain
Qualifier

Grain
Value

Null Curly

Null Distinctive

Fairly Even

Fine Even

Very Even

Null Medium

Very Pronounced

Generally Straight

Usually Straight

Instances of fuzzy_weight class

Weight
Qualifier

Weight
Value

Moderately Heavy

Very Heavy

Moderately Light

Very Light

Null Medium

Instances of fuzzy_color class

Color

Qualifier

Color

Value

Heavy Black

Dark Brown

Golden Brown

Light Brown

Rich Brown

Null Creamy

Dark Gray

Deep Orange

Rich Orange-red

Light Pinkish-brown

Dark Purple-brown

Bright Red

Deep Red

Medium Red-brown

Rich Red-brown

Dark Reddish

Light Reddish-brown

Pale Yellowish

Fig. 9. A partial list of values and qualifiers extracted from Wood documents

of wood documents collected from the Web. This figure

shows some property-values that were not there in the

ontology originally but extracted by the knowledge-

distillation process. The set of qualifiers, which is entirely

new, are later on arranged into an ordered set through

human intervention. Fig. 10 shows the set of values and

qualifiers extracted by the knowledge distiller for the

vehicle domain. Fig. 11 shows the values and qualifiers

 Instances of fuzzy_damage

class

Damage
Qualifier

Damage
Value

Very Light

Null Light
Null Minor
Very Extensive
Very Minor

Instances of fuzzy_condition

class

Condition
Qualifier

Condition
Value

Null Super

Null Fantastic
Very Fantastic
Very Nice
Null Nice

Instances of fuzzy_look

class

Look
Qualifier

Look
Value

Null Beautiful

Very Beautiful
Very Clean
Super Clean
Null Great

Fig. 10. Partial list of values and qualifiers extracted from Vehicle documents

 Instances of fuzzy_summer

class

Summer
Qualifier

Summer
Value

Null Hot

Very Hot
Null Moist
Null Cool
Always Hot
Generally Hot
Null Dry

Intensely Hot

Constantly Hot

Mostly Hot
Extraordinarily Hot

Instances of fuzzy_temperature

variation class

Temp. Variation
Qualifier

Temp. Var.
Value

 Null High

Little Seasonal
Average High
Slight Seasonal
Moderately High
Null Moderate
Null Seasonal
Relatively Low

Constantly High

Very High
Severe Low

Instances of fuzzy_climate

class

Climate
Qualifier

Climate
Value

Most Moderate

Null Tropical
Mostly Temperate

Mostly Tropical
Mostly Arid
Mostly Semiarid
Null Semiarid
Cold Temperate
Cool Temperate
Mild Temperate
Null Subtropical

Fig. 11. Partial list of values and qualifiers extracted from Weather documents

 Instances of fuzzy_taste class

TasteQualifier TasteValue
Slightly Bitter

Fine Dry
Light Dry
Medium Dry
Null Dry
Quite Dry
Slightly Flinty

Null Fresh

Full Mellow

Medium Sweet
Slightly Sweet
Very Sweet

Instances of fuzzy_color class

ColorQualifier ColorValue
 Pale Cherry-red

Ruby Red
Orange Red
Indigenous Red
Light Red
Robust Red
Premium Red
Bright Ruby-red

Tenuous Straw

Null White
Pale White
Bright Yellow

Instances of fuzzy_flavor class

FlavorQualifier FlavorValue
Slightly Bitter

Zesty Delicate
Null Dry

Null Exquisite
Null Favorite
Fresh Fruity
Usually Fruity
Mellow Nutty
Smooth Nutty
Null Robust
Null Spicy
Harmonious Velvety

Fig. 12. Partial list of values and qualifiers extracted from Wine documents

extracted from documents on weather. Fig. 12 shows a

partial list of values and qualifiers extracted from

documents on wine. The point to note here is the

existence of a number of new values that were distilled

from the documents.

7.2 Performance analysis of the Knowledge Distiller

The quality of knowledge distillation can be measured

by comparing its information extraction accuracy against

human curation. Our intention was to study the

applicability of ontology-guided precise and imprecise

concept description extraction from general-purpose

unstructured texts. We considered documents on four

widely different domains - wine, vehicles, wood and

weather as our test-bed. To build our corpora we have

downloaded documents from the World Wide Web. Each

of these documents describes one type of entity and

contains around 10 sentences. Presently, the wine corpus

has 500 documents consisting of 52,320 words. The wood

corpus has 475 documents consisting of 55,590 words.

