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Abstract. Word based searches for relevant information from texts retrieve a huge collection and burden the user with 

information overload. Ontology based text information retrieval can perform concept-based search and extract only 

relevant portions of text containing concepts that are present in the query or those that are semantically linked to query 

concepts. While these systems have better precision of retrieval than general-purpose search engines, problems arise with 

those domains where ontological concepts cannot be unambiguously described using precise property descriptors. Besides, 

the ontological descriptors may not exactly match text descriptions or the user given descriptors in query. In such 

situations, uncertainty based reasoning principles can be applied to find approximate matches to user queries. In this paper 

we have presented a framework to enhance traditional ontological structures with fuzzy descriptors. The fuzzy ontology 

structure has been used to locate and extract both precise and imprecise descriptions of concepts from Web documents and 

then store them in a structured knowledge base. The design of the structured knowledge base, which in our case is a 

database, is also derived from the underlying fuzzy ontology representing the domain. User queries are processed in two 

stages. In the first stage, precise SQL queries are formulated and processed over the knowledge base to find a possible 

answer set. In the second stage, fuzzy reasoning is applied to compute the relevance of the answers in the answer set with 

respect to the query. We have provided experimental validation of the approach through knowledge-extraction and query 

processing executed over a diverse set of domains. 

 

Keywords: Information extraction, ontology, fuzzy ontology structure, imprecise concept descriptor, imprecise query 

processing. 

 

 

1. Introduction 

The World Wide Web (WWW) is a large and growing 

collection of texts and the wealth of information available 

on it is a valuable resource to the Internet users. However, 

text mining or locating, extracting and analyzing required 

information from this vast unstructured collection is a 

challenging task. Most of the problems are obviously due 

to the incapability of the computer in comprehending 

natural language texts with all its nuances. Information 

extraction from texts chiefly employs pattern matching to 

identify predefined sequences in text. There are several 

text-mining tools, which can successfully categorize and 

index a large collection of documents on a given set of 

keywords automatically. However, pattern matching 

works only in a very limited context. A more intelligent 

way to analyze contents of text is to employ concept 

linkage. Concept linkage aims at identifying commonly 

shared concepts across documents and helps users to find 

information that they perhaps wouldn’t have found using 

traditional searching methods. Concept linkage has played 

a crucial role in mining information from biomedical 

texts, where the text information grows at such a 

tremendous rate that without automated tools for 

analyzing the collection, it becomes impossible to 

assimilate the knowledge embedded in it.  

Concepts themselves however may be defined in 

different ways, by different authors. Hence one way of 

accessing information stored within unstructured or semi-

structured text documents is to go for effective semantic 

analysis of texts with the help of a structured collection of 

domain concepts in the background. The Semantic Web, 

introduced in [28] also aims at providing a new direction 

towards manipulating the meaning of Web data along 

with the use of ontologies. Ontologies are knowledge-

management structures in which key concepts and their 

inter-relationships are stored to provide a shared and 

common understanding of a domain across applications 

[10]. Ontology based text information processing has 

been probed quite successfully for analyzing biomedical 

texts, with the help of several biological ontologies like 
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GENIA1 ontology, Gene2 Ontology (GO), Open 

Biological3 Ontology (OBO), TAMBIS4 Ontology (TaO) 

[19] etc.   

Even as the use of ontology for domain-specific 

applications are fast gaining popularity, researchers are 

actively engaged in tackling some of the chief bottlenecks 

that still hinder the use of ontology for general-purpose 

applications. Some of these are identified as follows: 

(i) Reliable Ontologies do not exist for all domains: 

Since ontologies are meant to provide shared 

conceptualization of a domain, these have to be 

built by domain experts. Hence ontology building 

is an expensive task. Integrating knowledge 

acquired from text documents may provide an 

effective solution to this problem.  

(ii) Finding the ideal concept description:  It is 

impossible to describe all concepts unambiguously. 

For example, while it is possible to agree on a 

technical definition of proton, it is impossible even 

for domain experts to agree on what should be the 

ideal set of values for describing wine colors. The 

commonly occurring values are red, white and 

rose. But one does find descriptors like straw, pink 

etc. used for describing wines. However, absence 

of an exhaustive set of values does not undermine 

the necessity for a wine ontology, which provides a 

unified framework for describing concepts related 

to wine. What is ideally required is that within the 

rigid structure of the ontology, which is dictated by 

the application, there should be the flexibility to 

adapt new or modified descriptors as novel use of 

concepts are encountered. 

(iii) Matching ontology-specified descriptions to 

documents or user-given descriptions: Since it is 

difficult to agree on a unanimous description of a 

concept, it is unreal to expect that concepts will 

appear in a document in exactly the same way as 

they are described in the ontology. This may also 

be forbidden by natural language construct 

requirements in many cases. Thus, keyword based 

searching have to be enhanced with additional 

reasoning capability to perform concept-based 

search. Similarly, concept descriptions given in 

user queries are not likely to be restricted to 

ontology descriptions only. Thus, if an ontology is 

to be employed for searching related concepts in 

texts in response to a user query, uncertainty based 

                                                 
1 http://www-tsujii.is.s.u-

tokyo.ac.jp/~genia/topics/Corpus/genia-ontology.html  
2  http://www.geneontology.org/  
3  http://obo.sourceforge.net/cgi-bin/table.cgi  
4 http://protege.stanford.edu/plugins/owl/owl-library/tambis-

full.owl  

reasoning principles have to be employed for 

establishing the multi-way relationships among all 

these descriptions.  

It is possible to reason about ontology entities using 

inexact reasoning principles, without affecting the rigidity 

of the underlying structure. We illustrate our point using 

weather descriptions of various countries as depicted in a 

web document. Following are some sample descriptions 

of the weather of various countries: 

• Belarus:  cold winters, cool and moist 

summers; transitional between continental and 

maritime. 

• Belgium:  temperate; mild winters, cool 

summers; rainy, humid, cloudy. 

• Croatia: Mediterranean and continental; 

continental climate predominant with hot 

summers and cold winters; mild winters, dry 

summers along coast 

• France:  generally cool winters and mild 

summers 

• Greenland:  arctic to subarctic; cool summers, 

cold winters 

It is easy for human beings to infer that Belarus and 

Greenland have similar climate while France is 

somewhat similar to Belgium, and different from the 

earlier two. However, given the current status of text 

information retrieval, it is not possible to automatically 

derive these conclusions through text analysis. It is in fact 

impossible to do so using simple word-based search 

mechanisms. Our aim is to provide a platform where such 

reasoning can be performed. Fuzzy reasoning can help in 

establishing the degree of similarity between various 

linguistic qualifiers like mild, cool, cold etc. For example, 

using such a system, user may get to know which country 

has winter similar to that of France. This requires not 

only identification of concepts and their descriptions from 

multiple sources, but also to compare them using 

uncertainty based reasoning principles. We have found 

that such descriptions occur frequently in various 

domains, and hence the methodology can be applied 

successfully to build various domain-based applications.  

In this paper we have proposed the design of a 

complete knowledge-management system for handling 

text documents from a known domain, which addresses 

some of the concerns expressed above. Starting with a 

base ontology, the system extracts key information 

through syntactic analysis of text documents in an 

ontology-guided way. The information components 

extracted are stored in a structured format to help in 

future query processing. The system is also equipped with 

an ontology enhancing mechanism, which enriches 

existing concept descriptions with new descriptors 

extracted from web documents. The novelty of the system 



lies in using a new fuzzy ontology structure, which is 

created as an extension to the standard ontology structure. 

Traditionally concepts are described in an ontology using 

a <property_name, property_value> framework. The 

proposed fuzzy ontology structure stores concept 

descriptions in a < property_name, property_value, 

qualifier> framework. This framework allows defining a 

property_value of a concept with differing degrees of 

fuzziness, without actually changing the concept 

description paradigm. We have termed such concept 

descriptions as fuzzy concept descriptions.  

The proposed fuzzy ontology structure is very 

different from other similar structures [5,15,29] which 

usually store the strength of a relation as a function of the 

co-occurrence of two participating concepts. In our case, 

qualifiers are chiefly fuzzy linguistic variables, which as a 

special case could be numerical values also. Hence in our 

framework concepts can be described with varying 

degrees of fuzziness. An initial version of the proposed 

framework for storing fuzzy concept descriptions was 

presented in [13]. However, in [13] ontology 

enhancement mechanisms were not proposed. The set of 

values and qualifiers used for describing ontology 

concepts was fixed a priori. Consequently, only these 

descriptors were extracted from text. Presently, our 

system starts with an initial ontology and is capable of 

enhancing it with more descriptor values and qualifiers. 

Knowledge enhancement in the form of recognizing new 

property values and qualifiers and integration of these 

into the main ontology structure to enhance it is a novel 

aspect of the present work.  

Integration of a query-processing module capable of 

handling imprecise descriptions is also a new aspect of 

the system. The query-processing module performs 

imprecise query answering. Since exact matches for user-

given concepts may not be found in documents, hence 

query-processing module employs fuzzy-reasoning 

principles to derive answers that may be imprecise 

matches for user-given concepts. The retrieved concepts 

are arranged according to their degrees of relevance to 

query concepts, where relevance is a function of values 

and qualifiers associated to query concepts and the 

concepts extracted from text documents. The efficacy of 

the system is established through experiments over 

several domains.  

The rest of the paper is organized as follows. We 

review some related works on ontology-based text 

processing, fuzzy ontology structures and ontology 

enhancement in section 2. In section 3, an overview of the 

whole system along with its different modules is 

presented. Section 4 presents the document pre-

processing process. Section 5 details the creation of fuzzy 

ontology structure. In Section 6 we have discussed the 

knowledge distillation process which extracts information 

components in an ontology-guided way. Section 7 

presents an experimental evaluation of the knowledge 

distillation process. Section 8 explains the query 

processing mechanism and also presents several sample 

queries from different domains. Finally, we conclude and 

discuss future work in section 9. 

