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Abstract: Particle Swarm Optimization (PSO) is a swarm intelligence optimization method 
inspired from birds’ flocking or fish schooling. Many improved versions of PSO are reported in 
literature, including some by the authors. Original as well as improved versions of PSO have 
proven their applicability to various fields like science, engineering and industries. Economic 
dispatch (ED) problem is one of the fundamental issues in power system operations. This 
problem turns out to be a non linear continuous optimization problem. In this paper, economic 
dispatch problem is solved using original PSO and two of its improved variants, namely, 
Laplace Crossover PSO (LXPSO) and Quadratic Approximation PSO (qPSO), in order to find 
better results than reported in the literature. Results are also compared with the earlier 
published results. 
 
Keywords: Particle Swarm Optimization, Economic Dispatch, Laplace Crossover, Quadratic 
Approximation Particle Swarm optimization 
Categories: G.1.6, I.1.2 

1 Introduction  

In the operation and planning of a power system, economic dispatch problem (ED) is 
one of the key problems that are to be dealt with. In ED problem, the optimal 
combination of power outputs of all generating units is to be determined, subject to 
meeting the required load demand at minimum operating cost while satisfying system 
equality and inequality constraints. The practical ED problem is a non-smooth 
optimization problem consisting of both equality and inequality constraints. However, 
there is no general traditional approach; dynamic programming method [Liang, 92]  
has been used to solve this problem. But the performance of dynamic programming 
method reduces significantly as the dimension of the problem increases. Over the past 
few years, many efficient non-traditional methods have been explored to solve the ED 
problem, such as genetic algorithm [Walters, 93], evolutionary programming [Yang, 
96], [Sinha, 2003], tabu search [Lin, 2002], neural network approaches [Lee, 98], and 
particle swarm optimization [Park, 2005], [Victoire, 2004], [Park, 2006], [Park, 
2007]. Due to wide applicability and scope of improvements, particle swarm 
optimization and some of its advanced variants are applied to solve the ED problem. 
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Two variants of PSO namely, Laplace Crossover PSO (LXPSO) [Bansal, 2009] 
and Quadratic Approximation PSO (qPSO) [Deep, 2009] have been proved to be 
efficient techniques for optimization test problems. Therefore, in order to find 
improved results, this paper presents the solution of economic dispatch problem with 
valve-point effects [Park, 2007] using standard PSO, LXPSO and qPSO. Results 
obtained by these three algorithms are also compared with the earlier published 
results.  

Rest of the paper is organized as follows: Section 2 presents the mathematical 
formulation of economic dispatch problem with valve-point effects. In section 3, PSO 
and in section 4, LXPSO and qPSO are summarized. Numerical results are obtained 
and analyzed in section 5. Section 6, concludes the paper. 

2 Mathematical Formulation of the Problem 

The main objective of ED problem is to minimize the total fuel cost of power plants 
subject to the operating constraints of a power system. Generally, it can be formulated 
with an objective function and two constraints [Park, 2007]: 
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FT : Total generation cost 
Fi : Cost function of generator i 
ai, bi, ci: Cost coefficients of generator i 
Pi: Power output of generator i 
n:  Number of generators.  
 
Subject to, 
Constraint I: 
Active Power Balance Equation: Power balance requires an equality constraint should 
be satisfied. The total generated power should be the equal to the total demand and 
the total line loss. For simplicity purpose, the transmission loss is not considered in 
this paper. 
 
Constraint II: 
Minimum and Maximum Power Limits: Generation output of each power generating 
unit should be bounded between its minimum and maximum limits. The 
corresponding inequality constraints for each generator are: 

max,min, iii PPP                         (3) 

where min,iP  and max,iP  are the minimum and maximum output of generator i, 

respectively. 
The fuel cost function is significantly modified if the generation units with multi-

valve steam turbines are considered.  
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The generating units with multi-valve steam turbines exhibit a greater variation in the 
fuel cost functions. Since the valve point effects result in the ripples, a cost function 
contains higher order nonlinearity. Therefore, to consider the valve point effects, the 
cost function (2) may be written as:

       4,....,2,1sin min,
2 niPPfePcPbaPF iiiiiiiiiii   

where ei and fi are the cost coefficients of generator i reflecting valve-point effect. 
Thus, the nonlinear optimization problem defining economic dispatch problem 

with valve point effects is to minimize TF  given by (1) and (4) subject to the 

constraints I and II, discussed above.  