The weather corpus contains 264 documents. The vehicle

corpus is comparatively very small, and there are only 23

documents. We manually inspected these documents to

build a complete compilation of all possible elements to

be extracted and curated them under different categories

(shown in column 1 of Table 3): entity names, property

names, property values and property value qualifiers. The

elements extracted by the Knowledge Distiller are

automatically stored in different columns of the database

depending on their types. It may be noted that property

names do not appear explicitly in the database since the

database attributes are created from the ontology structure

itself. However, the recognition of property names is

important since it affects the property-value recognition

process and thereby the overall system performance. The

performance of this module is computed using standard

measures of precision and recall, which are defined as

follows:

extractedelementsofnumberTotal

extractedelementsrelevantofNumber
ecision =Pr

corpustheinpresentactually

elementsrelevantofnumberTotal

extractedelementsrelevantofNumber
call =Re

Table 3 summarizes these values for the different

domains. As is observed, the precision of the system is

quite high. This indicates that most of the extracted

instances are correctly identified. However, the recall

value of the system is somewhat low. This indicates that

several relevant elements are not extracted from the text.

To analyze the performance further, we identify the

causes of this problem as arising from three different,

though not mutually exclusive, sub-tasks performed by

this module, namely entity name extraction, property

value extraction and property qualifier extraction. The

problems associated to each of these recognition tasks are

further analyzed as follows:

• Named-entity recognition - It may be observed from

Table 3 that the recall and precision of recognizing

names is very high in the case of weather and vehicle

documents, though recall was comparatively lower

for wine and wood documents. Precision is high for

all the domains. This indicates that most of the names

were correctly recognized for all domains. For wine

and wood documents a few other names were also

identified as entities, which lowered the precision

slightly. These were mostly names of places where a

specific wine is found or a wood is grown.

The reason for low recall values in certain

domains was identified as follows. We observed that

most errors occur when the name is composite in

nature. For example, while the name Verdlet is easy

to identify as a noun, it is not so for the name Blush

Niagara. The Parts-Of-Speech tagger sometimes

identifies Blush as an adjective. This problem is

particularly severe for domains where standard

naming conventions do not exist. Though vehicles

also had composite names, due to the standard pattern

followed for all vehicle documents, the recall for this

domain was high. This problem can be overcome by

employing a set of additional Entity-Recognition

rules, which can take care of the peculiar naming

conventions of the domain. This is the usual approach

adopted for Biological document processors to deal

with a large entity collection with rather inconsistent

naming standards [7], [20].

• Property value recognition - A word is recognized as

a property value if either it is a member of a property-

value set in the ontology structure, or it is associated

with a property name in the web document. For

example, let us consider the following document

along with the POS tags associated to the words:

Verdlet is a delicate, fruity, white table
 N X T N J J N

wine, with the pleasingly crisp, slightly
 N R T A V A

flinty taste.
 J N

In the above example, though the property name

color does not explicitly appear in the description,

the knowledge base is filled up correctly, since white

is recognized as an adjective by the tagger, and it is

also present in the property value set of color in the

domain ontology. Though a new word, the

description “flinty” is also correctly recognized as a

taste value since it occurs explicitly in association to

property name– taste. However, the word fruity,

though assigned the correct parts-of-speech by the

tagger, is not recognized as a property value for

flavor by our system, since it is neither present in any

property value set in the underlying ontology

structure nor does it occur in association to any

specific property name in the document.

• Property value qualifier recognition – This task has

relatively less precision and recall values than other

tasks. There are two reasons that we have identified

for this. Firstly, in many cases a property value may

be associated with more than one qualifier. Since our

system extracts only the one that is closest to the

property value, a lot of qualifiers are missed. For

example, consider the following sentence picked-up

from the wine domain:

Chianti: a very bright ruby red color; a dry flavor,

which becomes delicate…

Here we found that the color value of “Chianti” is

associated with two different qualifiers bright and

very. Our system extracts only bright as a qualifier

value and associates it with the color value of wine.

In order to reflect the true performance of the

module, during performance evaluation we have

counted very as a missed but relevant element. This

problem can be easily tackled by considering adverb

chains rather than single adverbs as qualifiers [24].

The second problem creeps in due to the fact that

many adverbs which occur in the document are not

really qualifiers, though they occur sufficiently close

to some property value. An example of such a

sentence is given below in which the word

occasionally is wrongly judged as a qualifier for taste

whose value is slight.

Table 3. Performance Metrics for the Knowledge Distiller in terms of Precision and Recall

Domain
Type of Extracted

Information

Elements

in Source

Extracted

Elements

recognized

correctly

#Incorrect

Elements

extracted

Precision Recall

Wine

Named Entities

(Wine names)
1092 971 42 95.85 88.92

Property values 2172 1591 31 98.09 73.25

Qualifier Values 1492 1126 185 85.89 75.47

Wood

Named Entities

(Wood names)
965 856 49 94.59 88.70

Property values 1962 1177 109 91.52 59.99

Qualifier Values 650 486 82 85.56 74.77

Weather

Named Entities

(Country names)
264 264 0 100.00 100.00

Property values 617 440 13 97.13 71.31

Qualifier Values 126 95 9 91.35 75.40

Vehicle

Named Entities

(Vehicle names)
23 23 0 100.00 100.00

Property values 101 92 1 98.92 91.09

Qualifier Values 12 10 1 90.91 83.33

Fig. 13. I/O Interface

Valpolicella, an everyday red wine,. ……and

 N T J J N C
has plenty of body, and occasionally a

 x N R N C A T
slight taste of bitter almonds.

