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ABSTRACT

In this paper, we propose a density-based community detec-
tion method, CMiner, which exploits the interaction graph
of online social networks to identify overlapping community
structures. Based on the average reciprocated interactions
of a node in the network, a new distance function is de-
fined to find the similarity between a pair of nodes. The
proposed method also provides a basic solution for auto-
matic determination of the neighborhood threshold, which
is a non-trivial problem for applying density-based cluster-
ing methods. Considering the local neighborhood of a node
p, the distance function is used to determine the distance be-
tween the node p and its neighbors in the interaction graph
to identify core nodes, which are then used to define overlap-
ping communities. On comparing the experimental results
with clique percolation and other related methods, we found
that CMiner is comparable to the state-of-the-art methods
and is also computationally faster.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—

Data mining; H.3.3 [ Information Storage and Retrieval]:

Information Search and Retrieval—Clustering, Information
filtering

General Terms
Algorithms, Design

Keywords

Social network analysis; Density-based clustering; Commu-
nity finding; Overlapping community detection

1. INTRODUCTION

Due to increasing popularity of the Online Social Net-
works (OSNs) and its wide application areas, community
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mining research has received a lot of attention in recent
past and the field is still rapidly evolving. Numerous meth-
ods based on spectral clustering [6, 22, 24], partitional clus-
tering [17], modularity optimization [5, 19], likelihood [4],
mathematical programming [1], and latent space clustering
[13] have been developed for community detection in social
networks. Detecting communities in a network depends on
various factors like, whether the definition of community re-
lies on global or local network properties, whether nodes can
simultaneously belong to several communities, whether link
weights are utilized and whether the community definition
allows for hierarchical community structure. The fact that
nodes in a network can belong to more than one commu-
nity and a solution based on k-clique percolation given by
Palla et al. [20] have resulted in an increased attention to-
wards detecting overlapping communities in social networks.
Although, most of the methods consider overlap of commu-
nities at boundaries, some methods allow central vertices of
communities to overlap, making it unclear as how to charac-
terize overlapping vertices [9]. The proposed method allows
any central or boundary node to belong to multiple commu-
nities.

Considering the case of OSNs like Facebook, Twitter and
so on, community structures have mostly been analyzed us-
ing traditional community detection techniques over social
networks representing explicit relations (friends, colleagues,
etc.) of users. However, we argue that using only explicit
social graph can be reductive. The interaction links repre-
sent relationships that social actors use to diffuse informa-
tion through a social network and thus provide important
weighted structural information. This information can be
used to determine functional, meaningful and useful commu-
nity structures in social networks. For example, the observa-
tions made by Wilson et al. [25] and Chun et al. [2] on Face-
book friendship and interaction data reveals that for most
users, majority of their interactions occur only across a small
subset of their social links proving that only a subset of so-
cial links actually represents interactive relationships. Their
findings suggest that social network-based systems should be
based on the activity network, rather than on the social link
network. Furthermore, considering the interaction degree of
nodes in online social networks, the likelihood of nodes to
link to other nodes of similar degree is more than friend net-
work. This means that nodes in an interaction graph show
more assortativity than friend network and places it close to
known social networks.

In this paper, we propose a density-based method, CMiner,
for detecting overlapping community structures from the in-



teraction graphs of online social networks. The proposed
method is in line with SCAN [26] and DENGRAPH [8] that are
based on DBSCAN [7]. Both of them find dense communities
and detect outliers in networks. In addition to these, CMiner
has the following novel contributions.

e Based on the average reciprocated interactions of a
node in the network, CMiner defines a new distance
function to find the similarity between a pair of nodes.

e CMiner does not need a neighborhood threshold (of-
ten difficult to determine) to be specified by the users
manually. Rather, it uses a simple approach to auto-
matically determine the neighborhood threshold value
for each node locally from the underlying network. De-
termining a way to optimally calculate the neighbor-
hood threshold for density-based community detection
methods is a long-standing and challenging task.

e CMiner finds overlapping community structures from
the interaction graph of online social networks using a
density-based approach. To the best of our knowledge,
this approach is not used in existing state-of-the-art
methods for community detection.