3 Particle Swarm Optimization 

The particle swarm optimization algorithm, originally introduced in terms of social 
and cognitive behaviour by Kennedy and Eberhart in 1995 [Kennedy, 95], solves 
problems in many fields, especially engineering and computer science. Only within a 
few years of its introduction, PSO has gained wide popularity as a powerful global 
optimization tool and is competing with well-established population based 
evolutionary and swarm intelligence algorithms. The fundamental idea behind PSO is 
the mechanism by which the birds in a flock and the fishes in a school cooperate 
while searching for food. In PSO, a group of active, dynamic, and interactive 
members called swarm produces a very intelligent search behaviour using 
collaborative trial and error. Each member of the swarm called particle, represents a 
potential solution of the problem under consideration. Each particle in the swarm 
relies on its own experience as well as the experience of its best neighbour. Each 
particle has an associated fitness value. These particles move through search space 
with a specified velocity in search of optimal solution. Each particle maintains a 
memory which helps it in keeping the track of the best position, it has achieved so far. 
This is called the particle’s personal best position (pbest) and the best position, the 
swarm has achieved so far is called global best position (gbest). The movement of the 
particles is influenced by two factors using information from iteration-to-iteration as 
well as particle-to-particle. As a result of iteration-to-iteration information, the 
particle stores in its memory the best solution visited so far, called pbest, and 
experiences an attraction towards this solution as it traverses through the solution 
search space. As a result of the particle-to-particle information, the particle stores in 
its memory the best solution visited by any particle, and experiences an attraction 
towards this solution, called gbest, as well. The first and second factors are called 
cognitive and social components, respectively. After each iteration, the pbest and 
gbest are updated for each particle if a better or more dominating solution (in terms of 
fitness) is found. This process continues, iteratively, until either the desired result is 
converged upon, or it is determined that an acceptable solution cannot be found 
within computational limits.  

For a D-dimensional search space, the ith particle of the swarm is represented by a 
D- dimensional vector, Xi = (xi1, xi2, …,xiD)T . The velocity of this particle is 
represented by another D-dimensional vector Vi = (vi1, vi2,…,viD)T . The previously 
best visited position of the ith particle is denoted as Pi = (pi1, pi2, …,piD)T . ‘g’ is the  
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index of the best particle in the swarm. The velocity of the ith particle is updated using 
the velocity update equation given by 

 )()( 2211 idgdidididid xprcxprcvv        (5) 

and the position is updated using  

 ididid vxx                          (6) 

where d = 1, 2… D represents the dimension and i = 1, 2,…, S represents the particle 
index. S is the size of the swarm and c1 and c2 are constants, called cognitive and 
social scaling parameters respectively (usually, c1 = c2 and r1, r2 are random numbers 
drawn from a uniform distribution). Equations (5) and (6) define the classical version 
of PSO algorithm. A constant, Vmax, is used to arbitrarily limit the velocities of the 
particles and improve the resolution of the search. The maximum velocity Vmax, 
serves as a constraint to control the global exploration ability of particles in the 
swarm. Further, the concept of an inertia weight was developed to better control 
exploration and exploitation. The motivation is to be able to eliminate the need for 
Vmax. The inclusion of an inertia weight in the particle swarm optimization algorithm 
was first reported in the literature in 1998 [Shi, 98]. 

The resulting velocity update equation becomes: 

)()(* 2211 idgdidididid xprcxprcvwv          (7) 

Eberhart and Shi, [Eberhart, 2000] indicate that the optimal strategy is to 
initially set w to 0.9 and reduce it linearly to 0.4, allowing initial exploration followed 
by acceleration toward an improved global optimum.  

Clerc [Clerc, 99] has introduced a constriction factor,  , which improves PSO’s 

ability to constrain and control velocities.   is computed as: 

                    
 42

2





                           (8) 

where 4,21   cc , and the velocity update equation is then 

 )()(* 2211 idgdidididid xprcxprcvv  
   

(9) 

Eberhart and Shi, [Eberhart, 2000] found that  , combined with constraints on Vmax, 

significantly improves the PSO performance. 

4 Some Improved PSO Versions 

4.1 Laplace Crossover Particle Swarm Optimization (LXPSO) 

In classical particle swarms, the particle moves using the information from its 
previous best and the global best particle. In LXPSO [Bansal, 2009], a crossover 
based on Laplace distribution is introduced in PSO that develops an interaction model 
between any two randomly chosen particles. The details of LXPSO are as follows: 

Laplace crossover operator was first introduced for genetic algorithms in [Deep, 
2007]. This is a parent centric operator. LX has similar properties like Simulated 
Binary Crossover Operator (SBX) [Deb, 2001]. The probability density function for 
Laplace distribution is given by 
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and the cumulative density function of Laplace distribution is given by 
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where, Ra  is called the location parameter and 0b is termed as scale 
parameter.  

