
Memetic Comp. (2012) 4:303–316
DOI 10.1007/s12293-012-0096-9

REGULAR RESEARCH PAPER

Fitness based Differential Evolution

Harish Sharma · Jagdish Chand Bansal · K. V. Arya

Received: 29 February 2012 / Accepted: 19 October 2012 / Published online: 6 November 2012
© Springer-Verlag Berlin Heidelberg 2012

Abstract Differential Evolution (DE) is a well known and
simple population based probabilistic approach for global
optimization. It has reportedly outperformed a few Evolu-
tionary Algorithms and other search heuristics like Particle
Swarm Optimization when tested over both benchmark and
real world problems. But, DE, like other probabilistic opti-
mization algorithms, sometimes exhibits premature conver-
gence and stagnates at suboptimal point. In order to avoid
stagnation behavior while maintaining a good convergence
speed, a new position update process is introduced, named
fitness based position update process in DE. In the proposed
strategy, position of the solutions are updated in two phases.
In the first phase all the solutions update their positions using
the basic DE and in the second phase, all the solutions update
their positions based on their fitness. In this way, a bet-
ter solution participates more times in the position update
process. The position update equation is inspired from the
Artificial Bee Colony algorithm. The proposed strategy is
named as Fitness Based Differential Evolution (F B DE). To
prove efficiency and efficacy of F B DE , it is tested over 22
benchmark optimization problems. A comparative analysis
has also been carried out among proposed FBDE, basic DE,
Simulated Annealing Differential Evolution and Scale Factor
Local Search Differential Evolution. Further, F B DE is also
applied to solve a well known electrical engineering prob-
lem called Model Order Reduction problem for Single Input
Single Output Systems.

H. Sharma · J. C. Bansal (B) · K. V. Arya
ABV-Indian Institute of Information Technology
and Management, Gwalior, India
e-mail: jcbansal@gmail.com

H. Sharma
e-mail: harish.sharma0107@gmail.com

K. V. Arya
e-mail: kvarya@gmail.com

Keywords Evolutionary optimization · Differential
Evolution · Fitness based position update · Model order
reduction

1 Introduction

Differential Evolution (DE) scheme is relatively a simple,
fast and population based stochastic search technique, pro-
posed by Storn and Price [32]. DE falls under the category of
Evolutionary Algorithms (EAs). But in some sense it differs
significantly from EAs, e.g. trial vector generation process
(explained in Sect. 2) uses the information of distance and
direction from current population to generate a new trial vec-
tor. Furthermore, in EAs, crossover is applied first to generate
a trial vector, which is then used within the mutation oper-
ation to produce one offspring while, in DE, Mutation is
applied first and then crossover [10].

Researchers are continuously working to improve the per-
formance of DE. Some of the recently developed versions of
DE with appropriate applications can be found in [3]. In the
literature [40], it has been shown that for many times DE
performs better than the Genetic Algorithm (GA) [14] or the
Particle Swarm Optimization (PSO) [17]. DE has success-
fully been applied to various areas of science and technol-
ogy, such as chemical engineering [20], signal processing [7],
mechanical engineering design [35], machine intelligence,
and pattern recognition [28]. Recently, machine intelligence
and cybernetics are most well-liked field in which DE algo-
rithm has become a popular strategy.

There are two fundamental processes which drive the
evolution of a DE population: the variation process, which
enables exploring different areas of the search space, and the
selection process, which ensures the exploitation of the pre-
vious experience. However, it has been shown that DE may

123

304 Memetic Comp. (2012) 4:303–316

occasionally stop proceeding towards the global optimum
even though the population has not converged to a local opti-
mum [19]. Therefore, to maintain the proper balance between
exploration and exploitation behavior of DE, a new position
update process is introduced based on the fitness of the solu-
tion. The position update takes place in two phases in the
proposed strategy. In the first phase, the basic DE is used
to generate the new solutions and in the second phase each
solution is updated based on its fitness. The proposed update
process is inspired from onlooker bee phase of Artificial Bee
Colony algorithm (ABC) [16]. In this process, better can-
didate gets more chance to update its position. Further, the
solution updates only in single dimension in each chance,
hence generates the new solution in the neighborhood of the
old one and in this way exploits the search space.