2. Related work on text mining and Ontology-based 

text processing 

 Text mining refers to the process of extracting 

interesting and non-trivial patterns or knowledge from 

unstructured text documents. Text mining can provide an 

intelligent alternative to the current web querying process, 

which is mostly based on keyword searching. Recent 

research efforts in text retrieval encompass several areas 

including virtual database technology [1], web data 

modeling [12], wrapper generation [3,16,18], natural 

language processing based extraction [23], and ontology-

based information extraction [6,9,26,27]. All these 

systems enable automatic extraction of relevant 

information from text documents. However, the first three 

techniques are heavily dependent on the structure of a 

web page. Natural Language Processing (NLP) based 

techniques provide more intelligent technology, but then 

understanding natural language texts in an unconstrained 

scenario is a complex problem by itself and is an active 

research area. Given the current state of research in NLP, 

combination of natural language processing principles 

within a structured framework promises to be more 

effective.  

Tan [2] has proposed a general framework for text 

mining consisting of two components: Text refining that 

transforms free-form text documents into an intermediate 

form; and knowledge distillation that deduces patterns or 

knowledge from the intermediate form. Nahm and 

Mooney [31] have proposed the integration of text mining 

and information extraction approaches to deal with the 

information stored in unstructured text documents. Their 

system called Discovery from Text Extraction 

(DiscoTEX) is first trained to extract information and 

transform text into more structured data, which is then 

mined for interesting relationships. But the system does 

not use any domain knowledge due to which the proposed 

approach has problems when the same extracted entity or 

feature is represented by similar but not identical strings 

in different documents.  

The use of ontology encourages enterprises to 

participate in knowledge-interchange by subscribing to a 

common, shared vision of entities and activities in a given 

domain [20,21]. Ontology based approaches are 

inherently resilient to the format of a web page and can be 

easily adapted to work for web pages from many distinct 

sources belonging to the same application domain. The 

use of ontological models to access and integrate large 



knowledge repositories in a principled way has an 

enormous potential to enrich and make accessible 

unprecedented amounts of knowledge for reasoning [11].  

In the next sub-section we will review some of the 

recent research efforts that have been directed towards the 

problems of ontology learning and design of ontology-

based text processing systems. 

2.1. Ontology-Based text processing and Ontology 

learning 

Ontology is a conceptualization of a domain into a 

human understandable, but machine-readable format 

consisting of entities, attributes, relationships and axioms 

[17]. Ontology uses classes to represent concepts and 

supports taxonomy and non-taxonomy relations between 

classes. Ontology can be represented in one of the many 

languages like OIL [4], OWL
5
, XML

6
 etc. Since ontology 

describes a domain of interest in an unambiguous way, 

ontology-based text document processing schemes can 

help in alleviating a wide variety of natural language 

ambiguities present in a given domain.  

Andreasen et al. [27] have proposed a system for 

content-based querying of texts based on the availability 

of an ontology that describes domain concepts. In their 

system the retrieval of text passages is based  on matching 

descriptors from the text against descriptors from the 

noun phrases in the query using taxonomic reasoning with 

sub- and super-concepts. Snoussi et al. [9] have proposed 

an ontology-based approach that facilitates the 

formalization and the extraction of data from different 

sources. The extracted data is converted into a coherent 

structure so that users and agents can query them 

regardless of their origin.  

Ontology learning helps in induction of new concepts 

and concept descriptors into the existing ontology as 

novel uses of the domain concepts are encountered while 

gathering information. Luke et al. [25] have proposed 

SHOE, a set of Simple HTML Ontology Extensions, 

which allow World Wide Web authors to annotate their 

pages with semantic knowledge. The annotations are used 

by a web crawler, which implements a graph traversal 

algorithm to discover related web pages. The performance 

depends heavily on the quality of annotation. Velardi, 

Fabriani, and Missikof [21] suggest a scheme for 

enhancing existing ontological structures with new 

information extracted from texts. Their work is based on 

identification of three primary kinds of concepts: actor 

which defines a relevant entity of the domain and is able 

to activate or perform process, object which is a passive 

entity on which a process operates, process which is an 

activity aimed at the satisfaction of an actor’s goal. 

                                                 
5 http://www.w3.org/TR/owl-ref/ 
6 http://www.w3.org/XML/  

Secondary concepts include information components, 

which are clusters of information pertaining to the 

information structure of an actor or an object, information 

elements which are atomic information elements that are 

parts of an information component and elementary action 

which denote activities that constitute process 

components and are not further decomposable. Based on 

the above definition of primary and secondary concepts, 

candidate terminological expressions are captured using a 

host of techniques ranging from stochastic methods to 

more sophisticated syntactic approaches. The concept 

forest generated is then manually integrated into a hand-

crafted upper level ontology.  

Hahn and Marko [30] introduce a dual-use 

methodology for learning both grammar and ontologies. 

This system automates the maintenance and growth of 

knowledge sources that are crucial for natural language 

text understanding—background knowledge of the 

underlying domain, linguistic knowledge about the 

lexicon, and the grammar of the underlying natural 

language. Learning occurs simultaneously with the on-

going text understanding process. The knowledge 

assimilation process identifies concepts based on 

linguistic analysis and assesses them for quality based on 

evidence underlying the generation. On the basis of the 

strength of evidence, hypotheses are ranked according to 

qualitative plausibility criteria, and the most reasonable 

ones are selected for assimilation.  

Liddle, Hewett, and Embley [26] have proposed an 

ontology-based data extraction system, which uses an 

application ontology that describes a data-rich, 

ontologically narrow domain in a conceptual fashion. 

With inputs from a domain knowledge facilitator who can 

provide the knowledge for creating application ontology 

in an appropriate format, the system automatically 

generates a single wrapper that can be applied to any page 

relevant to the application domain.  

Shamsfard and Barforoush [14] have suggested an 

ontology building approach in which the system starts 

from a small ontology kernel and constructs the ontology 

incrementally through text understanding. The kernel 

contains the primitive concepts, relations and operators to 

build an ontology. This model uses dynamic categories to 

handle changes and floating categories to handle multiple 

viewpoints and is implemented to extract information 

from natural language texts comprised of simple Persian 

(Farsi) sentences.  

Li and Zhong [32] have described a methodology for 

ontology learning over an XML ontology scheme. The 

original ontology is in XML and is extended by using a 

list of facts and the frequency of their occurrences, which 

are provided by the users. Each fact supplies an individual 

opinion that specifies which class in the ontology the fact 

belongs to. A mass distribution of user profiles on the 



ontology is used to incorporate an information object into 

the ontology.  

Due to an increased interest in Bioinformatics, the 

sizes of Biomedical information repositories have gone up 

tremendously over the last decade. Ontologies play a very 

important role in providing efficient and focused search 

from these repositories. Several Biological ontologies like 

Gene Ontology, GENIA, TAMBIS ontology etc. have 

been built for this purpose. Consequently a lot of attention 

has been given towards ontology based processing of bio-

medical texts to enable researchers to search for relevant 

information components from a vast collection. Some of 

the successful ongoing projects in this area are the 

GENIA project, TEXTPRESSO [8], etc. Stevens et al. 

[22] have described how a Bioinformatics ontology can 

be built using OIL. They have also proposed Transparent 

Access to Multiple Bioinformatics Information Sources 

(TAMBIS), a mediation system that uses the TaO 

ontology to enable biologists to ask questions over 

multiple external databases using a common query 

interface. 

2.2  Fuzzy Ontology structures 

Since concept descriptions cannot be unambiguous, 

creation of Fuzzy ontology structures have also received a 

lot of attention in recent times. Widyantoro and Yen [5] 

have shown how fuzzy membership values associated to 

ontology concepts, along with a concept hierarchy, can be 

used for intelligent text retrieval. Starting with a set of 

manually tagged abstracts of papers from several IEEE 

Transactions, a fuzzy ontology is built on the collection of 

keywords. The abstracts are tagged based on their title, 

authors, publication date, abstract body, and author 

supplied keywords. The hierarchical arrangement of the 

terms in the newly generated ontology is dependent on 

their co-occurrence measures. The drawback of this 

system is its dependence on user judgment about the 

relevance of articles to user queries.  

Wallace and Avrithis [15] have extended the idea of 

ontology-based knowledge representation to include 

fuzzy degrees of membership for a set of inter-concept 

relations defined in an ontology. The membership of these 

relations are used to judge the context of a set of entities, 

the context of a user and the context of the query for the 

purpose of intelligent information retrieval. A fixed set of 

commonly encountered semantic relations have been 

identified and their combinations are used to generate 

fuzzy, quasi-taxonomic relations. This system lacks 

generality.  

Quan, Hui, and Cao [29] have proposed an automatic 

fuzzy ontology generation framework – FOGA. They 

have incorporated fuzzy logic into formal concept 

analysis to handle uncertainty information for conceptual 

clustering and concept hierarchy generation. However, 

the quality of clustering is dependent on assignment of 

meaningful labels to initial class names, attributes and 

relations. This is done manually and requires domain 

expertise. This system is also not designed to extract 

fuzzy relational concepts from unstructured or semi-

structured text documents. 