Using LX, two off-springs  Dyyyy 112111 ,...,,  and  Dyyyy 222212 ,...,,  are 

generated from a pair of parents  Dxxxx 112111 ,...,, and  Dxxxx 222212 ,...,,  

in the following way: 
First, a uniformly distributed random number  1,0iu  is generated. Then, 

from Laplace distribution function, the ordinate i  is calculated so that the area under 

the probability curve excluding area from a (location parameter) to i  is equal to 

chosen random number iu . The calculation is carried out in the following way: 

First consider i  right to a , then 
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Similarly, when i  is left to a , then 
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Thus, 
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The offsprings are given by the equations  

iiiii xxxy 2111                          (13) 

iiiii xxxy 2122                           (14)

         
From the above two equations it is clear that both the offsprings are placed 

symmetrically with respect to the position of the parents. For smaller values of b, 
offsprings are likely to be close to the parents in search space and for larger values of 
b offsprings are expected to be far from the parents. For a fixed value of a and b, LX 
dispenses off-springs proportional to the spread of parents i.e. if the parents are near 
to each other, the off-springs are expected to be near to each other and if the parents 
are far from each other then the off-springs are likely to be far from each other. A 
realization of the above idea can be had from equation (15) which is derived from 
equations (13) and (14),  

iiii xxyy 2121                     (15) 

In this way the proposed crossover operator exhibits self-adaptive behaviour. 
Note that the spiky nature of the Laplacian distribution controls the spread of the 
offsprings. 

Based on the Laplacian operator described as above, two new particles are 
formed. The best particle (in terms of fitness) is selected. This new particle, called 
Laplacian particle, can replace one of the particles from which it is formed or replace 
the worst performing particle in the swarm. LXPSO analyze swarms behaviour if the 
worst particle (in terms of fitness) is replaced by this Laplacian particle. PSO with 
Laplace crossover is called as Laplace Crossover PSO (LXPSO). 

4.2 Quadratic Approximation Particle Swarm Optimization (qPSO) 

4.2.1 Motivation 

Deep and Das [Deep, 2008], hybridized a binary GA by incorporating Quadratic 
Approximation (QA) operator as an additional operator for local search which showed 
a substantial improvement in the performance of GA. PSO has the efficiency to solve 
a wide variety of problems with a larger percentage of success. Mohan and Shankar 
[Mohan, 94] proved that Random Search technique (RST) which uses QA operator 
provides fast convergence rate but once stuck in a local optima, it is generally difficult 
to come out of it. Perhaps social knowledge concept of PSO could help RST in 
coming out of the local optima. As compared to GAs, the PSO has much more 
profound intelligent background and could be performed more easily. These two facts 
motivated to hybridize PSO and QA with the expectation of faster convergence (from 
QA) and improved results (from PSO) [Deep, 2009]. 

.,...,2,1 ni 
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4.2.2 Quadratic Approximation Operator 

QA is an operator which determines the point of minima of the quadratic hyper 
surface passing through three points in a D- dimensional space. It works as follows: 
1. Select the particle R1, with the best objective function value. Choose two random   
particles R2 and R3 such that out of R1, R2 and R3, at least two are distinct. 
2. Find the point of minima R* of the quadratic surface passing through R1, R2 and 
R3, where  
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R     (16) 

where  1Rf ,  2Rf  and  3Rf  are the objective function values at R1, R2 and R3 

respectively. The calculations are to be done component wise using (16) to obtain R*. 

4.2.3 The Process of Hybridization 

In each iteration, the whole swarm S is divided into two subswarms (say S1 and S2). 
From one generation to the next generation, S1 is evolved using PSO, whereas S2 is 
evolved using QA. Figure 1 shows the idea that stands behind qPSO and the way to 
integrate the two techniques. qPSO consists of a strong co-operation of QA and PSO, 
since it maintains the integration of the two techniques for the entire run. It should be 
noted that R1 used in QA and gbest used in PSO both are the global best position of 
the entire swarm (let us call it GBEST) i.e R1 = GBEST and gbest = GBEST. The 
strength of the qPSO lies in the facts that both PSO and QA use the GBEST 
simultaneously or in other words, subswarm S1 and S2 share their best positions with 
each other and for transition from one iteration to the next, both updating schemes use 
the entire swarm’s information. However, in updating a particle’s position by QA, no 
information about its current position is applied as in PSO but the presence of 
memory of the corresponding subswarm preserves the best performed particles. So in 
(i+1)th iteration QA will not produce worse solution than that in ith iteration. For more 
details of qPSO process refer [Deep, 2009]. 
 

 
Figure 1: Transition from ith iteration to (i+1)th iteration 

 
Percentage of swarm to be updated by PSO or QA is an important parameter of 

qPSO known as coefficient of hybridization (CH). CH is the percentage of swarm 
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which is evolved using QA in each iteration. Thus, if CH = 0, then the algorithm is 
pure PSO (the whole swarm is updated by PSO operators), and if CH = 100 then the 
algorithm is pure QA (the whole swarm is updated by QA operator) while for 
0<CH<100 the corresponding percentage of swarm is evolved by QA and the rest 
with PSO. The optimal value of CH is 30% [Deep, 2009]. 