Rest of the paper is organized as follows. Section 2 presents
a brief review of the related works on detecting communities
from social networks. In section 3, we define the distance
function and present a density-based overlapping commu-
nity detection method. Section 4 presents our experimental
setup and evaluation results. Section 5 presents a discussion
on the proposed approach and also gives its time complexity
and the possible directions for future work. Finally, section
6 concludes the paper.

2. RELATED WORK

Traditional community detection techniques include graph
partitioning methods, which divide the vertices of a net-
work into a predefined number of groups in such a way
that the number of edges lying between groups is minimal.
Kernighan-Lin algorithm [14] is one of the earliest known
partitioning methods. Besides graph partitioning, partition-
based clustering methods have also been used for detecting
communities in networks. Given a set of data points and
a predefined value k (number of clusters to be found) the
problem is to divide the nodes into k clusters that optimizes
a cost function based on distances between nodes and/or
from points to centroids. However, a main drawback of these
methods is to determine the number of clusters a priori.

Hierarchical clustering is another well-known technique
used in social network analysis [21, 23]. Starting from a
partition in which each node is in its own community or
all nodes are in the same community, one splits or merges
clusters according to a topological measure of similarity be-
tween nodes. Based on the concept of sociological notion of
betweenness centrality, Girvan and Newman [11] have pro-
posed a divisive hierarchical clustering algorithm for com-
munity detection, which calculates betweenness of all edges
in a network and removes the one with highest betweenness
value. The process continues until there is no edge remain-
ing or a stopping criterion is met. But, the method does not
provide a measure to determine the best split of communities
in a network. Later on, Newman and Girvan [19] proposed
modularity to measure the quality of a division of a network

into groups or communities. The idea of modularity is to
compare the number of links inside communities to the ex-
pected number of links in a random reference network, which
contains no community structure. High values of modularity
indicate network partitions in which more edges fall within
groups than expected by chance. In many methods proposed
later, modularity became an objective function to be max-
imized leading to modularity optimization-based methods
for community detection. Although, modularity optimiza-
tion methods have been proved highly effective in practice
for community evaluation, there are some major problems
with the modularity measure. Firstly, modularity requires
information about the entire structure of a network, which
is unrealistic in case of large networks like the World Wide
Web. As a solution to this problem, Clauset [3] proposed
a measure of local community structure, called local mod-
ularity, for graphs which lack global knowledge. Secondly,
modularity-based methods have a resolution limit and may
fail to identify smaller (possibly important) communities
[10].

Extending the DBSCAN (Density-Based Spatial Clustering
of Applications with Noise) algorithm [7] to undirected and
un-weighted graph structures, Xu et al. [26] propose SCAN
(Structural Clustering Algorithm for Networks) to find clus-
ters, hubs, and outliers in large networks. SCAN uses struc-
tural similarity which involves the neighborhood of vertices
as clustering criteria.

0 ifp=gq
min(Iz, Iz) "' if (Isy > 0) A (I3 > 0)
1 otherwise

dist(p,q) =

(1)

Similarly, considering the weighted interaction graph of
online social networks, Falkowski et al. [8] extend DBSCAN
algorithm [7] to weighted interaction graph structures of on-
line social networks. They define a distance measure based
on the interaction between two actors p and ¢ in a network
as given in equation 1. In equation 1, I and Ig; are the
number of interactions between actors p and ¢ initiated by p
and ¢, respectively. The basic idea is that for each point in
a cluster the neighborhood of a given radius (¢) has to con-
tain at least a minimum number of points (7) such that the
density of the points in the cluster exceeds some threshold.