2.3 Features of the proposed framework 

The proposed system for information extraction and 

imprecise query answering is visualized as a complete 

ontology-aided knowledge management system, which 

has two main functions – ontology based text pre-

processing and knowledge distillation and imprecise 

query processing. Text documents are pre-processed 

using shallow parsing techniques to generate semi-

structured records. The knowledge distillation process 

performs ontology-based scanning of these records to 

extract information components. The information 

components are stored in a structured knowledge base for 

processing queries. Query processing is based on fuzzy 

reasoning. The structured knowledge base acts as a global 

repository for combining and collating information 

collected from multiple knowledge sources. Users need 

not be aware of the heterogeneity of the sources and 

query the collection using a common interface. This 

facility combines the ease of using a search engine with 

the capability of text mining for retrieving information 

embedded in texts.  

The proposed system is capable of integrating new 

values and qualifiers extracted by the knowledge 

distillation process into the fuzzy ontology structure. 

None of the fuzzy ontology structures discussed earlier 

address the issue of incorporation of new values. Adding 

more values and qualifiers into an existing ontological 

structure helps in retaining the fixed structure of ontology 

but at the same time extends its capability to act as 

intelligent filters by progressively increasing its 

knowledge base. Thus the system has the facility to 

increase its lexicon or set of values and qualifiers for 

improving retrieval performance over a domain with time.    



The fuzzy ontology structure is a novel structure that 

is created as an extension of traditional ontology 

structures. The novelty lies in describing concepts as a 

collection of <property_name, property_value, qualifier> 

triplets, where qualifiers can be linguistic variables. This 

allows defining the property-value of a concept with 

varying degrees of precision. Variable precision helps in 

imprecise query processing, where a concept can be 

retrieved from text even if it does not match a user given 

query exactly, and its relevance can be computed as a 

fuzzy similarity to original concepts using fuzzy 

reasoning methods. The structure can be easily adapted to 

reflect strength of association also, which may be a 

numeric value. Hence this structure is more general than 

the fuzzy ontology structures discussed earlier since this 

can accommodate both linguistic variables and numeric 

values. 

3. System Architecture 

This section outlines the complete architecture of the 

proposed system for ontology-based information 

extraction and imprecise query answering from text 

documents. The system, shown in figure 1, consists of 

five main modules – Document Pre-processor, Fuzzy 

Ontology Generator, Knowledge Distiller, Query 

Processor, and Fuzzy Reasoner. The functionalities of the 

modules are stated here briefly. 

• The Document Pre-processor accepts free-form text 

documents and identifies information components by 

dividing them into individual record-size chunks after 

cleaning the Meta Language (ML) tags. This module 

uses a Parts-Of-Speech (POS) tagger that assigns 

parts-of-speech to individual words. The identified 

information components along with their 

corresponding POS tags are stored in a semi-

structured form for the use of the other modules. 

•  The Fuzzy Ontology Generator extends an existing 

ontology structure to a fuzzy ontology structure, by 

incorporating fuzzy classes into the existing 

ontology. Fuzzy classes are defined using multiple 

inheritances from values and qualifiers. The fuzzy 

ontology structure is then used to create the schema 

for a structured knowledge base that will store the 

information extracted from the texts.  

• The Knowledge Distiller is responsible for extracting 

relevant concepts from the semi-structured 

intermediate records generated by the document 

processor, in an ontology guided way. The module 

uses a bi-directional inferencing mechanism for 

identifying relevant concepts. This module uses the 

domain concepts present in the ontology structure in 

a guided fashion to scan the record components and 

extract relevant information. The extracted concepts 

are used to populate the structured knowledge base 

and the fuzzy ontology structure appropriately. 

• The Query Processor accepts user queries through an 

ontology-guided query interface and converts them 

into equivalent SQL queries. The SQL queries are 

passed on to the database engine, which extracts 

relevant instances from underlying structured 

knowledge base. 

Fig. 1.  System architecture 
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• The Fuzzy Reasoner implements fuzzy reasoning 

principles to reason with the extracted instances. 

Fuzzy reasoning is used to calculate the similarity 

between the concept descriptions present in user 

queries and those present in the extracted instances. 

A set of relevant instances, along with their degrees 

of relevance to the query concepts, is presented to the 

user.  

The functional details of these modules are given in 

the following sections. 

4.  Document Pre-processor  

The document pre-processor identifies and extracts 

segments from unstructured text documents. The 

processor consists of a Markup Language (ML) tags filter 

which removes the ML tags from a document before 

further processing. It then divides the document into 

individual record-size chunks, and stores them as 

unstructured records. Each record consists of a collection 

of sentences that are a part of the same paragraph, where 

a sentence termination is identified by the occurrence of a 

full stop. 

Parts-Of-Speech (POS) plays an important role in 

information extraction. The records are subjected to POS 

analysis using a POS tagger. The tagger assigns a POS tag 

to each word in a sentence. We have used a Tagger that 

has been developed by the Specialized Information 

Services Division (SIS) of the National Library of 

Medicine
7
 (NLM). Concept names are usually nouns, 

concept descriptors are adjectives, and description 

qualifiers mostly consist of adverbs. Thus our aim is to 

extract words with these POS tags from sentences since 

these can possibly contain imprecise concept descriptions. 

 The entire sentence is first divided into segments on 

the basis of stop words like commas, semicolons, 

conjunctions, etc. These segments are thereafter stored in 

a ternary tree. Other than the first segment in a sentence, 

wherein a noun is searched for, a segment is incorporated 

into the tree provided it has at least one adjective tag since 

this word is likely to contain a property value. If the first 

segment has at least one adjective tag it is added as a sub-

tree in the document tree otherwise it is merged with the 

next segment having adjective tag(s). The ternary tree 

structure is defined as follows:  
Structure Tree {  

String *Value;  

Struct Tree *Lchild;  

Struct Tree *Mchild;  

Struct Tree *Rchild; }  

Each sentence of a document and thereby the whole 

document is converted into an instance of the tree by 

distributing the tags in the following way:  

                                                 
7 http://tamas.nlm.nih.gov/taggercgi.html. 

Dolcetto is a red table wine which is quite dry and has a slightly fruity flavor.  

N           X  T  J    N      N      P       X  A      J     C    X   T    A        J        N  
 

Jordan: mostly arid desert; rainy season in west.  

N             A        J       N         J        N      R  N 

Fig. 2.  Texts with POS tags 

Fig. 3.  Sample Ternary tree structures created from text documents 

 Arid, J 

Jordan, N 

Mostly, A 

Desert, N 

Red, J 

Dolcetto, N Dry, J Table, N 

Quite, A Null 

Flavor, N Slightly, A Null 

Fruity, J 

Rainy, J 

Null Season, N

West, N 

Null 
Wine, N 



Root (R): A node that contains the right most adjective 

word of a segment.  

Lchild (L): A node that contains all the extracted words 

that are to the left of the word considered at R.  

Mchild (M): A node that contains all words that are to the 

right of the word considered at R  

Rchild: points to the root of the sub-tree constructed from 

the next segment.  

The equivalent context-free grammar for this is given 

as follows:  

Document (D) → LRMD | ∈  

L → (N+P+A+V+J)
*
 

R → J  

M → (N+P+V)
*
, where N, P, A, J, and V denote 

nouns, pronouns, adverbs, adjectives and verbs 

respectively.  

Figure 2 shows two sample sentences, one describing 

a wine, and another describing the climate of a country, 

with POS tags assigned to the words. Figure 3 illustrates 

the ternary tree structures created from these tagged 

sentences. Multiple sentences of the same paragraph are 

linked through the lowest, rightmost child. This structure 

will be used by the Knowledge-Distillation process 

described in the next sub-subsection. 

5.  Fuzzy Ontology Generator  

It has been established in the earlier sections that in 

some cases, concepts are best described through the use 

of imprecise property descriptors rather than through a 

<property_name, property_value> kind of structure. 

Incorporating imprecision into the ontology structure 

itself can help in resolving ambiguities arising due to 

differences in user requirement specification and concept 

descriptions embedded in text documents.  

We propose a framework in which a property value 

can be specified to various degrees of precision using 

additional qualifiers. Thus in the proposed framework, an 

object description comprises of <property_name, 

property_value, qualifier>. Our aim is to extract elements 

from domain documents that fill up the slots in this triplet 

and provide valid descriptions of domain objects.  

To accommodate imprecise concept descriptions, the 

fuzzy ontology structure uses modified concept descriptor 

classes. The fuzzy ontology structure contains two 

generic classes - a “Value” class and a “Qualifier” class. 

For each property descriptor class in the original ontology 

structure, two sub-classes are included in the fuzzy 

ontology structure - a “PropertyValue” class and a 

“PropertyQualifier” class, which are subclasses of the 

“value” and “qualifier” classes respectively. A qualifier 

class is constrained to have a collection of linguistic 

qualifiers. A set of linguistic qualifiers can be modeled as 

a graded set. The qualifier class along with its value is 

used to describe the property of a concept with varying 

degrees of precisions. A property value can also be 

associated with a NULL qualifier. In the fuzzy ontology 

structure a FuzzyProperty class is created through 

multiple inheritances from the value class and the 

qualifier class.  

In order to illustrate the usefulness of the proposed 

ontology structure, consider the following descriptions 

picked up from a web document, which contains 

information about used vehicles put up for sale. 

• 2000 Porsche Boxster: This car just in   light damage 

on a 2000 model Porsche Boxster. Running and 

driving REPO ...... clean title, very light damage (see 

photos)..... parts needed are low cost and available, 

very easy repair.... this car packed w/ potential..the 

perfect repairable Porsche...call now. 

• 2000 Ducati 900 SS: This super clean 2000 Ducati 

900 Super Sport looks like it's never even been dirty 

... only 4100 miles, has front and light left side 

damage (minor), priced to sell at $2775. 