 J N R J N

8. Query Processor and Fuzzy Reasoner

In this section we will present the design of the Query

Processor and Fuzzy Reasoner modules. The Query

Processor accepts user queries through an ontology-

guided query interface and converts them into equivalent

SQL statements. The SQL queries are passed on to the

database engine, which extracts relevant instances from

the underlying structured knowledge base. The extracted

instances are passed on to the Fuzzy reasoner module to

calculate the similarity value between the concept

descriptions posed by the user, and those present in the

extracted instances. The final set of instances judged as

relevant, along with their degrees of relevance, is

presented to the user.

The overall task of query processing is a two-step

process – acceptance and conversion of the user query

into a corresponding SQL query and then extracting and

finding the relevant answer from the structured

knowledge base. The processing steps are explained in the

succeeding subsections.

8.1 Accepting user query

The Query Processor uses the underlying Fuzzy

ontology model and the structured knowledge base, which

defines and stores the domain concepts using a set of

property values and qualifiers. The query processor

interface, shown in Fig. 13, guides the user to enter his/

her queries in a given format, which is then converted into

an SQL query. Queries are formulated through this

interface as follows:

• A user can frame queries by selecting the property

and qualifier values from corresponding list boxes.

• A user can specify constraints on a property by

selecting only a qualifier, or a value, or both. Pull-

down menus containing lists of existing property

names, property values, and qualifiers are provided.

• Complex queries can be formulated by selecting one

or more of the logical operators AND/ OR/ NOT

Once a user query is accepted, a corresponding SQL

query is built out of it using the property names, property

values and logical operators (if any). The qualifiers are

not considered for building the SQL query. They are

considered later for judging the relevance of an answer.

8.2 Instance extraction and relevance computation

Since user given descriptions may not exactly match

any known description in the knowledge base, the answer

generation mechanism applies fuzzy reasoning to find

good matches. The following steps explain the answer

generation process:

Step 1: Formulation of SQL queries using user-given

parameters – During this phase, only the given property

names, property values and logical operators (if any) are

used to formulate the SQL query. For example if the user

enters the query – List the wines with light yellow color or

medium bitter taste, the corresponding SQL query is

generated as:

SELECT WineName, ColorQualifier, ColorValue,

TasteQualifier, TasteValue
FROM WineKnowledgebase

WHERE ColorValue = “yellow” or TasteValue =
“Bitter”;

The SQL query is processed using the knowledge base

and fuzzy ontology model.

Step 2: Precise query processing for finding exactly

matching answers – In this step the SQL statements

generated in step 1 are executed and the instances of

knowledge base with exact value matches are extracted as

intermediate results. The extracted instances for the

earlier query are as follows:

WineName
Color

Qualifier

Color

Value

Taste

Qualifier

Taste

Value

Grignolino Null Null Slightly Bitter

Racioto di soave Bright Yellow Null Null

Step 3: Fuzzy similarity computation for all answers

extracted – During this stage, the user given qualifiers are

used to compute the similarity of each extracted instance

to the actual user query in order to compute the final set

of answers.

To calculate the fuzzy similarity value between the

concept descriptions given in the user query and those

extracted from the knowledge base, we have redefined the

concept of similarity measures discussed in [9]. If u and v

are two objects in a given universe of discourse U, a

similarity measure is a function: SIM (u, v) → [0, 1]. In

our framework, since the qualifier set for different

properties is modeled as a graded set, the distance

between two qualifiers in the collection reflects their

degree of dissimilarity. The distance between the value vi

at position i and the value vj at position j within a set is

defined as:

)..(....................),(ijivvd ji −=

The similarity between two concepts u and v is computed

as:

).........(..........
1

),(
1),(ii

MAX

vud
vuSIM

+
−=

where MAX is the maximum distance between the

concepts in the graded set.

This function satisfies the condition

1),(0 ≤< vuSIM . Using this function each qualifier can

be assigned a fuzzy membership value to another qualifier

class. The membership values determined by this fuzzy

membership function for a sample 6-qualifier set are

shown in figure 14. However, other fuzzy membership

functions can be also employed to assign the membership

values to the qualifiers.

The similarity of an extracted instance to the user

given description is computed in terms of the degree of

match between user-specified property values and

qualifiers to those appearing in the knowledge base.

Let the user given description for each property P be

represented by C = <P, V, Q1>, where V denotes the

property value and Q1 denotes the qualifier. Let x be a

retrieved instance which has value V for property P and

qualifier Q2. Let µC(x) denote the similarity between the

instance x and the user given description C for property P.

µC(x) is computed as follows:

Case 1: Both Q1 and Q2 are present in the qualifier set of

P in the fuzzy ontology – In this case, µC(x) =

SIM(Q1,Q2).

Case 2: Q1 = NULL or Q1 = Q2 – The first situation

arises when user does not select/enter a qualifier with a

property value. In this case, µC(x) = 1. That is, all

instances with matching values are accepted as exact

matches. Similarly, if there is an exact match between the

user given concept descriptions and those present in the

retrieved instances, the similarity value µC(x) = 1.