Motivated by the fact that entities in networks can si-
multaneously belong to multiple communities, the issue of
detecting overlapping communities has received a lot of at-
tention recently. The most popular method for identifying
overlapping communities is the Clique Percolation Method
(CPM) proposed by Palla et al. [20] which is based on the
concept of a k-clique, i.e., a complete subgraph of k nodes.
The method relies on the observation that communities seem
to consist of several small cliques that share many of their
nodes with other cliques in the same community. A k-clique
community is the largest connected subgraph obtained by
taking the union of a k-clique and of all other k-cliques
which are adjacent to it. Gregory [12] handles overlapping
communities by adding one more action (node splitting) to
the Newman-Girvan method [19]. The algorithm recursively
splits nodes that are likely to reside in multiple commu-
nities, or removes edges that seem to bridge two different
communities. This process is repeated until the network is
disconnected into desired number of communities. In [16],
the authors have proposed a method, called LFM, for un-



Table 1: Notations and their descriptions

Notation Description
14 The set of nodes in the social net-
work
I, Total count of outgoing interactions
of a node p
Iy Total count of outgoing interactions
from node p to node ¢
I Total count of recipro-
cated interactions of a node
p:quevp min(Izy, Ig)
Iy Total count of reciprocated interac-
tions of p and g:min(Iz, Iz)
Vi Set of nodes in the networks with
which node p interacts
Vpq Set of nodes with which both nodes
p and q interact: V, NV,

covering overlapping community structures based on local
optimization of a fitness function. The method performs a
local exploration of the network, searching for the natural
community of each node (community structure is revealed
by peaks in the fitness histogram). The procedure enables
each node to be included in more than one module, leading
to a natural description of overlapping communities.

3. PROPOSED METHOD

In this section, we discuss the proposed method, CMiner
for detecting overlapping community structures in social net-
works. In order to ease the discussion, we have used a set
of notations that are described in table 1. In line with the
community detection method SCAN proposed by Xu et al.
[26] and DENGRAPH proposed by Falkowski et al. [8], our ap-
proach is based on DBSCAN [7] method, where a cluster is
searched by checking the neighborhood of each point in the
underlying database. If the neighborhood of a given radius
€ of a point p contains more than 7 points, a new cluster
with p as a core object is created. The process then it-
erates to find directly density-reachable objects from these
core objects and defines a density-connected cluster using
density reachability and density connectivity properties [7].
The overall concept of our proposed method however signif-
icantly varies from them as discussed in the following para-
graphs. We start with defining the distance function which
measures the distance between a pair of nodes in the social
network. In order to find the distance from a node p to
a node ¢, the function computes average interaction weight
between p and commonly interacted nodes of p and g, includ-
ing ¢q. This average interaction weight is normalized by the
total outgoing interaction weight of p as shown in equation
2.

0 ifp=gq
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Unlike [7, 8, 26] where the global neighborhood threshold
parameter € is manually required to be set at the begin-
ning of the process and is mostly difficult to determine, we

propose a function that determines the local neighborhood
threshold ¢, for a node p by taking into consideration the
node’s interaction data. The local neighborhood threshold
aims to give a measure of the average interaction behavior of
a node with all its neighbors in the interaction graph. The
local neighborhood threshold €, of a node p is obtained using
equation 3, where the symbols have the same interpretations
as given in table 1.

0 otherwise

The local e,-neighborhood of a node p (Njocal&p) is then
defined as follows:

Nlocalsp == {q - q S VP A d’LSt(p7 q) S EP} (4)

In simple terms, the local ep-neighborhood of a node p is
defined as the set of nodes in its interaction network whose
distance from node p is less than or equal to the local neigh-
borhood threshold ¢, of node p. To proceed with defining
a community in our context, we need to define the concept
of a core node. For this, we introduce the concept of local
minimum-number-of-points threshold (n,) as shown in equa-
tion 5, where 1 forms the only parameter to be manually set
for CMiner. Now for a node p to qualify as a core node
with respect to its local neighborhood threshold ¢, and lo-
cal minimum-number-of points threshold 7, it is required
to have at least 7, of its recipient nodes (nodes to which
it sends interactions) within its local €,-neighborhood. The
core nodes act as seeds from where communities are grown
outwards based on the following definitions.

_nX | Vol
Mp = 100 (5)

Definition 1. A node q is direct density-reachable from a
node p with respect to n if p is a core node and g belongs to
the local e,-neighborhood of p. Direct density-reachability
in this case is however asymmetric, as in the proposed con-
text the distance from a node p to ¢ may not be same as the
distance from ¢ to p.