Fig. 4.  A partial ontology for a Vehicle Description 

 Vehicle 

Model Look Damage Mileage 

Has 

Has 
Has 

Has 



The way these descriptions would be accommodated 

with usual property descriptors and the proposed fuzzy 

property descriptors, are illustrated in Figures 4 and 5 

respectively. Figure 4 shows a partial view of property-

descriptors to represent a “Vehicle”. Using this structure 

the Damage conditions of  the“2000 Porsche Boxster” 

and the“2000 Ducati 900 SS” can be defined in one of 

two ways. In the first case both of them can be defined as 

“light”. In the second case, one can be defined as “very 

light” and the other as “light”. With the first 

representation, the difference in the degree of damage, if 

any, is missed. With the second representation, their 

similarity of being damaged to similar extents with very 

little difference is not captured. However, using the 

structure of Figure 5, the value of damage for both the 

vehicles will be stored as “light”, though the damage 

qualifier values will be different. For the first car it will 

be “very”, and for the second one it will be “Null”. This 

representation unambiguously captures the essence of 

both the vehicles being slightly damaged, with the second 

one having slightly more damage than the first one.  

Table 1 represents the redefined constraints, for the 

properties used to describe vehicles. For example the first 

row states that the attribute HasLook of a vehicle will be 

at most one instance of the FuzzyLook class. Similarly 

other rows define constraints for other slots. 

 Once the fuzzy ontology structure is created, the 

fuzzy ontology parser parses it to create an SQL schema 

for the structured knowledge base. This is accomplished 

through embedded SQL statements. Fuzzy property 

values and fuzzy qualifiers are attributes in this table. The 

ontology parser generates the list of objects, relationships, 

and constraints, which provide a basis for mapping the 

relationships in the ontology and the table declarations in 

the SQL schema. It also provides the cardinality 

constraints on the relationships like one-one, one-many, 

and many-many. The general layout of a knowledge base 

structure that is generated from the fuzzy ontology 

structure is shown in table 2. 

Fig. 5.  Fuzzy property descriptors for the car properties shown in Fig. 4 

 Value 

Model Look Damage Mileage 

Qualifier 

Look 

Qualifier 

Damage 

Qualifier 

Mileage 

Qualifier 

Fuzzy 

Look 

Fuzzy 

Mileage 
Fuzzy 

Damage 

Vehicle 

Has Look 

Has 

Damage Has Mileage 

Table 1. Redefined constraints for the Vehicle slots 

Template Slots of Vehicle description classes 

Slot name Type Allowed Values/Classes Cardinality 

HasLook Instance  FuzzyLook 0:1 

  
HasDamage Instance  FuzzyDamage 0:1 

  
HasMileage Instance   FuzzyMileage  0:1 

  

Table 2. Structured knowledge base schema 

Entity 

Name 

Property-1 

Qualifier 

Property-1 

Value 

Property-2 

Qualifier 

Property-2 

Value 

… Property-n 

Qualifier 

Property-n 

Value 

 



6. Knowledge Distiller 

This module uses the ternary tree representation of the 

documents along with parent domain concepts present in 

the ontology structure, to populate the fuzzy ontology 

structure as well as the structured knowledge base with 

information extracted from web documents. Some of the 

key behavioral features of the instance generation 

mechanism are: 
  

(i) A particular object may have been described in a 

document by using some or all properties present in 

the ontology structure or by some other values, which 

are not present in the ontology structure. 

(ii) A document may or may not use the property name 

in conjunction with the property values for describing 

a concept. For example, in the document – 

Roussanne is a light bodied, light red and very sweet 

wine from France's Loire Valley, often blended with 

Merlot, though the property name body is mentioned 

explicitly; the property descriptors taste and color 

appear only implicitly through their values.  

Guided by these observations, we have employed a 

two-pronged approach to populate the Fuzzy ontology 

structure. Given a property name, the instance generator 

looks for values to fill up the object description. This 

method allows accommodating object descriptions with 

property values that are not present in the underlying 

ontology.  In the absence of a property name, a property 

value from the underlying ontology is used as a pointer to 

fill up the particular property slot. 

Algorithm Knowledge-Distillation implements this 

approach to populate the knowledge base. This algorithm 

accepts as input the Fuzzy ontology structure schema, 

ontological entities, the ternary tree structure generated 

from the parsed documents, and the structured knowledge 

base schema as input. The output of this algorithm 

consists of information components, which are used to fill 

up the slots of the Fuzzy ontology structure as well as the 

structured knowledge base. Detailed discussion on each 

step of the algorithm follows.  

Algorithm: Knowledge-Distillation 

Input: Root node R of the tree structure generated from 

document; Fuzzy ontology structure schema; List of 

ontological concepts and their relationships, Structured 

knowledge base schema generated by Ontology Parser 

Output: Instances of concepts for populating fuzzy 

ontology structure and structured knowledge base. 

Step1: Search the left child L of R for the entity name 

and put it in the column entity_name of the knowledge 

base.  

Step2: Search the middle child M for a property name. 

When a property name explicitly appears in the 

document, it occurs either as a noun tag or a verb tag. 

Since a property name may or may not be explicitly 

present, the following two cases have to be considered. 

Case 1: If Property name found – In this case, the value 

can be used directly. 

Extract the value appearing in the value field of the root 

node and store it in the corresponding property_value 

column of the knowledge base as well as in the 

corresponding slot of the Fuzzy ontology structure, and 

go to step 4. 

Case 2: If Property name not found – In this case, the 

value appearing in the value field of the root node can 

be used to identify the property.  

Search the ontology structure to determine whether the 

value is present in the property-value set of a property. 

Since a value or a qualifier may be associated to more 

than one property, we use the property with which it 

has maximal co-occurrence.  



Algorithm Knowledge-Distillation (ROOT) 
 

Input:  Ternary tree structure generated from Web documents (ROOT is the pointer to the tree structure), List of objects and 
relationships, fuzzy ontology structure schema, and structured knowledge base schema 

Output: Instances of the Fuzzy Ontology structure and structured knowledge base.  
 

Steps: 
1.  Ptr = ROOT // Start from root node 
2.  Entity_Name=Null 

3.  If (Ptr ≠ Null) // If the tree is non-empty 

          Property_Name=Null; Property_Value=Null; Qualifier_Value=Null; 
a.  Property_Name = SEARCH_PROPERTY_NAME (Property_name_list, Ptr -> MChild)     // Search property name in the middle   

                                                                                                                                                       // child node. 

          If Property_Name is not Null          // Property name is explicitly mentioned in the document and found. 
               Property_Value = Ptr -> Value  // Value field of the root node is a property-value of the property stored in Property_Name 

               Go to step 3 (b)              // Proceed to search qualifier value 

          Else      // Property name is not explicitly mentioned in the document 
                Property_Name = SEARCH_PROPERTY_VALUE (Property_Value_Lists, Ptr -> Value) // Search for a match of the Ptr  

                                                  // value field in the property value sets. In case of a valid match, return the corresponding property name. 

                If Property_Name is not Null    // The value at root node is a valid property value 
    Property_Value = Ptr -> Value   // Assign the content of Ptr value field to Property_Value. 

    Go to step 3 (b)    // Proceed to search qualifier value 

                 Else   // The value at root node is not a valid property value 
                      Property_Value = SEARCH_PROPERTY_VALUE (Property_Value_Lists, Ptr -> LChild) // Search the Property value in  

                                                                                                                                                                       // the left child node. 

                       If Property_Value is Null      // The sub-tree does not have any property value. 
                               Go to step 3 (e) // Proceed to search the next sub-tree for property value and qualifiers (if any). 

                       End if 

                 End if 
           End if 

      b.  Qualifier_Value  = SEARCH_QUALIFIER_VALUE ( Ptr -> Lchild)   // Search qualifier value in the left child of the Ptr node. 
      c.  Instantiate the respective classes of the Fuzzy Ontology structure with Property_Value and Qualifier_Value. 

      d.  If Ptr=ROOT  // The subtree rooted at ROOT node of the tree is under consideration. 

                 Entity_Name = SEARCH_ENTITY_NAME (ROOT -> Lchild)  // Call this function exactly once 
                 Store Entity_Name, Property_Value, Qualifier_Value into Knowledge base // If entity name already exists in the knowledge 

                                                                                                                                   // base, update only those fields that have Null values. 

           Else  // Remaining sub-trees are under consideration 
                 Store Property_Value, Qualifier_Value into Knowledge base // Update only those fields that have Null values. 

       e.  Ptr = Ptr -> Rchild // Proceed for the next  sub-tree 

       f.  Go to step 3.  // Repeat the above process for the next sub-tree 
                                                                                                                                                                                                                                      

4.  End if 

Fig. 6.  Knowledge-Distillation algorithm 

Case2.1: The value is present in the property-value set 

of some property - In this case extract the value 

appearing in the value field of the root node and store it 

in the corresponding property_value column of the 

knowledge base as well as in the corresponding slot of 

the Fuzzy ontology structure, and go to step 4. 

Case 2.2:  The value is not present – In this case go to 

step 3. 

Step 3: Search the left child L for a property-value 

Case 1:  A property-value is found – In this case extract 

the found value and store it in the property_value 

column of the knowledge base as well as in the 

corresponding slot of the Fuzzy ontology structure and 

go to step 4. 

Case 2:  No property-value found – In this case the sub-

tree under consideration is assumed not to contribute 

any value for the Fuzzy Ontology structure. Go to step 

6.  

Step 4: Search the left child L of R for a qualifier. The 

qualifier for a value is likely to appear in this as an adverb 

or adjective tag. This node may have more than one 

qualifier so, the search proceeds from right-to-left. Hence 

the first qualifier to the left of a value found earlier is 

accepted as the qualifier for the value. If a valid qualifier 

is found, extract and store it in the corresponding 

Qualifier_value column of the knowledge base as well as 

in the corresponding slot of the Fuzzy ontology structure.  