Rest of the paper is organized as follows: Section 2
describes brief overview of the basic Differential Evolution
algorithm. Fitness Based Differential Evolution algorithm
(F B DE) is proposed and established in Sect. 3. In Sect. 4
experiments are carried and a comparative study among the
proposed strategy, the basic DE and its variants is done.
In Sect. 5, a real-world optimization problem, model order
reduction problem for single input single output (SI SO) sys-
tems is solved using F B DE . Finally, in Sect. 6, paper is
concluded.

2 Brief overview of Differential Evolution algorithm

DE has several strategies based on method of selecting the
target vector, number of difference vectors used and the type
of crossover [32]. In this paper DE/rand/1/bin scheme
is used where DE stands for differential evolution, ‘rand’
specifies that the target vector is selected randomly, ‘1’ is
for number of differential vectors and ‘bin’ notation is for
binomial crossover. The popularity of Differential Evolution
is due to its applicability to a wider class of problems and
ease of implementation. Differential Evolution consists of
the properties of both evolutionary algorithms and swarm
intelligence. The detailed description of DE is as follows:

Like other population based search algorithms, in DE a
population of potential solutions (individuals) searches the
solution. In a D-dimensional search space, an individual is
represented by a D-dimensional vector (xi1 , xi2 , . . ., xiD),

i = 1, 2, . . ., N P where NP is the population size (number
of individuals).

In DE, there are three operators: mutation, crossover and
selection. Initially, a population is generated randomly with
uniform distribution then the mutation, crossover and selec-
tion operators are applied to generate a new population. Trial
vector generation is a crucial step in DE process. The two
operators mutation and crossover are used to generate the trial
vectors. The selection operator is used to select the best trial

vector for the next generation. DE operators are explained
briefly in following subsections.

2.1 Mutation

A trial vector is generated by the DE mutation operator for
each individual of the current population. For generating the
trial vector, a target vector is mutated with a weighted differ-
ential. An offspring is produced in the crossover operation
using the newly generated trial vector. If G is the index for
generation counter, the mutation operator for generating a
trial vector ui (G) from the parent vector xi (G) is defined as
follows:

– Select a target vector xi1(G) from the population such
that i �= i1.

– Again, randomly select two individuals, xi2 and xi3 , from
the population such that i, i1, i2 and i3 all are distinct to
each other.

– Then the target vector is mutated for calculating the trial
vector as follows:

ui (G) = xi1(G) + F ×
Variation Component

︷ ︸︸ ︷

(xi2(G) − xi3(G))
︸ ︷︷ ︸

Step size

(1)

where F ∈ [0, 1] is the mutation scale factor which is
used in controlling the amplification of the differential
variation [10].

2.2 Crossover

Offspring x ′
i (G) is generated using the crossover of parent

vector xi (G) and the trial vector ui (G) as follows:

x ′
i j (G) =

{

ui j (G), if j ∈ J
xi j (G), otherwise

(2)

where J is the set of cross over points or the points that will
go under perturbation, xi j (G) is the j th element of the vector
xi (G).

Different methods may be used to determine the set J of in
which binomial crossover and exponential crossover are the
most frequently used [10]. In this paper, the DE and its vari-
ants are implemented using the binomial crossover. In this
crossover, the crossover points are randomly selected from
the set of possible crossover points, {1, 2, . . ., D}, where D
is the problem dimension. Algorithm 1 shows the steps of
binomial crossover to generate crossover points [10]. In this
algorithm, C R is the probability that the considered crossover
point will be included. The larger the value of C R, the more
crossover points will be selected. Here, J is a set of crossover
points, C R is crossover probability, U (1, D) is a uniformly
distributed random integer between 1 and D.