Definition 2. Two nodes p and ¢ are called mutual cores
if both p and g are core nodes, and p belongs to the lo-
cal e4-neighborhood of ¢, and ¢ belongs to the local &p-
neighborhood of p. In other words two core nodes p and ¢
are called mutual cores if p and q are direct density-reachable
from each other. Mutual core relation is symmetric and it
is the symmetric relation which is used transitively to grow
a community as discussed in the following paragraphs.

Definition 3. A node q is density-reachable from a node p
with respect to 7, if there is a chain of nodes vi,va, ..., Un,
where v1 = p and v, = ¢, such that v;+1 and v; are mu-
tual cores for ¢ ranging from 1,2,...,n — 2, and v, is direct
density-reachable from v,_1. Density reachability function
is asymmetric and transitive, and it is not necessary that two
nodes belonging to the same community be density reach-
able. They may belong to the same community because
they are density reachable from some third node belonging
to that community. This condition is justified in the follow-
ing definition of density connectivity.

Definition 4. A node q is density-connected to a node p
with respect to 7, if there exists a node v such that both p



and ¢ are density reachable from v. Density connectivity is
a symmetric relation and for the density reachable vertices,
it is also reflexive.

Definition 5. A non-empty subset C C V is called as a
density-connected community with respect to n, if all the
vertices in C' are density-connected and C' is maximal with
respect to density reachability.

The basic process of the proposed community detection
method is as follows. Initially all nodes being un-labeled and
un-visited, the process iteratively finds a density-connected
community by randomly selecting an un-visited node to grow
a community using density-reachable property. For each un-
visited node p, it checks whether p is a core node and if p
qualifies the test, it finds all the density-reachable nodes of
p to identify its community. To do so, it first computes the
local €, threshold for p using equation 3. If the ¢, threshold
for p is greater than zero, then it uses the distance function
of equation 2 to determine the local e,-neighborhood of p,
i.e., Niocaiep. Now if node p qualifies as a core node, its
community list is appended with the current community la-
bel and the community list of each node in Njocaiep is also
appended with the same. We use the term appended as the
nodes belonging to Niocai€p including p can already be la-
beled by some other community labels during some previous
iterations. A node is assigned to a new community irrespec-
tive of its previous community allotments, thus allowing a
node to belong to multiple communities. Once a node p is
identified as a core-node, the following key steps are used to
identify a density-connected community for p.

1. All un-visited mutual-core nodes of the node p in Niocarep

are appended with the current community label. They
are marked as visited and pushed to the stack in or-
der to identify the density-reachable nodes of p. This
step is later repeated for each node in the stack for
the current community in order to find the connected
sequences of mutual-core nodes p. These nodes are
called the primary-core nodes of that community.

2. If a core-node ¢ in Nigcai€p is not a mutual-core of
p, it is appended with the current community label,
however, it is not pushed into the stack to grow the
current community and its visited /un-visited status is
kept un-altered.

3. Non-core nodes in Njocai€p are marked as visited and
they are appended with the current community label.
Such nodes form boundary nodes for the community
of p and are thus not pushed into the stack as they
cannot be used to grow a community.

The steps through 1-3 are repeated for each node in the
stack thus identifying a density-connected community for
each randomly selected un-visited node p in the social net-
work. It is worthwhile to note that if a core-node ¢, as-
signed to a community C, does not show a mutual-core re-
lation with any primary-core node of C, then ¢ is called
a secondary-core node of community C' and C is called a
secondary-community of ¢q. Similarly, if a core-node r is a
primary-core node of a community C then community C is
called the primary-community of r.

The whole process is repeated for each un-visited node
to find the overlapping community structure in the social

network. At the end of the process, un-labeled nodes (if
any) represent outlier nodes, i.e., they do not belong to any
community as they do not show an interaction behavior that
is similar to any node or enough number of nodes in the
social network.

4. EXPERIMENTAL RESULTS

In this section, we present the experimental results con-
ducted on various synthetic and real world social network
datasets, and compare them with results from some of the
known community detection methods. Results are gener-
ated for overlapping community structures and the concept
of Normalized Mutual Information (NMI) is used to com-
pare the community structures found by various algorithms.
We have specifically used the definition of NMI proposed
and implemented by Lancichinetti et al. [16]. Unlike other
comparison methods that work only with non-overlapping
communities, NMI implemented by Lancichinetti et al. [16]
is most commonly used to compare both overlapping and
non-overlapping community structures.