Step 5: If any of the above steps have yielded a match, 

block the matched property-value set from further search 

in the tree under consideration.  

Step 6: Follow the right child pointer and replace R by it 

to consider the next sub-tree and repeat steps 2-6 until the 

vale of the right child pointer is NULL. 



In order to build a sound knowledge base, a document 

collection should be used, where all documents belong to 

the same domain. The above steps are applied to all 

documents in the collection. In order to decide the correct 

class for new qualifiers and values extracted, we have 

applied statistical analysis on the learned value and 

qualifier sets independently. For all unique values in the 

set, frequencies of their occurrences with different 

properties are computed and a value is assigned to the 

property with which it has maximum number of 

occurrences. The same is done for the assignment of 

qualifiers to different properties. The above steps are 

applied iteratively till the state of the knowledgebase 

stabilizes. Thus the Knowledge Distiller module can start 

with a seed ontology, which contains a small set of 

property values and qualifiers, and then iteratively 

accumulate new values and qualifiers from text 

documents. 

Figure 6 presents the algorithm formally. 

7. Experimental Results for text processing and 

Ontology enhancement  

The overall system performance is dependent on the 

performance of two units - the Knowledge distiller and 

the Query Processor separately. We have evaluated the 

two components separately and provide here the 

experimental details of evaluation. In this section we will 

present a performance analysis of the knowledge 

distillation process. To evaluate this module, we have 

collected documents from the Web and then evaluated the 

effectiveness of the distillation process in identifying 

concept descriptors from these. The evaluation process 

judges the effectiveness of the method in extracting both 

old and new values and qualifiers from domain 

documents. We have provided performance analysis over 

four domains. For analysis of wine documents, we have 

used the wine ontology developed by W3C and extracted 

information from a large collection of web documents to 

enrich it further. For the other three domains, we started 

with seed ontologies that contain property names and 

some values. We created initial ontology structures for 

these domains using Protégé8, and then enhanced these 

using the values and qualifiers extracted through text 

mining. Protégé is an integrated software tool used by 

system developers and domain experts to develop 

knowledge-based-systems. It may be noted that all 

qualifier sets associated with the fuzzy ontology structure 

are initially empty and gets populated with qualifiers 

extracted from the text sources. 

 Section 7.1 presents the nature of the fuzzy ontology 

                                                 
8 http://protege.stanford.edu  

Fig. 7.  Wood Ontology structure Fig. 8.  Fuzzy Wood Ontology structure 



structures for the various domains and illustrates the 

instantiation of these with information extracted from 

documents. In section 7.2 we provide an evaluation of the 

distillation process in terms of precision and recall. Later, 

we will illustrate how concept descriptions including the 

imprecise descriptors extracted from web documents are 

used for answering user queries. This is presented in the 

next section in which we have shown some query 

processing examples over these domains to illustrate how 

the user gets information about wines, wood, vehicles or 

weather even with imprecise descriptions about the 

concepts or qualities of the desired entity. 

7.1  Fuzzy Ontology creation and instantiation 

 To start with, an ontology is described as a collection 

of a root concept, property descriptor concepts and 

relations describing associations among these concepts. 

Since the wine
9
 ontology structure is already available, 

we will describe the process of creating a fuzzy ontology 

using another domain. Information on various types of 

wood are stored in this new ontology, which we call the 

wood ontology. The wood ontology uses three properties 

for describing wood, with the value sets initialized as 

follows: 

                                                 
9 http://protege.stanford.edu/plugins/owl/owl-library/  

• {Cream, Red, Brown, White, Yellow, Orange, Gray, 

Black, Pink} for color property 

• {Straight, Open, Close, Even, Curly, Wavy} for 

grain property, and 

• {Light, Heavy, Medium} for weight property, and  

Using these property descriptors, the fuzzy properties 

for this domain, created through multiple-inheritance are: 

• fuzzy_color, which is a subclass of color_value class 

and color_qualifier class. 

• fuzzy_grain, which is a subclass of grain_value class 

and grain_qualifier class. 

• fuzzy_weight, which is a subclass of weight_value 

class and weight_qualifier class. 

Now, any instance of wood would be described by 

these three properties using varied degrees of precision. 

Hence color slot of class wood is constrained to take its 

values as an instance of fuzzy_color class. Similarly other 

slots are constrained to accept their values as an instance 

from their respective fuzzy classes. The original and the 

redefined taxonomic structure of the wood ontology, its 

classes and constraints are shown in Fig. 7 and 8 

respectively.  

Fig. 9 shows the instances of wood descriptions 

extracted through knowledge distillation from a collection 

 

Instances of fuzzy_grain class 
 

Grain 
Qualifier 

Grain 
Value 

Null Curly 

Null Distinctive 

Fairly Even 

Fine Even 

Very Even 

Null Medium 

Very Pronounced 

Generally Straight 

Usually Straight 

 

Instances of fuzzy_weight class 
 

Weight 
Qualifier 

Weight 
Value 

Moderately Heavy 

Very Heavy 

Moderately Light 

Very Light 

Null Medium 

 

Instances of fuzzy_color class 
 

Color 

Qualifier 

Color 

Value 

Heavy Black 

Dark Brown 

Golden Brown 

Light Brown 

Rich Brown 

Null Creamy 

Dark Gray 

Deep Orange 

Rich Orange-red 

Light Pinkish-brown 

Dark Purple-brown 

Bright Red 

Deep Red 

Medium Red-brown 

Rich Red-brown 

Dark Reddish 

Light Reddish-brown 

Pale Yellowish 

 

Fig. 9.  A partial list of values and qualifiers extracted from Wood documents 



of wood documents collected from the Web. This figure 

shows some property-values that were not there in the 

ontology originally but extracted by the knowledge-

distillation process. The set of qualifiers, which is entirely 

new, are later on arranged into an ordered set through 

human intervention. Fig. 10 shows the set of values and 

qualifiers extracted by the knowledge distiller for the 

vehicle domain. Fig. 11 shows the values and qualifiers 

 Instances of fuzzy_damage 

class 
 

Damage 
Qualifier 

Damage 
Value 

Very Light 

Null Light 
Null Minor 
Very Extensive 
Very Minor 

 

Instances of fuzzy_condition 

class 
 

Condition 
Qualifier 

Condition 
Value 

Null Super 

Null Fantastic 
Very Fantastic 
Very Nice 
Null Nice 

 

Instances of fuzzy_look  

class 
 

Look 
Qualifier 

Look 
Value 

Null Beautiful 

Very Beautiful 
Very Clean 
Super Clean 
Null Great 

 

Fig. 10.  Partial list of values and qualifiers extracted from Vehicle documents 

 Instances of fuzzy_summer 

class 
 

Summer 
Qualifier 

Summer 
Value 

Null Hot 

Very Hot 
Null Moist 
Null Cool 
Always Hot 
Generally Hot 
Null Dry 

Intensely Hot 

Constantly Hot 

Mostly Hot 
Extraordinarily Hot 

Instances of fuzzy_temperature 

variation class 
 

Temp. Variation 
Qualifier 

Temp. Var. 
Value 

 Null High 

Little Seasonal 
Average High 
Slight Seasonal 
Moderately High 
Null Moderate 
Null Seasonal 
Relatively Low 

Constantly High 

Very High 
Severe Low 

 

Instances of fuzzy_climate  

class 
 

Climate 
Qualifier 

Climate 
Value 

Most Moderate 

Null Tropical 
Mostly Temperate 

Mostly Tropical 
Mostly Arid 
Mostly Semiarid 
Null Semiarid 
Cold  Temperate 
Cool Temperate 
Mild  Temperate 
Null Subtropical 

 

Fig. 11.  Partial list of values and qualifiers extracted from Weather documents 

 Instances of fuzzy_taste class 
 

TasteQualifier TasteValue 
Slightly Bitter 

Fine Dry 
Light Dry 
Medium Dry 
Null Dry 
Quite Dry 
Slightly Flinty 

Null Fresh 

Full Mellow 

Medium Sweet 
Slightly Sweet 
Very Sweet 

Instances of fuzzy_color class 
 

ColorQualifier ColorValue 
 Pale Cherry-red 

Ruby Red 
Orange Red 
Indigenous Red 
Light Red 
Robust Red 
Premium Red 
Bright Ruby-red 

Tenuous Straw 

Null White 
Pale White 
Bright Yellow 

Instances of fuzzy_flavor class 
 

FlavorQualifier FlavorValue 
Slightly Bitter 

Zesty Delicate 
Null Dry 

Null Exquisite 
Null Favorite 
Fresh Fruity 
Usually Fruity 
Mellow Nutty 
Smooth Nutty 
Null Robust 
Null Spicy 
Harmonious Velvety 

 

Fig. 12.  Partial list of values and qualifiers extracted from Wine documents 



extracted from documents on weather. Fig. 12 shows a 

partial list of values and qualifiers extracted from 

documents on wine. The point to note here is the 

existence of a number of new values that were distilled 

from the documents. 

7.2 Performance analysis of the Knowledge Distiller 

The quality of knowledge distillation can be measured 

by comparing its information extraction accuracy against 

human curation. Our intention was to study the 

applicability of ontology-guided precise and imprecise 

concept description extraction from general-purpose 

unstructured texts. We considered documents on four 

widely different domains - wine, vehicles, wood and 

weather as our test-bed. To build our corpora we have 

downloaded documents from the World Wide Web. Each 

of these documents describes one type of entity and 

contains around 10 sentences. Presently, the wine corpus 

has 500 documents consisting of 52,320 words. The wood 

corpus has 475 documents consisting of 55,590 words. 