123

Memetic Comp. (2012) 4:303–316 305

2.3 Selection

There are two functions of the selection operator: First it
selects the individual for the mutation operation to generate
the trial vector and second, it selects the best, between the
parent and the offspring based on their fitness value for the
next generation. If fitness of parent is greater than the off-
spring then parent is selected otherwise offspring is selected:

xi (G + 1) =
{

x ′
i (G), if f (x ′

i (G)) > f (xi (G)).

xi (G), otherwise.
(3)

This ensures that the population’s average fitness does not
deteriorate.

The Pseudo-code for Differential Evolutionary strategy, is
described in Algorithm 2 [10].

Here, F (scale factor) and C R (crossover probability) are
the control parameters and influence the performance of the
DE. P is the population vector.

3 Fitness based Differential Evolution

3.1 A few drawbacks of DE

The inherent drawback with most of the population based
stochastic algorithms is premature convergence. DE is not an
exception. Any population based algorithm is regarded as an
efficient algorithm if its performance and efficiency (ability
to give solution faster) over a large set of problems is better.
In other words, if a population based algorithm is capable of
balancing between exploration and exploitation of the search
space, then it is expected that the algorithm perform better

and regarded as an efficient algorithm. From this point of
view, basic DE is not an efficient algorithm [24]. Also some
studies proved that stagnation is another inherent drawback
with DE, i.e. DE sometimes stop proceeding towards the
global optima even though the population has not converged
to local optima or any other point [19]. Mezura-Montes et al.
[24] compared the different variants of DE for global opti-
mization and found that DE shows poor performance and
remains inefficient in exploring the search space, especially
for multimodal functions. Price et al. [33] also drawn the
same conclusions. The problems of premature convergence
and stagnation is a matter of serious consideration for design-
ing a comparatively efficient DE algorithm (as it is not pos-
sible to design a fully efficient population based stochastic
algorithm).

3.2 The proposed strategy

Exploration of the whole search space and exploitation of the
near optimal solution region may be balanced by maintain-
ing the diversity in early and later iterations of any random
number based search algorithm. It is clear from the Eqs. (1)
and (2) that DE explores the search space based on the value
of C R and F . In DE, exploration and exploitation of the
search space depend on the value of C R and F i.e. for high
value of C R and F exploration will be high and for low
value, exploitation. In this paper, we are proposing a new
position update process which balances the exploration and
exploitation of the search space. The position update process
is inspired from the Artificial Bee Colony (ABC) algorithm’s
onlooker bee phase [16]. In employed bee phase of ABC, all
the employed bees search the food source and calculate their
fitness using Eq. (4):

f i tnessi =
{

1/(1 + fi), if fi ≥ 0
1 + abs(fi), if fi < 0

(4)

and then in the onlooker bee phase, Onlooker bees analyze the
available information and select a solution with a probability,
probi , related to its fitness. The probability probi may be
calculated using Eq. (5) (there may be some other but must
be a function of fitness):

probi (G) = 0.9 × f i tnessi (G)

max f i t (G)
+ 0.1, (5)

where G is the iteration counter, f i tnessi (G) is the fitness
value of i th solution and max f i t (G) is the maximum fitness
of the solutions in Gth iteration. Position update equation of
ABC is shown in Eq. (6):

vi j = xi j + φi j (xi j − xk j) (6)

123

306 Memetic Comp. (2012) 4:303–316

where k ∈ {1, 2, . . ., N P} and j ∈ {1, 2, . . ., D} are ran-
domly chosen indices, k must be different from i, φi j is a
random number between [−1, 1] and xk j is a random individ-
ual in the current population. In the basic ABC, at any given
time, only one dimension is updated in employed or onlooker
bee phase. In onlooker bee phase this update takes place
based on a probability which is a function of fitness. The pro-
posed strategy F B DE , in this paper, is inspired from ABC’s
onlooker bee phase discussed above. In F B DE , Algorithm 3
is applied after basic DE operators. The insertion of Algo-
rithm 3 makes F B DE more capable of exploitation in the
better search regions. It is expected because in F B DE after
applying basic DE operators, better candidate solutions are
offered to update themselves more times than worse can-
didates. The pseudo-code of the proposed position update
process which works after DE operators is shown in Algo-
rithm 3. The Pseudo-code for the proposed F B DE algorithm
is shown in Algorithm 4.