Case 3: Either Q1 or Q2 or both are not present in the

qualifier set and they are not NULL – In this case, it is

judged that the query processor is not able to resolve the

differences in the descriptions, and so µC(x) = 0.

For complex queries i.e. queries in which multiple

property descriptions C1, C2,…,Cn have been specified by

the user and are combined with logical AND, OR, and

NOT operators - the final similarity value is computed by

using fuzzy intersection, union and negation operations

respectively. The membership computation functions for

intersection, union, and negation of fuzzy concepts C1, C2,

…Cn are defined as follows:

µC1∪C2∪…Cn (x) = MAX [µC1(x), µC2(x),…, µCn(x)]

Fuzzy membership functions for a 6-qualifier set

0

0.2

0.4

0.6

0.8

1

1.2

slight mild null very strong intense

Qualifiers

F
u
zz
y
 M

em
b
er
sh
ip
 V
a
lu
es

slight

mild

null

very

strong

intense

Fig. 14. Fuzzy membership functions for a 6-qualifier set

µC1∩C2∩…Cn(x) = MIN [µC1(x), µC2(x), …,µCn(x)]

µ¬C1(x) = 1 - µC1(x)

Continuing with the earlier example, the similarities of

the extracted instances with the user given description are

given in the following table. It may be noted that the

similarity values are based on either a color match or the

taste match, through the qualifiers. The second instance

has a lower degree of similarity than the first, since the

pair of qualifiers bright and light for color differs more

than the pair slightly and medium for taste.

WineName
Color

Qualifier

Color

Value

Taste

Qualifier

Taste

Value

Similarity

Value

Grignolino Null Null Slightly Bitter 0.67

Racioto di

soave
Bright Yellow Null Null 0.31

Step 4: Answer generation – only those instances, which

have similarities greater than or equal to a given threshold

with the user-description, are presented to the user.

8.3 Illustration of imprecise query processing

We now present some sample queries and answers

generated for them, using the knowledge bases that were

generated during the earlier phase. These knowledge

bases contain entity descriptions that are stored in a

database, whose schema is decided by the underlying

fuzzy ontology structure of the corresponding domain.

Each retrieved entity is accompanied by a similarity value

to indicate its relevance to the original query. For

presenting a qualitative performance analysis of our

system, in each of the following tables, we have also

shown those instances which have property value matches

with the query, but are ultimately judged to have

similarity value zero. Results of ten queries are presented

here from among which, first two are from the wine

domain, next three each from the domains of wood and

weather, and then two from the vehicle domain.

Query 1: List the wines with medium sweet taste.

The corresponding SQL query is generated for retrieving

relevant entities from the knowledge base, which are then

subjected to relevance computation:

Select WineName, TasteQualifier, TasteValue
From WineKnowledgebase

Where TasteValue = “Sweet”;

Result after fuzzy relevance computation:

Wine Name
Taste

Qualifier

Taste

Value

Similarity

Value

Niagara Medium Sweet 1.00

Blush Niagara Medium Sweet 1.00

Asti Spumante Slightly Sweet 0.67

Red Sparkler Slightly Sweet 0.67

White Sparkler Slightly Sweet 0.67

Wine Name
Taste

Qualifier

Taste

Value

Similarity

Value

Gewurztraminer Slightly Sweet 0.67

Brachetto Null Sweet 0.56

Muscat Di Tanta Maria Null Sweet 0.56

White Muscadine Null Sweet 0.56

Blush Muscadine Null Sweet 0.56

Alpine Burgundy Null Sweet 0.56

Red Muscadine Null Sweet 0.56

Query 2 exemplifies the use of the logical operator AND.

In the answer set for this query, though the first instance

has more matches with the user given description for one

property, due to the use of MIN function for fuzzy

intersection operation, its ultimate relevance goes down.

It may also be noted that presently the system is incapable

of judging the similarity between “slightly” and “fresh”,

since they cannot be judged on the same scale. Hence the

last two instances are inferred as irrelevant, which should

not be ideally so. This aspect needs further analysis.

Query 2: List the wines with slightly sweet taste and

slightly fruity flavor.

Initial SQL> Select WineName, TasteQualifier,

TasteValue, FlavorQualifier, FlavorValue

From WineKnowledgebase
Where TasteValue = ‘sweet’ AND FlavorValue =

‘Fruity’;

Results after fuzzy relevance computation:

WineName
Taste

Qualifier

Taste

Value

Flavor

Qualifier

Flavor

Value

Similarity

Value

Gewurztraminer Slightly Sweet Null Fruity 0.50

White Muscadine Null Sweet Null Fruity 0.50

Blush Muscadine Null Sweet Null Fruity 0.50

Red Muscadine Null Sweet Null Fruity 0.50

Niagara Medium Sweet Fresh Fruity 0.00

Blush Niagara Medium Sweet Fresh Fruity 0.00

Following are some more queries, their SQL versions and

the retrieved results from the other domains.