The weather corpus contains 264 documents. The vehicle 

corpus is comparatively very small, and there are only 23 

documents. We manually inspected these documents to 

build a complete compilation of all possible elements to 

be extracted and curated them under different categories 

(shown in column 1 of Table 3): entity names, property 

names, property values and property value qualifiers. The 

elements extracted by the Knowledge Distiller are 

automatically stored in different columns of the database 

depending on their types. It may be noted that property 

names do not appear explicitly in the database since the 

database attributes are created from the ontology structure 

itself. However, the recognition of property names is 

important since it affects the property-value recognition 

process and thereby the overall system performance. The 

performance of this module is computed using standard 

measures of precision and recall, which are defined as 

follows: 

extractedelementsofnumberTotal

extractedelementsrelevantofNumber
ecision =Pr  

corpustheinpresentactually

elementsrelevantofnumberTotal

extractedelementsrelevantofNumber
call =Re

  

Table 3 summarizes these values for the different 

domains. As is observed, the precision of the system is 

quite high. This indicates that most of the extracted 

instances are correctly identified. However, the recall 

value of the system is somewhat low. This indicates that 

several relevant elements are not extracted from the text.  

To analyze the performance further, we identify the 

causes of this problem as arising from three different, 

though not mutually exclusive, sub-tasks performed by 

this module, namely entity name extraction, property 

value extraction and property qualifier extraction. The 

problems associated to each of these recognition tasks are 

further analyzed as follows:  

• Named-entity recognition - It may be observed from 

Table 3 that the recall and precision of recognizing 

names is very high in the case of weather and vehicle 

documents, though recall was comparatively lower 

for wine and wood documents. Precision is high for 

all the domains. This indicates that most of the names 

were correctly recognized for all domains. For wine 

and wood documents a few other names were also 

identified as entities, which lowered the precision 

slightly. These were mostly names of places where a 

specific wine is found or a wood is grown.  

The reason for low recall values in certain 

domains was identified as follows. We observed that 

most errors occur when the name is composite in 

nature. For example, while the name Verdlet is easy 

to identify as a noun, it is not so for the name Blush 

Niagara. The Parts-Of-Speech tagger sometimes 

identifies Blush as an adjective. This problem is 

particularly severe for domains where standard 

naming conventions do not exist. Though vehicles 

also had composite names, due to the standard pattern 

followed for all vehicle documents, the recall for this 

domain was high. This problem can be overcome by 

employing a set of additional Entity-Recognition 

rules, which can take care of the peculiar naming 

conventions of the domain. This is the usual approach 

adopted for Biological document processors to deal 

with a large entity collection with rather inconsistent 

naming standards [7], [20].  



• Property value recognition - A word is recognized as 

a property value if either it is a member of a property-

value set in the ontology structure, or it is associated 

with a property name in the web document. For 

example, let us consider the following document 

along with the POS tags associated to the words:  

Verdlet is a delicate, fruity, white table  
  N      X T    N        J       J     N    

wine, with the pleasingly crisp, slightly  
  N       R   T      A        V       A 

flinty taste. 
  J     N         

In the above example, though the property name 

color does not explicitly appear in the description, 

the knowledge base is filled up correctly, since white 

is recognized as an adjective by the tagger, and it is 

also present in the property value set of color in the 

domain ontology. Though a new word, the 

description “flinty” is also correctly recognized as a 

taste value since it occurs explicitly in association to 

property name– taste. However, the word fruity, 

though assigned the correct parts-of-speech by the 

tagger, is not recognized as a property value for 

flavor by our system, since it is neither present in any 

property value set in the underlying ontology 

structure nor does it occur in association to any 

specific property name in the document.  

• Property value qualifier recognition – This task has 

relatively less precision and recall values than other 

tasks. There are two reasons that we have identified 

for this. Firstly, in many cases a property value may 

be associated with more than one qualifier. Since our 

system extracts only the one that is closest to the 

property value, a lot of qualifiers are missed. For 

example, consider the following sentence picked-up 

from the wine domain:  

Chianti: a very bright ruby red color; a dry flavor, 

which becomes delicate…  

Here we found that the color value of “Chianti” is 

associated with two different qualifiers bright and 

very. Our system extracts only bright as a qualifier 

value and associates it with the color value of wine. 

In order to reflect the true performance of the 

module, during performance evaluation we have 

counted very as a missed but relevant element. This 

problem can be easily tackled by considering adverb 

chains rather than single adverbs as qualifiers [24].  

The second problem creeps in due to the fact that 

many adverbs which occur in the document are not 

really qualifiers, though they occur sufficiently close 

to some property value. An example of such a 

sentence is given below in which the word 

occasionally is wrongly judged as a qualifier for taste 

whose value is slight.  

Table 3. Performance Metrics for the Knowledge Distiller in terms of Precision and Recall 

Domain 
Type of Extracted 

Information 

# Elements 

in Source 

# Extracted 

Elements 

recognized 

correctly 

#Incorrect 

Elements 

extracted 

Precision Recall 

Wine 

Named Entities 

(Wine names) 
1092 971 42 95.85 88.92 

Property values 2172 1591 31 98.09 73.25 

Qualifier Values 1492 1126 185 85.89 75.47 

Wood 

Named Entities 

(Wood names) 
965 856 49 94.59 88.70 

Property values 1962 1177 109 91.52 59.99 

Qualifier Values 650 486 82 85.56 74.77 

Weather 

Named Entities 

(Country names) 
264 264 0 100.00 100.00 

Property values 617 440 13 97.13 71.31 

Qualifier Values 126 95 9 91.35 75.40 

Vehicle 

Named Entities 

(Vehicle names) 
23 23 0 100.00 100.00 

Property values 101 92 1 98.92 91.09 

Qualifier Values 12 10 1 90.91 83.33 

 



Fig. 13.  I/O Interface 

Valpolicella, an everyday red wine,. ……and  

 N            T     J      J   N        C 
has plenty of body, and occasionally a  

 x    N     R   N    C        A      T 
slight taste of bitter almonds.  

 J      N    R    J       N  

8. Query Processor and Fuzzy Reasoner 

In this section we will present the design of the Query 

Processor and Fuzzy Reasoner modules. The Query 

Processor accepts user queries through an ontology-

guided query interface and converts them into equivalent 

SQL statements. The SQL queries are passed on to the 

database engine, which extracts relevant instances from 

the underlying structured knowledge base. The extracted 

instances are passed on to the Fuzzy reasoner module to 

calculate the similarity value between the concept 

descriptions posed by the user, and those present in the 

extracted instances. The final set of instances judged as 

relevant, along with their degrees of relevance, is 

presented to the user.  

The overall task of query processing is a two-step 

process – acceptance and conversion of the user query 

into a corresponding SQL query and then extracting and 

finding the relevant answer from the structured 

knowledge base. The processing steps are explained in the 

succeeding subsections. 

8.1 Accepting user query  

The Query Processor uses the underlying Fuzzy 

ontology model and the structured knowledge base, which 

defines and stores the domain concepts using a set of 

property values and qualifiers. The query processor 

interface, shown in Fig. 13, guides the user to enter his/ 

her queries in a given format, which is then converted into 

an SQL query. Queries are formulated through this 

interface as follows: 

• A user can frame queries by selecting the property 

and qualifier values from corresponding list boxes. 

•  A user can specify constraints on a property by 

selecting only a qualifier, or a value, or both. Pull-

down menus containing lists of existing property 

names, property values, and qualifiers are provided. 

• Complex queries can be formulated by selecting one 

or more of the logical operators AND/ OR/ NOT 

Once a user query is accepted, a corresponding SQL 

query is built out of it using the property names, property 

values and logical operators (if any). The qualifiers are 

not considered for building the SQL query. They are 

considered later for judging the relevance of an answer. 

8.2 Instance extraction and relevance computation  

Since user given descriptions may not exactly match 

any known description in the knowledge base, the answer 

generation mechanism applies fuzzy reasoning to find 

good matches. The following steps explain the answer 

generation process:  

Step 1: Formulation of SQL queries using user-given 

parameters – During this phase, only the given property 

names, property values and logical operators (if any) are 

used to formulate the SQL query. For example if the user 

enters the query – List the wines with light yellow color or 

medium bitter taste, the corresponding SQL query is 

generated as: 

SELECT WineName, ColorQualifier, ColorValue, 

TasteQualifier, TasteValue 
FROM WineKnowledgebase 

WHERE ColorValue = “yellow” or TasteValue = 
“Bitter”; 

The SQL query is processed using the knowledge base 

and fuzzy ontology model. 

Step 2: Precise query processing for finding exactly 

matching answers – In this step the SQL statements 

generated in step 1 are executed and the instances of 

knowledge base with exact value matches are extracted as 

intermediate results. The extracted instances for the 

earlier query are as follows: 

WineName 
Color 

Qualifier 

Color 

Value 

Taste 

Qualifier 

Taste 

Value 

Grignolino Null Null Slightly Bitter 

Racioto di soave Bright Yellow Null Null 

 

Step 3: Fuzzy similarity computation for all answers 

extracted – During this stage, the user given qualifiers are 

used to compute the similarity of each extracted instance 



to the actual user query in order to compute the final set 

of answers. 

To calculate the fuzzy similarity value between the 

concept descriptions given in the user query and those 

extracted from the knowledge base, we have redefined the 

concept of similarity measures discussed in [9]. If u and v 

are two objects in a given universe of discourse U, a 

similarity measure is a function:  SIM (u, v) → [0, 1]. In 

our framework, since the qualifier set for different 

properties is modeled as a graded set, the distance 

between two qualifiers in the collection reflects their 

degree of dissimilarity. The distance between the value vi 

at position i and the value vj at position j within a set is 

defined as: 

)..(....................),( ijivvd ji −=  

The similarity between two concepts u and v is computed 

as: 

).........(..........
1

),(
1),( ii

MAX

vud
vuSIM

+
−=  

where MAX is the maximum distance between the 

concepts in the graded set. 