4 Experimental results and discussion

4.1 Test problems under consideration

In order to see the effect of the new position update process
on DE, 22 different global optimization problems (f1– f22)
are selected (listed in Table 1). These problems are minimiza-
tion problems and have different degrees of complexity and
multimodality. Test problems f1– f12 and f19– f20 are taken
from [2] and test problems f13– f18 are taken from [39] with
the associated offset values.

4.2 Experimental setting

To prove the efficiency of F B DE algorithm, it is compared
with three variants of DE, namely, DE/rand/bin/1 (usu-
ally known as basic DE) [32], Simulated Annealing Differ-
ential Evolution (S ADE) [42] and Scale Factor Local Search
Differential Evolution (SF L SDE) [27]. In SADE algo-
rithm, simulated annealing (SA) updating strategy is incor-
porated with the basic DE which helps to escape from the
local optima, and achieve the balance between exploration
and exploitation. In SADE, the greedy updating method is
replaced by the SA updating method. Each individual con-
tains a set of F values instead of single value within the

123

Memetic Comp. (2012) 4:303–316 307

Ta
bl

e
1

Te
st

pr
ob

le
m

s

Te
st

pr
ob

le
m

O
bj

ec
tiv

e
fu

nc
tio

n
Se

ar
ch

ra
ng

e
O

pt
im

um
va

lu
e

D
A

cc
ep

ta
bl

e
er

ro
r

Sp
he

re
f 1

(x
)
=

∑
D i=

1
x2 i

[−
5.

12
,
5.

12
]

f(
0)

=
0

30
1.

0E
−0

5

G
ri

ew
an

k
f 2

(x
)
=

1
+

1
40

00

∑
D i=

1
x2 i

−
∏

D i=
1

co
s(

x i √ i
)

[−
60

0,
60

0]
f(

0)
=

0
30

1.
0E

−0
5

R
os

en
br

oc
k

f 3
(x

)
=

∑
D i=

1
(1

00
(x

i+
1
−

x i
2
)2

+
(x

i
−

1)
2
)

[−
30

,
30

]
f(

1)
=

0
30

1.
0E

−0
2

R
as

tr
ig

in
f 4

(x
)
=

10
D

+
∑

D i=
1
[x2 i

−
10

co
s(

2π
x i

)]
[−

5.
12

,
5.

12
]

f(
0)

=
0

30
1.

0E
−0

5

A
ck

le
y

f 5
(x

)
=

−2
0

+
e

+
ex

p(
−0.

2 D

√

∑
D i=

1
x i

3
)
−

ex
p(

1 D

∑
D i=

1
co

s
(2

π
x i

)x
i)

[−
1,

1]
f(

0)
=

0
30

1.
0E

−0
5

M
ic

ha
le

w
ic

z
f 6

(x
)
=

−
∑

D i=
1

si
n

x i
(s

in
(

ix
i2

π
)20

)
[0,

π
]

f m
in

=
−9

.6
60

15
10

1.
0E

−0
5

C
os

in
e

M
ix

tu
re

f 7
(x

)
=

∑
D i=

1
x i

2
−

0.
1(

∑
D i=

1
co

s
5π

x i
)
+

0.
1

D
[−

1,
1]

f(
0)

=
−D

×
0.

1
30

1.
0E

−0
5

St
ep

fu
nc

tio
n

f 8
(x

)
=

∑
D i=

1
(�x

i
+

0.
5�

)2
[−

10
0,

10
0]

f(
−0

.5
≤

x
≤

0.
5)

=
0

30
1.

0E
−0

5

Q
ua

rt
ic

fu
nc

tio
n

f 9
(x

)
=

∑
D i=

1
ix

4 i
+

ra
nd

om
[0,

1)
[−

1.
28

,
1.

28
]

f(
0)

=
0

30
1.