 Query 3: List very heavy weighted woods.

Initial SQL> Select WoodName, WeightQualifier,

WeightValue

From WoodKnowledgebase
Where WeightValue = “Heavy”;

Results after fuzzy relevance computation:

Wood

Name

Weight

Qualifier

Weight

Value

Similarity

Value

Oak Very Heavy 1.00

Hickory Moderately Heavy 0.67

Eucalyptus Null Heavy 0.33

Mahogany Null Heavy 0.33

Maple Null Heavy 0.33

Mesquite Null Heavy 0.33

Benge Null Heavy 0.33

It may be noted that in this example, an entity with more

similarity to the user query is judged as more relevant.

Hence Oak is definitely a better choice as heavy wood,

than Eucalyptus or Maple etc.

Query 4 illustrates the use of the logical OR operator.

Results show that though Birch is initially retrieved since

it has curly grains, however it was later discarded because

the qualifier “often” could not be compared with the

query qualifier “fine”. It may be noted that Oak is once

again a match since it is very heavy and though it does

not have curly grains, user has specified OR of two

properties. Hence any one exact match yields a value of

1.0. All other instances are imprecise matches for the

query.

Query 4: List the woods that have very heavy weight or

fine curly grains.

Initial SQL> Select WoodName, WeightQualifier,

WeightValue, GrainQualifier, Grain Value
From WoodKnowledgebase

Where WeightValue = “Heavy” OR GrainValue =
“Curly”;

Results after fuzzy relevance computation:

Wood

Name

Weight

Qualifier

Weight

Value

Grain

Qualifier

Grain

Value

Simil.

Value

Oak Very Heavy Null Null 1.00

Hickory Moderately Heavy Null Straight 0.67

Mahogany Null Heavy Null Curly 0.5

Eucalyptus Null Heavy Null Null 0.33

Maple Null Heavy Usually
Straight-

grained
0.33

Mesquite Null Heavy Null Null 0.33

Benge Null Heavy Null Wavy 0.33

Birch Null Medium Often Curly 0.00

Query 5 also illustrates the use of logical OR operators

with more properties in user query.

Query 5: List the woods that have either pale yellowish

color or very heavy weight or wavy grain.

Initial SQL> Select WoodName, ColorQualifier,

ColorValue, WeightQualifier, WeightValue,
GrainQualifier, GrainValue

From WoodKnowledgebase
Where ColorValue= “yellowish” OR WeightValue=

“Heavy” OR GrainValue= “Wavy”;

Results after fuzzy relevance computation:

Wood

Name

Color

Qual.

Color

Value

Wt.

Qual.

Wt.

Value

Grain

Qual.

Grain

Value

Simil.

Value

Oak Gray Brown Very Heavy Null Null 1.00

Honduras

Mahogany
Null Reddish Null

Mediu

m
Null Wavy 1.00

Benge Pale
Yellowi
sh

Null Heavy Null Wavy 1.00

Wood

Name

Color

Qual.

Color

Value

Wt.

Qual.

Wt.

Value

Grain

Qual.

Grain

Value

Simil.

Value

Cedar-

White
Null

Yellowi

sh
Null Null Null Null 0.88

Hickory Light
Reddish
-brown

Moder
ately

Heavy Null Straight 0.67

Eucalyptus Null
Pinkish-

brown
Null Heavy Null Null 0.33

Mahogany Null Null Null Heavy Null Curly 0.33

Maple Null
Reddish

-brown
Null Heavy

Usuall

y

Straight

-grained
0.33

Mesquite Null Null Null Heavy Null Null 0.33

Queries 6, 7 and 8 are from the weather domain. The

information is extracted from a document which contains

description of climatic conditions for 264 countries.

Query 6: List the countries that have very hot summer

and cool winter.

Initial SQL> Select CountryName,

SummerQualifier, SummerValue, WinterQualifier,
WinterValue

From WeatherKnowledgebase
Where SummerValue= “hot” AND WinterValue=

“cool”;

Results after fuzzy relevance computation:

Country

Name

Summer

Qualifier

Summer

Value

Winter

Qualifier

Winter

Value

Simil.

 Value

Kuwait intensely Hot Null cool 0.83

Bhutan Null Hot Null cool 0.67

Query 7: List the countries that are arid and very hot.

Initial SQL> Select CountryName,

ClimateQualifier, ClimateValue, SummerQualifier,
SummerValue

From WeatherKnowledgebase
Where ClimateValue= “arid” AND SummerValue=

“hot”;

Results after fuzzy relevance computation:

Country

Name

Climate

Qualifier

Climate

Value

Summer

Qualifier

Summer

Value

Simil.

Value

Bahrain Null Arid very hot 1.00

Qatar Null Arid very hot 1.0

Kazakhstan Null Arid Null hot 0.25

Mali Null Arid Null hot 0.25

Query 8: List the tropical countries that have little

seasonal variation.