4.1 Experiments on Synthetic Datasets

Lancichinetti and Fortunato [15] have proposed a syn-
thetic network generation method that can be used to gen-
erate a class of artificial networks usually referred as LFR-
benchmarks. As claimed by the authors, the networks gener-
ated so reflect important aspects of real networks and they
can be used as benchmarks for testing community detec-
tion algorithms. We have used their method to generate
various undirected-weighted networks for our experiments
by varying different parameters required for the generation
of networks. A description of the available parameters can
be seen in their original paper [15]. Here, we only men-
tion the parameter name and the value used to generate the
network. For all generated synthetic networks, the average
degree < k > and the maximum degree maxk have been
set to 20 and 50, respectively. Similarly, the minus expo-
nent for the degree sequence ¢t1 and minus exponent for the
community size distribution ¢ have been set to —3 and —1,
respectively. Rest of the parameter settings used to generate
different networks is mentioned in the following paragraphs.
It should further be noted that each point of every curve in
figure 1 corresponds to an average over 25 realizations of the
benchmark.

Figure 1 compares the result of CMiner with LFM [16] and
CFinder which implements the weighted clique percolation
method [20] for detecting overlapping communities in syn-
thetic undirected and weighted networks. For N1000-S-81.5
networks, number of nodes (N) is set to 1000, community
size is set to relatively small in the range of 20-50 (repre-
sented using S), and the exponent for weight distribution S
is set to 1.5. Similarly, for N1000-B-31.5 networks, the pa-
rameters are same as the previous networks except the com-
munity size which is relatively bigger and set in the range
of 20-100 (represented using B). For N5000-S-/31.5 networks,
number of nodes (N) is set to 5000, community size is rel-
atively small in the range of 20-100, and exponent for the
weight distribution § is 1.5. Similarly, for N5000-B-£31.5 net-
works, the parameters are same as N5000-S-51.5 networks
except the community size which is relatively bigger and
set in the range of 20-200. For each of these settings, we
have set the mixing parameter for weight values as w=1;
number of memberships of the overlapping nodes om=3 and
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Figure 1: Experimental results on undirected-weighted
LFR-Benchmarks with overlapping communities.

varied the fraction of overlapping nodes to generate bench-
mark networks. For CFinder [20], we have used its weighted
clique percolation method with clique size k=4 and varied
the intensity threshold parameter accordingly to get the best
results. For CMiner, we have varied the minimum-number-
of-points parameter 1 between 50% — 85% to get the best
results. For LFM, we have used the default parameter set-
ting with & = 1. As can be seen from figure 1, the results
obtained by CMiner for synthetic networks with overlapping
nodes, when the size of communities is smaller in both small
and large networks, are comparable to the results obtained
by CFinder [20] and better than LFM [16]. However, when
the size of communities is larger, CMiner performs similar to
CFinder for small networks and marginally better for larger
networks. It also performs better than LFM in this case as
well.

4.2 Experiments on Zachary’s Network

Zachary’s network of karate club members [27] is a well-
known graph regularly used as a benchmark to test commu-
nity detection algorithms. The dataset consists of an un-
directed graph representing weighted interactions between
34 members of a club at a U.S. university, as recorded over
a two-year period. During the course of the study, the club
split into two groups as a result of a dispute within the or-
ganization, and the members of one group left to start their
own club. The actual division of the club into two groups
is shown in figure 2a. We have compared the results of our
method on the Zachary’s network with the result obtained
from the fast modularity optimization method for weighted
networks proposed by Newman [18] shown in figure 2¢ and
with the best result obtained by using DENGRAPH proposed
by Falkowski et al. [8], by setting the neighborhood thresh-
old to 1/3 and the minimum number of points threshhold to
3, shown in figure 2d. The result of LFM [16] on Zachary’s
network is shown in figure 2b. The result obtained after ap-
plying our method is shown in figure 2f for which n = 50% of
friends. In figure 2, nodes belonging to the same community

are enclosed within the same community boundary. Over-
lapping nodes are represented by nodes lying within multiple
community boundaries. Nodes that are not enclosed within
any boundary represent un-clustered/outlier nodes. As is