This function satisfies the condition  

1),(0 ≤< vuSIM . Using this function each qualifier can 

be assigned a fuzzy membership value to another qualifier 

class. The membership values determined by this fuzzy 

membership function for a sample 6-qualifier set are 

shown in figure 14.  However, other fuzzy membership 

functions can be also employed to assign the membership 

values to the qualifiers. 

The similarity of an extracted instance to the user 

given description is computed in terms of the degree of 

match between user-specified property values and 

qualifiers to those appearing in the knowledge base. 

Let the user given description for each property P be 

represented by C = <P, V, Q1>, where V denotes the 

property value and Q1 denotes the qualifier. Let x be a 

retrieved instance which has value V for property P and 

qualifier Q2. Let µC(x) denote the similarity between the 

instance x and the user given description C for property P. 

µC(x) is computed as follows: 
 

Case 1:   Both Q1 and Q2 are present in the qualifier set of 

P in the fuzzy ontology – In this case, µC(x) = 

SIM(Q1,Q2). 

Case 2: Q1 = NULL or Q1 = Q2 – The first situation 

arises when user does not select/enter a qualifier with a 

property value. In this case, µC(x) = 1. That is, all 

instances with matching values are accepted as exact 

matches. Similarly, if there is an exact match between the 

user given concept descriptions and those present in the 

retrieved instances, the similarity value µC(x) = 1. 

Case 3: Either Q1 or Q2 or both are not present in the 

qualifier set and they are not NULL – In this case, it is 

judged that the query processor is not able to resolve the 

differences in the descriptions, and so µC(x) = 0.  

For complex queries i.e. queries in which multiple 

property descriptions C1, C2,…,Cn have been specified by 

the user and are combined with logical AND, OR, and  

NOT operators - the final similarity value is computed by 

using fuzzy intersection, union and negation operations 

respectively. The membership computation functions for 

intersection, union, and negation of fuzzy concepts C1, C2, 

…Cn are defined as follows: 

µC1∪C2∪…Cn (x) = MAX [µC1(x), µC2(x),…, µCn(x)] 
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µC1∩C2∩…Cn(x) = MIN [µC1(x), µC2(x), …,µCn(x)] 

µ¬C1(x) = 1 - µC1(x) 

Continuing with the earlier example, the similarities of 

the extracted instances with the user given description are 

given in the following table. It may be noted that the 

similarity values are based on either a color match or the 

taste match, through the qualifiers. The second instance 

has a lower degree of similarity than the first, since the 

pair of qualifiers bright and light for color differs more 

than the pair slightly and medium for taste. 

WineName 
Color 

Qualifier 

Color 

Value 

Taste 

Qualifier 

Taste 

Value 

Similarity 

Value 

Grignolino Null Null Slightly Bitter 0.67 

Racioto di 

soave 
Bright Yellow Null Null 0.31 

Step 4: Answer generation – only those instances, which 

have similarities greater than or equal to a given threshold 

with the user-description, are presented to the user. 

8.3 Illustration of imprecise query processing  

We now present some sample queries and answers 

generated for them, using the knowledge bases that were 

generated during the earlier phase. These knowledge 

bases contain entity descriptions that are stored in a 

database, whose schema is decided by the underlying 

fuzzy ontology structure of the corresponding domain. 

Each retrieved entity is accompanied by a similarity value 

to indicate its relevance to the original query. For 

presenting a qualitative performance analysis of our 

system, in each of the following tables, we have also 

shown those instances which have property value matches 

with the query, but are ultimately judged to have 

similarity value zero. Results of ten queries are presented 

here from among which, first two are from the wine 

domain, next three each from the domains of wood and 

weather, and then two from the vehicle domain. 

Query 1: List the wines with medium sweet taste. 

The corresponding SQL query is generated for retrieving 

relevant entities from the knowledge base, which are then 

subjected to relevance computation: 

Select WineName, TasteQualifier, TasteValue 
From WineKnowledgebase 

Where TasteValue = “Sweet”; 

Result after fuzzy relevance computation: 

Wine Name 
Taste 

Qualifier 

Taste 

Value 

Similarity 

Value 

Niagara Medium Sweet 1.00 

Blush Niagara Medium Sweet 1.00 

Asti Spumante Slightly Sweet 0.67 

Red Sparkler Slightly Sweet 0.67 

White Sparkler Slightly Sweet 0.67 

Wine Name 
Taste 

Qualifier 

Taste 

Value 

Similarity 

Value 

Gewurztraminer Slightly Sweet 0.67 

Brachetto Null Sweet 0.56 

Muscat Di Tanta Maria Null Sweet 0.56 

White Muscadine Null Sweet 0.56 

Blush Muscadine Null Sweet 0.56 

Alpine Burgundy Null Sweet 0.56 

Red Muscadine Null Sweet 0.56 

Query 2 exemplifies the use of the logical operator AND. 

In the answer set for this query, though the first instance 

has more matches with the user given description for one 

property, due to the use of MIN function for fuzzy 

intersection operation, its ultimate relevance goes down. 

It may also be noted that presently the system is incapable 

of judging the similarity between “slightly” and “fresh”, 

since they cannot be judged on the same scale. Hence the 

last two instances are inferred as irrelevant, which should 

not be ideally so. This aspect needs further analysis.  

Query 2: List the wines with slightly sweet taste and 

slightly fruity flavor. 

Initial SQL> Select WineName, TasteQualifier, 

TasteValue, FlavorQualifier, FlavorValue 

From WineKnowledgebase 
Where TasteValue = ‘sweet’ AND FlavorValue = 

‘Fruity’; 

Results after fuzzy relevance computation: 

WineName 
Taste 

Qualifier 

Taste 

Value 

Flavor 

Qualifier 

Flavor 

Value 

Similarity 

Value 

Gewurztraminer Slightly Sweet Null Fruity 0.50 

White Muscadine Null Sweet Null Fruity 0.50 

Blush Muscadine Null Sweet Null Fruity 0.50 

Red Muscadine Null Sweet Null Fruity 0.50 

Niagara Medium Sweet Fresh Fruity 0.00 

Blush Niagara Medium Sweet Fresh Fruity 0.00 

Following are some more queries, their SQL versions and 

the retrieved results from the other domains. 

 Query 3: List very heavy weighted woods. 

Initial SQL> Select WoodName, WeightQualifier, 

WeightValue 

From WoodKnowledgebase 
Where WeightValue = “Heavy”; 

Results after fuzzy relevance computation: 

Wood  

Name 

Weight  

Qualifier 

Weight 

Value 

Similarity 

Value 

Oak Very Heavy 1.00 

Hickory Moderately Heavy 0.67 

Eucalyptus Null Heavy 0.33 

Mahogany Null Heavy 0.33 

Maple Null Heavy 0.33 

Mesquite Null Heavy 0.33 

Benge Null Heavy 0.33 



It may be noted that in this example, an entity with more 

similarity to the user query is judged as more relevant. 

Hence Oak is definitely a better choice as heavy wood, 

than Eucalyptus or Maple etc. 

Query 4 illustrates the use of the logical OR operator. 

Results show that though Birch is initially retrieved since 

it has curly grains, however it was later discarded because 

the qualifier “often” could not be compared with the 

query qualifier “fine”. It may be noted that Oak is once 

again a match since it is very heavy and though it does 

not have curly grains, user has specified OR of two 

properties. Hence any one exact match yields a value of 

1.0. All other instances are imprecise matches for the 

query.  

Query 4: List the woods that have very heavy weight or 

fine curly grains. 

Initial SQL> Select WoodName, WeightQualifier, 

WeightValue, GrainQualifier, Grain Value  
From WoodKnowledgebase 

Where WeightValue = “Heavy” OR GrainValue = 
“Curly”; 

Results after fuzzy relevance computation: 

Wood 

Name 

Weight  

Qualifier 

Weight 

Value 

Grain 

Qualifier 

Grain 

Value 

Simil.  

Value 

Oak Very Heavy Null Null 1.00 

Hickory Moderately Heavy Null Straight 0.67 

Mahogany Null Heavy Null Curly 0.5 

Eucalyptus Null Heavy Null Null 0.33 

Maple Null Heavy Usually 
Straight-

grained 
0.33 

Mesquite Null Heavy Null Null 0.33 

Benge Null Heavy Null Wavy 0.33 

Birch Null Medium Often Curly 0.00 

Query 5 also illustrates the use of logical OR operators 

with more properties in user query. 

Query 5: List the woods that have either pale yellowish 

color or very heavy weight or wavy grain. 

Initial SQL> Select WoodName, ColorQualifier, 

ColorValue, WeightQualifier, WeightValue, 
GrainQualifier, GrainValue 

From WoodKnowledgebase 
Where ColorValue= “yellowish” OR WeightValue= 

“Heavy” OR GrainValue= “Wavy”; 

Results after fuzzy relevance computation: 

Wood  

Name 

Color 

Qual. 

Color  

Value 

Wt. 

Qual. 

Wt. 

Value 

Grain 

Qual. 

Grain 

Value 

Simil. 

Value 

Oak Gray Brown Very Heavy Null Null 1.00 

Honduras 

Mahogany 
Null Reddish Null 

Mediu

m 
Null Wavy 1.00 

Benge Pale 
Yellowi
sh 

Null Heavy Null Wavy 1.00 

Wood  

Name 

Color 

Qual. 