Initial SQL> Select CountryName,

ClimateQualifier, ClimateValue,
Temp_variationQualifier, Temp_variationValue

From WeatherKnowledgebase
Where ClimateValue= “tropical” AND

Temp_variationValue= “seasonal”;

Results after fuzzy relevance computation:

Country Name
Climate

Qual.

Climate

Value

Temp_va

riation

Qualifier

Temp_va

riation

Value

Simil.

Value

American Samoa Null tropical Little seasonal 1.00

Antigua Null tropical Little seasonal 1.00

Aruba Null tropical Little seasonal 1.00

Cambodia Null tropical Little seasonal 1.00

Dominican
Republic

Null tropical Little seasonal 1.00

French Guiana Null tropical Little seasonal 1.00

Guam Null tropical Little seasonal 1.00

Johnston Atoll Null tropical Little seasonal 1.00

Northern Mariana

Islands
Null tropical Little seasonal 1.00

Puerto Rico Null tropical Little seasonal 1.00

Saint Kitts Null tropical Little seasonal 1.00

Saint Vincent Null tropical Little seasonal 1.00

Fiji Null tropical Slight seasonal 0.75

Papua New
Guinea

Null tropical Slight seasonal 0.75

Montserrat Null tropical Null seasonal 0.50

The documents that we collected on vehicles

described old vehicles that were on sale. Owners

described cars in terms of mileage, color, condition,

damage etc. Some sample queries and answers generated

from them are shown below. This domain is interesting

from a different viewpoint as illustrated with query 9.

Though in general a buyer will be happier with a “very

clean” car when (s)he is looking for a “clean” one, the

earlier relevance computation function did not take care

of this. However, this is an exception and we have

modeled this as such. In case the query was for a “very

clean” car, then a “clean” car would be judged less

relevant both by our system and the buyer! Query 10

shows some other properties with which the usual

reasoning procedure works well.

Query 9: List vehicles that have clean look and no

damage.

Initial SQL> Select VehicleName, LookQualifier,

LookValue, DamageQualifier, DamageValue

From VehicleKnowledgebase
Where LookValue= “clean” AND DamageValue=

“Null”;

Results after fuzzy relevance computation:

Vehicle Name
Look

Qual.

Look

Value

Damage

Qualifier

Damage

Value

Simil.

Value

1993 Porsche 911
Carrera 2 Cab Turbo

Null Clean Null Null 1.00

1989 Porsche 911

Carrera
very Clean Null Null 1.00

1977 Harley-

Davidson FX
very Clean Null Null 1.00

Vehicle Name
Look

Qual.

Look

Value

Damage

Qualifier

Damage

Value

Simil.

Value

1999 Porsche 911
996 Carrera

very Clean Null Null 1.00

1996 Porsche 993

911 Carrera
very Clean Null Null 1.00

1985 Porsche 911

Turbo Carrera
super Clean Null Null 1.00

Query 10: List vehicles with very light damage and

mileage less than 65,000.

Initial SQL> Select VehicleName,

DamageQualifier, DamageValue, MileageQualifier,
MileageValue

From VehicleKnowledgebase
Where damageValue= “light” AND MileageValue <

50000;

Results after fuzzy relevance computation:

Vehicle Name
Damage

Qualifier

Damage

Value

Mileage

Qual.

Mileage

Value

Simil.

Value

2000 Porsche

Boxster
Very Light Null 62000 1.00

2000 Ducati

900 SS
Null Light Null 4100 0.50

8.4 Evaluation of the Query Processor

It is difficult to provide a performance analysis of the

query-processing module, since no benchmark set of

queries are available, spanning across all domains, for

judging the performance of such a system. Since the

concept descriptions are finally stored in a database, the

system can obviously retrieve all exact matches correctly.

When it comes to judging the relevance of answers to

fuzzy query, the quality of retrieval is dependent on the

similarity computation procedure. For example, it can be

seen from the examples cited above that in some cases,

the fuzzy Min-Max function seems to be too restrictive,

though we have chosen it since this provides a standard

way of interpreting AND and OR of entity descriptors.

The similarity between two fuzzy qualifiers also depends

on the expert’s judgment and the order of the qualifiers in

the corresponding qualifier sets. We refrain from giving

any relevance figure for this module, since acceptability

of an answer generated is largely dependent on the user’s

perspective.

5. Conclusion and future work

In this work, we have presented an ontology-based

text-mining system, which also does enrichment of the

underlying domain ontology with new and/ or imprecise

concept descriptions extracted from texts and also stores

the extracted information in a structured knowledge base.

The structured knowledge base is used to answer user

queries related to domain entities. Storing information

components on a database allows the system to collate

and compare information collected from multiple sources.

The use of an ontology enables information collection to

be focused. The entire collection is viewed as describing a

set of domain entities using common attributes. This

facility is inherently provided by an ontology-based text

processing system, which enables guided information

extraction. We have used a fuzzy ontology structure

which has been created from the initial domain ontology

structure. In this extended structure, a property value is

also accompanied by a value qualifier to associate a

degree of precision to the value. This helps in computing

relevance of a document concept to a user query concept.