5 Solution of the Problem 

In this paper, the power system of 40 generating units with valve-point effects is 
considered [Park, 2007]. Refer [Park, 2007], for the input data of the test system with 
40 generating units and the total demand is considered as 10,500 MW. 

5.1 Selection of Parameters 

In the literature, different values of parameters are used. In this paper, the selection of 
parameters is based on [Bansal, 2009] and [Deep, 2009]. Swarm size S is set to be 
100. Constriction coefficient version of PSO, LXPSO and qPSO are applied to solve 
the considered problem. Constriction coefficient is calculated from equation (8). The 
cognitive and social scaling parameters c1 and c2 are set to 2.8 and 1.3 respectively 
[Bansal, 2009]. Maximum velocity, Vmax is set equal to 0.5*(Xmax-Xmin), where 
Xmax and Xmin are the upper and lower bounds of corresponding decision variable. 
The location and scale parameters a and b for Laplace crossover are 1 and 0.9, 
respectively [Bansal, 2009]. The total simulations considered are 100. The criterion to 
terminate a simulation of the algorithms is reaching maximum number of iterations 
which is set 3000. 

5.2 Computational Results 

In Table 1, the minimum objective function value (Min OBJ), mean objective 
function value (Mean OBJ), and the standard deviation (SD) obtained by PSO, 
LXPSO, and qPSO are tabulated. Table 1 also compares the results obtained in this 
paper to the earlier published results by Hybrid PSO with crossover (HPSO) [Park, 
2007] and Improved Particle Swarm Optimization (IPSO) [Park, 2006]. Table 2 
summarizes the generation output of each generator and the corresponding cost in 40-
unit system obtained by PSO, LXPSO and qPSO. It is observed that the generation 
output obtained by PSO, LXPSO and qPSO satisfy both the constraints and the 
minimum cost obtained by qPSO is the best over PSO, LXPSO and other methods 
applied earlier for this problem. Therefore, qPSO with the proposed parameter setting 
is strongly recommended for the solution of economic dispatch problems with valve-
point effects. 
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Method Min OBJ Mean OBJ SD 
PSO 121425.7989 121590.3289 92.8702 
LXPSO 121416.8352 121503.0048 57.6192 
qPSO 121411.7764 121503.0048 57.6192 

HPSO1 [Park, 2007] 121452.6741 121537.1906      - 
IPSO1 [Park, 2006] 121432.177 121801.909 287.452 

Table 1: Comparison of results obtained by PSO, LXPSO, qPSO, HPSO, and IPSO. 

 
Unit PSO LXPSO qPSO 

1 112.2629 111.4317 111.776 

2 111.9654 111.0495 111.7013 

3 97.53544 97.44937 97.41573 

4 179.7479 179.8268 179.7756 

5 90.14323 88.02182 88.315 

6 139.9949 139.9918 139.989 

7 259.7157 259.7505 259.7313 

8 284.8357 284.9749 284.7436 

9 284.7714 284.5966 284.6194 

10 130.017 130.0184 130.0528 

11 168.8275 168.7991 168.8038 

12 94.06347 168.803 168.801 

13 214.7621 214.7737 214.7706 

14 394.2736 394.2471 304.5479 

15 304.5572 304.4901 394.283 

16 394.2549 394.2577 394.2789 

17 489.3522 489.4279 489.2917 

18 489.3013 489.344 489.3259 

19 511.2805 511.323 511.2811 

20 511.3106 511.2519 511.2862 

21 523.3612 523.4927 523.3405 

22 523.337 523.2936 523.2933 

23 523.3437 523.2838 523.3627 

24 523.2956 523.4253 523.3602 

                                                           
1 Results reproduced from corresponding literature 
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25 523.3138 523.3875 523.3191 

26 523.4079 523.3427 523.287 

27 10.0301 10.03665 10.02257 

28 10.02232 10.03829 10.02202 

29 10.01248 10.0495 10.0232 

30 89.51979 88.88378 88.62734 

31 189.9937 189.978 189.9887 

32 189.9976 189.9673 189.9908 

33 189.998 189.9456 189.9911 

34 166.081 164.8954 164.9038 

35 199.9889 165.2111 165.0771 

36 199.9752 165.7175 165.3116 

37 109.981 109.9597 109.9916 

38 109.9851 109.9762 109.9878 

39 109.9835 109.9999 109.9741 

40 511.3926 511.2881 511.3359 

Total Power (MW) 10,500 10,500 10,500 

Total Generation Cost 121425.79 121416.83 121411.77 

Table 2 Generation output of each generator in case of minimum total cost and the 
corresponding total cost in 40-unit system for PSO, qPSO and LXPSO. 
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