Color  

Value 

Wt. 

Qual. 

Wt. 

Value 

Grain 

Qual. 

Grain 

Value 

Simil. 

Value 

Cedar-

White 
Null 

Yellowi

sh 
Null Null Null Null 0.88 

Hickory Light 
Reddish
-brown 

Moder
ately 

Heavy Null Straight 0.67 

Eucalyptus Null 
Pinkish-

brown 
Null Heavy Null Null 0.33 

Mahogany Null Null Null Heavy Null Curly 0.33 

Maple Null 
Reddish

-brown 
Null Heavy 

Usuall

y 

Straight

-grained 
0.33 

Mesquite Null Null Null Heavy Null Null 0.33 

 

Queries 6, 7 and 8 are from the weather domain. The 

information is extracted from a document which contains 

description of climatic conditions for 264 countries.  

Query 6: List the countries that have very hot summer 

and cool winter. 

Initial SQL> Select CountryName, 

SummerQualifier, SummerValue, WinterQualifier, 
WinterValue 

From WeatherKnowledgebase 
Where SummerValue= “hot” AND WinterValue= 

“cool”; 

Results after fuzzy relevance computation: 

Country 

Name 

Summer  

Qualifier 

Summer  

Value 

Winter 

Qualifier 

Winter 

Value 

Simil. 

 Value 

Kuwait intensely Hot Null cool 0.83 

Bhutan Null Hot Null cool 0.67 

Query 7: List the countries that are arid and very hot. 

Initial SQL> Select CountryName, 

ClimateQualifier, ClimateValue, SummerQualifier, 
SummerValue 

From WeatherKnowledgebase 
Where ClimateValue= “arid” AND SummerValue= 

“hot”; 

Results after fuzzy relevance computation: 

Country 

Name 

Climate 

Qualifier 

Climate 

Value 

Summer 

Qualifier 

Summer 

Value 

Simil. 

Value 

Bahrain Null Arid very hot 1.00 

Qatar Null Arid very hot 1.0 

Kazakhstan Null Arid Null hot 0.25 

Mali Null Arid Null hot 0.25 

Query 8: List the tropical countries that have little 

seasonal variation. 

Initial SQL> Select CountryName, 

ClimateQualifier, ClimateValue, 
Temp_variationQualifier, Temp_variationValue 

From WeatherKnowledgebase 
Where ClimateValue= “tropical” AND 

Temp_variationValue= “seasonal”; 

Results after fuzzy relevance computation: 



Country Name 
Climate 

Qual. 

Climate 

Value 

Temp_va

riation 

Qualifier 

Temp_va

riation 

Value 

 

Simil. 

Value 

American Samoa Null tropical Little seasonal 1.00 

Antigua Null tropical Little seasonal 1.00 

Aruba Null tropical Little seasonal 1.00 

Cambodia Null tropical Little seasonal 1.00 

Dominican 
Republic 

Null tropical Little seasonal 1.00 

French Guiana Null tropical Little seasonal 1.00 

Guam Null tropical Little seasonal 1.00 

Johnston Atoll Null tropical Little seasonal 1.00 

Northern Mariana 

Islands 
Null tropical Little seasonal 1.00 

Puerto Rico Null tropical Little seasonal 1.00 

Saint Kitts Null tropical Little seasonal 1.00 

Saint Vincent Null tropical Little seasonal 1.00 

Fiji Null tropical Slight seasonal 0.75 

Papua New 
Guinea 

Null tropical Slight seasonal 0.75 

Montserrat Null tropical Null seasonal 0.50 

 

The documents that we collected on vehicles 

described old vehicles that were on sale. Owners 

described cars in terms of mileage, color, condition, 

damage etc. Some sample queries and answers generated 

from them are shown below. This domain is interesting 

from a different viewpoint as illustrated with query 9. 

Though in general a buyer will be happier with a “very 

clean” car when (s)he is looking for a “clean” one, the 

earlier relevance computation function did not take care 

of this. However, this is an exception and we have 

modeled this as such. In case the query was for a “very 

clean” car, then a “clean” car would be judged less 

relevant both by our system and the buyer! Query 10 

shows some other properties with which the usual 

reasoning procedure works well.    

Query 9: List vehicles that have clean look and no 

damage. 

Initial SQL> Select VehicleName, LookQualifier, 

LookValue, DamageQualifier, DamageValue 

From VehicleKnowledgebase 
Where LookValue= “clean” AND DamageValue= 

“Null”; 

Results after fuzzy relevance computation: 

Vehicle Name 
Look 

Qual. 

Look 

Value 

Damage 

Qualifier 

Damage 

Value 

Simil. 

Value 

1993 Porsche 911 
Carrera 2 Cab Turbo 

Null Clean Null Null 1.00 

1989 Porsche 911 

Carrera 
very Clean Null Null 1.00 

1977 Harley-

Davidson FX 
very Clean Null Null 1.00 

Vehicle Name 
Look 

Qual. 

Look 

Value 

Damage 

Qualifier 

Damage 

Value 

Simil. 

Value 

1999 Porsche 911 
996 Carrera 

very Clean Null Null 1.00 

1996 Porsche 993 

911 Carrera 
very Clean Null Null 1.00 

1985 Porsche 911 

Turbo Carrera 
super Clean Null Null 1.00 

 

Query 10: List vehicles with very light damage and 

mileage less than 65,000. 

Initial SQL> Select VehicleName, 

DamageQualifier, DamageValue, MileageQualifier, 
MileageValue 

From VehicleKnowledgebase 
Where damageValue= “light” AND MileageValue < 

50000; 

Results after fuzzy relevance computation: 

Vehicle Name 
Damage 

Qualifier 

Damage 

Value 

Mileage 

Qual. 

Mileage 

Value 

Simil. 

Value 

2000 Porsche 

Boxster 
Very Light Null 62000 1.00 

2000 Ducati 

900 SS 
Null Light Null 4100 0.50 

 

8.4  Evaluation of the Query Processor  

It is difficult to provide a performance analysis of the 

query-processing module, since no benchmark set of 

queries are available, spanning across all domains, for 

judging the performance of such a system. Since the 

concept descriptions are finally stored in a database, the 

system can obviously retrieve all exact matches correctly. 

When it comes to judging the relevance of answers to 

fuzzy query, the quality of retrieval is dependent on the 

similarity computation procedure. For example, it can be 

seen from the examples cited above that in some cases, 

the fuzzy Min-Max function seems to be too restrictive, 

though we have chosen it since this provides a standard 

way of interpreting AND and OR of entity descriptors. 

The similarity between two fuzzy qualifiers also depends 

on the expert’s judgment and the order of the qualifiers in 

the corresponding qualifier sets. We refrain from giving 

any relevance figure for this module, since acceptability 

of an answer generated is largely dependent on the user’s 

perspective. 

 

5. Conclusion and future work 
 

In this work, we have presented an ontology-based 

text-mining system, which also does enrichment of the 

underlying domain ontology with new and/ or imprecise 

concept descriptions extracted from texts and also stores 



the extracted information in a structured knowledge base. 

The structured knowledge base is used to answer user 

queries related to domain entities. Storing information 

components on a database allows the system to collate 

and compare information collected from multiple sources. 

The use of an ontology enables information collection to 

be focused. The entire collection is viewed as describing a 

set of domain entities using common attributes. This 

facility is inherently provided by an ontology-based text 

processing system, which enables guided information 

extraction. We have used a fuzzy ontology structure 

which has been created from the initial domain ontology 

structure. In this extended structure, a property value is 

also accompanied by a value qualifier to associate a 

degree of precision to the value. This helps in computing 

relevance of a document concept to a user query concept. 

The degree of relevance reflects the degree of similarity 

between the two and generates answers even when there 

are no exact matches in the document repository. 

Query processing is a two-step process. Initially an 

SQL query is constructed from the user-given query to 

extract entities, which have exact matches for property 

values stated by the user.  Thereafter, the system employs 

fuzzy reasoning to find degree of similarity between user 

given concepts and text concepts. Thus imprecise matches 

for user query are not adjudged at par with exact matches. 

This aspect of query processing is totally different from 

the searches conducted by standard search engine.  

Ontology based text processing has been mainly 

employed for technical domains like Biology, Zoology 

etc. Our emphasis has been to apply ontology based text 

information extraction for general-purpose user interest 

areas. However, since expert-created domain ontologies 

may not exist for all possible domains, so we have 

targeted our system to serve dual purpose. Starting with a 

seed fuzzy ontology structure, it starts analyzing domain 

text documents. As new information components are 

extracted from these, the system provides a facility to 

enrich the existing ontology with newly learned values 

and qualifiers, within the existing fuzzy ontology 

structure. We have worked on a number of different 

domains and the results obtained are quite interesting. 

Thus this system can be easily adapted to build text-

processing systems for organizations with specific focus. 

Presently, the concept extraction process uses a 

common framework for handling all value-qualifier sets. 

However, experiments suggest that the qualifier list, if 

treated as a partially ordered list rather than a completely 

ordered list may provide for more intelligent reasoning. A 

complete hedge-algebra based qualifier ranking along the 

lines of [24] may be used to compute concept relevance. 

Different fuzzy membership computation functions can 

be associated to the fuzzy reasoner to provide different 

kinds of reasoning facilities. We are currently working on 

techniques to generate the requisite grammar for a domain 

through statistical analysis of documents from that 

domain. Integration of fuzzy relations with membership 

values based on reliability of source and frequency of 

domain concepts are also being experimented with. The 

system is also being extended to extract predicates from 

domain documents rather than simple entities. Our aim is 

to extend logical reasoning for these predicates through 

the use of extended Description Logics.  
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