(c) Modularity optimization (d) DENGRAPH

(f) CMiner

(e) CFinder

Figure 2: Experimental results on Zachary’s karate club net-
work (best viewed in color).

obvious from figure 2, only CMiner, LFM and the weighted
fast modularity optimization method [18] give the most ap-
propriate results. CMiner detects 3 overlapping communi-
ties and 2 outliers from the Zachary’s network. Among the
three communities the smallest community (enclosed by red
boundary in the figure 2a) consists of three nodes and two of
its nodes overlap with a much larger community (enclosed
by green boundary in the figure 2a). This implies that the
smaller community can be considered as an integral part of
the larger community thus finding exactly two main commu-
nities which are most close to the ground truth. Similarly,
LFM finds 3 communities among which 2 communities over-
lap. We argue that CMiner gives a more descriptive represen-
tation of the community structure in Zachary’s network as
it identifies a split closer to the actual one and also finds the
nodes where the communities overlap which could possibly
represent the nodes, that held the club together or played
a role in the split of the club. This is because, between the
two main communities identified by CMiner (which are most
close to the ground truth) it marks nodes labeled 9 and 33
as overlapping nodes, i.e., belonging to both the main com-
munities. It means that the whole group could be thought
of being held together by nodes labeled as 9 and 33. Anal-
ogously, a dispute between nodes labeled as 1 and 33 had
resulted in the actual split of the club. Moreover, node 9
is a common neighbor of nodes 1 and 33. Thus we can say
that the communities identified by CMiner in the zachary
network are more realistic than the others. However, the
result of LFM on the Zachary’s network is also comparable
with CMiner.



S. DISCUSSION AND FUTURE WORK

On the basis of the experimental results discussed in the
previous section, it is quite obvious that CMiner is com-
parable with the Clique Percolation Method (CPM) [20]
and better than LFM [16] considering the overlapping nature
of communities. The results on the Zachary dataset also
show that CMiner performs better than some of the well
known non-overlapping community detection methods like
[8] and [18]. Considering the complexity analysis, CMiner
involves analyzing the local neighborhood of each node in
the network, and for each node this cost is proportional to
its interaction degree. Thus, the total cost for this step
is O(deg(p1) + deg(p2) + ... + deg(pn)), where deg(p:),i =
1,2,...,n is the degree of node p;. For a complete graph of
n nodes, the degree of each node is n — 1, leading to a worst
case complexity for this step as O(n?). So, the total cost
of CMiner in worst case is O(n?). However, in general, real-
world networks show sparser degree distributions, resulting
in an O(n) average case complexity. Thus, on an average,
the total cost of the whole method on sparse real-world net-
works is O(n), which is significantly better than O(n?) for
[18] and O(e™) for CPM [20].

Although the proposed approach seems promising, the
major concern related to it is regarding the asymmetry of
the distance function. The proposed method however com-
pensates this asymmetry using the mutual-cores relation
between core-nodes. However, the notion of density-based
methods usually requires that the distance function be sym-
metric. In our future work, we aim to give a symmetric
representation of the proposed distance function. Moreover,
besides using only interaction data from social networks, we
also aim to use the social (friend) relation data for defining
the distance between two nodes in a social network as it also
represents important explicit relations between them.

6. CONCLUSION

In this paper, we have proposed a density-based method,
CMiner, to identify overlapping community structures from
social network interactions. CMiner is based on an average
interaction behavior of nodes in the social network. Unlike
related density-based methods, CMiner does not need the
global neighborhood threshold to be specified by the users
which is mostly difficult to determine. Instead, the proposed
method automatically computes a local version of the neigh-
borhood threshold from the underlying interaction graph.
Moreover, it requires a single tunable parameter to be set
by the user which determines the density of the communi-
ties to be identified from the network. This property also
enables CMiner to extract community structures of varying
densities in a hierarchical manner. We have presented some
preliminary results on synthetic and real-world networks.
The results show that CMiner is at par with state-of-the-
art methods and performs better than some other related
methods. CMiner is also faster and naturally scalable to
large social networks.
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