The degree of relevance reflects the degree of similarity

between the two and generates answers even when there

are no exact matches in the document repository.

Query processing is a two-step process. Initially an

SQL query is constructed from the user-given query to

extract entities, which have exact matches for property

values stated by the user. Thereafter, the system employs

fuzzy reasoning to find degree of similarity between user

given concepts and text concepts. Thus imprecise matches

for user query are not adjudged at par with exact matches.

This aspect of query processing is totally different from

the searches conducted by standard search engine.

Ontology based text processing has been mainly

employed for technical domains like Biology, Zoology

etc. Our emphasis has been to apply ontology based text

information extraction for general-purpose user interest

areas. However, since expert-created domain ontologies

may not exist for all possible domains, so we have

targeted our system to serve dual purpose. Starting with a

seed fuzzy ontology structure, it starts analyzing domain

text documents. As new information components are

extracted from these, the system provides a facility to

enrich the existing ontology with newly learned values

and qualifiers, within the existing fuzzy ontology

structure. We have worked on a number of different

domains and the results obtained are quite interesting.

Thus this system can be easily adapted to build text-

processing systems for organizations with specific focus.

Presently, the concept extraction process uses a

common framework for handling all value-qualifier sets.

However, experiments suggest that the qualifier list, if

treated as a partially ordered list rather than a completely

ordered list may provide for more intelligent reasoning. A

complete hedge-algebra based qualifier ranking along the

lines of [24] may be used to compute concept relevance.

Different fuzzy membership computation functions can

be associated to the fuzzy reasoner to provide different

kinds of reasoning facilities. We are currently working on

techniques to generate the requisite grammar for a domain

through statistical analysis of documents from that

domain. Integration of fuzzy relations with membership

values based on reliability of source and frequency of

domain concepts are also being experimented with. The

system is also being extended to extract predicates from

domain documents rather than simple entities. Our aim is

to extend logical reasoning for these predicates through

the use of extended Description Logics.

References

[1] A. Rajaraman and P. Norvig, Virtual Database

Technology: Transforming the Internet into

Database, IEEE Internet Computing 2(4), July-

August 1998, pp. 55-58.

[2] Ah-Hwee Tan, Text Mining: The State of the Art

and the Challenges, in: Proceedings of the

PAKDD’99 Workshop on Knowledge Discovery

from Advanced Databases (KDAD’99), Beijing,

April 1999, pp. 71-76.

[3] B. Adelberg, NoDoSE – A tool for Semi-

Automatically Extracting Structured and

Semistructured Data from Text Documents, in:

Proceedings of the ACM SIGMOD Int’l

Conference on Management of Data, 1998, pp.

283-294.

[4] D. Fensel, F. van Harmelen, I. Horrocks, D. L.

McGuinness and P. F. Patel-Schneider, OIL: An

ontology Infrastructure for the Semantic Web,

IEEE Intelligent Systems, 16 (2), 2001, pp. 38-45.

[5] D. H. Widyantoro and J. Yen, A Fuzzy Ontology-

based Abstract Search Engine and its User Studies,

in: Proceedings of the 10
th

 IEEE Int’l Conference

on Fuzzy Systems, Melbourne, Australia, 2001, pp.

1291-1294.

[6] D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W.

Liddle, D. W. Lonsdale, Y. –K. Ng and R. D.

Smith, Conceptual-Model-Based Data Extraction

from Multiple-Record Web Pages, Data and

Knowledge Engineering 31(3), 1999, pp. 227-251.

[7] G. D. Zhou and J. Su, Named Entity Recognition

using an HMM-based Chunk Tagger, In:

Proceedings of the 40
th

 Annual Meeting of the

Association for Computational Linguistics

(ACL’02), 2002, pp. 473-480.

[8] H. M. Muller, E. E. Kenny and P. W. Strenber,

Textpresso: An Ontology-Based Information

Retrieval and Extraction System for Biological

Literature. PloS Biology 2(11):e309, 2004. URL:

http://www.plosbiology.org

[9] H. Snoussi, L. Magnin and J. -Y. Nie, Toward an

Ontology-based Web Data Extraction, in:

Proceedings of the 15
th

 Canadian Conference on

Artificial Intelligence (AI’02). Calgary, Alberta,

Canada, May 26, 2002.

[10] J. Broekstra, M. Klein, S. Decker, D. Fensel, F. van

Harmelen and I. Horrocks, Enabling Knowledge

Representation on the Web by Extending RDF

Schema, in: Proceedings of the 10
th

 Int’l World

Wide Web Conference, Hong Kong, 2001, pp.

467-478.

[11] L. Crow and N. Shadbolt, Extracting Focused

Knowledge from the Semantic Web, Int’l Journal

of Human-Computer Studies 54(1), January 2001,

pp. 155-184.

[12] L. Delcambre, D. Maier, R. Reddy and L.

Anderson, Structured Maps: Modeling Explicit

Semantics over a Universe of Information, Int’l

journal on Digital Libraries 1, 1997, pp. 20-35.

[13] M. Abulaish and L. Dey, Using Part-of-speech

Patterns and Domain Ontology to Mine Imprecise

Concepts from Text Documents, in: Proceedings of

6
th

 Int’l Conference on Information Integration and

Web based Applications & Services, Indonesia,

2004, pp. 91-100.

[14] M. Shamsfard, and A. A. Barforoush, Learning

Ontologies from Natural Language Texts, Int’l

Journal of Human-Computer Studies 60(1), 2004,

pp. 17–63.

[15] M. Wallace and Y. Avrithis, Fuzzy Relational

Knowledge Representation and Context in the

Service of Semantic Information Retrieval, in:

Proceedings of the IEEE International Conference

on Fuzzy Systems (FUZZ-IEEE), Budapest,

Hungary, 2004.

[16] N. Ashish and C. Knoblock, Wrapper Generation

for Semi-Structured Internet Sources, ACM

SIGMOD Record 26(4), December 1997, pp. 8-15.

[17] N. Guarino, M. Carrara and P. Giaretta, Ontologies

and Knowledge Bases: Towards a Terminological

Clarification, in: N. Mars (Ed.), Towards Very

Large Knowledge Bases, Knowledge Building and

Knowledge Sharing, IOS Press, Amsterdam, 1995,

pp. 25-32.

[18] N. Kushmerick, D. Weld and R. Doorenbos,

Wrapper induction for Information Extraction, in:

Proceedings of the Int’l Joint Conference on

Artificial Intelligence (IJCAI), 1997, pp. 729-737.

[19] P.G. Baker, C.A. Goble, S. Bechhofer, N.W. Paton,

R. Stevens, and A. Brass.

An Ontology for Bioinformatics Applications,

Bioinformatics 15(6), 1999, pp. 510-520.

[20] P. Velardi, M. Missikoff and R. Basili,

Identification of Relevant Terms to Support the

Construction of Domain Ontologies, in:

Proceedings of ACL Conference on Human

Language Technology and Knowledge

Management, Toulouse, France, 2001.

[21] P. Velardi, P. Fabriani, and M. Missikof, Using

Text Processing Techniques to Automatically

Enrich a Domain Ontology, in: Proceedings of

ACM Conference on Formal Ontologies and

Information Systems (FOIS’01), Ogunquit, Maine,

2001, pp. 270-284.

[22] R. Stevens, C. A. Goble, I. Horrocks and S.

Bechhofer, Building a Bioinformatics Ontology

Using OIL. IEEE Transactions on Information

Technology in Biomedicine 6(2), 2002, pp. 135-

141.

[23] S. Flank, A Layered Approach to NLP-based

Information Retrieval, in: Proceedings of the 17
th

Int’l Conference on Computational Linguistics and

the 36
th

 Annual Meeting of the Association for

Computational Linguistics (COLING-ACL '98),

Montreal, 1998, pp. 397-403.

[24] S. Hölldobler, T. D. Khang and H. P. Störr, A

Fuzzy Description Logic with Hedges as Concept

Modifiers, in: Proceedings of the 3
rd

 Int’l

Conference on Intelligent Technologies and 3
rd

Vietnam-Japan Symposium on Fuzzy Systems and

Applications, Hanoi, Vietnam, 2002, pp. 25-34.

[25] S. Luke, L. Spector, D. Rager and J. Hendler,

Ontlogy-based Web Agents, in: Proceedings of 1
st

Int’l Conference on Autonomous Agents, 1997, pp.

59-66.

[26] S. W. Liddle, K. Hewett and D. W. Embley, An

Integrated Ontology Development Environment for

Data Extraction. In: Proceedings of 2
nd

International Conference on Information Systems

Technology and its Applications (ISTA’03), 2003,

pp. 21-33.

[27] T. Andreasen, P. A. Jensen, J. F. Nilsson, P.

Paggio, B. S. Pedersen and H. E. Thomsen,

Content-based Text Querying with Ontological

Descriptors, Data & Knowledge Engineering

48(2), 2004, pp. 199-219.

[28] T. Berners-Lee, J. Hendler and O. Lassila, The

Semantic Web, Scientific American, May 2001,

pp. 28-31.

[29] T. T. Quan, S. C. Hui and T. H. Cao, FOGA: A

Fuzzy Ontology Generation Framework for

Scholarly Semantic Web, in: Proceedings of the

Knowledge Discovery and Ontologies Workshop

(KDO’04), Pisa, Italy, 2004.

[30] U. Hahn and K. G. Marko, An Integrated Dual

Learner for Grammars and Ontologies, Data &

Knowledge Engineering 42(3), 2002, pp. 273-291.

[31] Un Y. Nahm and R. M. Mooney, Text Mining with

Information Extraction, in: AAAI 2002 Spring

Symposium on Mining Answers from Texts and

Knowledge Bases, Stanford, CA, 20021.

[32] Y. Li and N. Zhong, Web Mining Model and its

Applications for Information Gathering,

Knowledge Based Systems 17, 2004, pp. 207-217.