0E
−0

5

In
ve

rt
ed

co
si

ne
w

av
e

f 1
0
(x

)
=

−
∑

D
−1

i=
1

(

ex
p

(

−(
x2 i

+x
2 i+

1
+0

.5
x i

x i
+1

)

8

)

×
I)

w
he

re
,

I
=

co
s
(

4√

x2 i
+

x2 i+
1
+

0.
5x

ix
i+

1

)

[−
5,

5]
f(

0)
=

−D
+

1
10

1.
0E

−0
5

K
ow

al
ik

fu
nc

tio
n

f 1
1
(x

)
=

∑
11 i=

1

[

a i
−

x 1
(b

2 i
+b

ix
2
)

b2 i
+b

ix
3
+x

4

]
2

[−
5,

5]
f(

0.
19

28
33

,
0.

19
08

36
,

0.
12

31
17

,
0.

13
57

66
)
=

0.
00

03
07

48
6

4
1.

0E
−0

5

2D
T

ri
po

d
fu

nc
tio

n
f 1

2
(x

)
=

p(
x 2

)(
1
+

p(
x 1

))
+|

(x
1
+5

0
p(

x 2
)(

1
−2

p(
x 1

))
)|+

|(x
2
+5

0(
1
−2

p(
x 2

))
)|

[−
10

0,
10

0]
f(

0,
−5

0)
=

0
2

1.
0E

−0
4

Sh
if

te
d

R
os

en
br

oc
k

f 1
3
(x

)
=

∑
D

−1
i=

1
(1

00
(z

2 i
−

z i
+1

)2
+

(z
i
−

1)
2
)
+

f b
ia

s,
z

=
x

−
o

+
1,

x
=

[x 1
,

x 2
,
..

.,
x D

],o
=

[o 1
,
o 2

,
..

.,
o

D
]

[−
10

0,
10

0]
f(

o)
=

f b
ia

s
=

39
0

10
1.

0E
−0

1

Sh
if

te
d

Sp
he

re
f 1

4
(x

)
=

∑
D i=

1
z2 i

+
f b

ia
s,

z
=

x
−

o,
x

=
[x 1

,
x 2

,
..

.,
x D

],o
=

[o 1
,
o 2

,
..

.,
o

D
]

[−
10

0,
10

0]
f(

o)
=

f b
ia

s
=

−4
50

10
1.

0E
−0

5

Sh
if

te
d

R
as

tr
ig

in
f 1

5
(x

)
=

∑
D i=

1
(z

2 i
−

10
co

s(
2π

z i
)
+

10
)
+

f b
ia

s,
z

=
(x

−
o)

,
x

=
(x

1
,

x 2
,
..

.,
x D

),
o

=
(o

1
,
o 2

,
..

.,
o

D
)

[−
5,

5]
f(

o)
=

f b
ia

s
=

−3
30

10
1.

0E
−0

2

Sh
if

te
d

Sc
hw

ef
el

f 1
6
(x

)
=

∑
D i=

1
(∑

i j=
1

z
j)

2
+

f b
ia

s,
z

=
x

−
o,

x
=

[x 1
,

x 2
,
..

.,
x D

],
o

=
[o 1

,
o 2

,
..

.,
o

D
]

[−
10

0,
10

0]
f(

o)
=

f b
ia

s
=

−4
50

10
1.

0E
−0

5

Sh
if

te
d

G
ri

ew
an

k
f 1

7
(x

)
=

∑
D i=

1
z2 i

40
00

−
∏

D i=
1

co
s(

z i √ i
)
+

1
+

f b
ia

s,
z

=
(x

−
o)

,

x
=

[x 1
,

x 2
,
..

.,
x D

],o
=

[o 1
,
o 2

,
..

.,
o

D
]

[−
60

0,
60

0]
f(

o)
=

f b
ia

s
=

−1
80

10
1.

0E
−0

5

Sh
if

te
d

A
ck

le
y

f 1
8
(x

)
=

−2
0

ex
p(

−0
.2

√

1 D

∑
D i=

1
z2 i

)
−

ex
p(

1 D

∑
D i=

1
co

s(
2π

z i
))

+
20

+
e

+
f b

ia
s,

z
=

(x
−

o)
,

x
=

(x
1
,

x 2
,
..

.,
x D

),
o

=
(o

1
,
o 2

,
..

.,
o

D
)

[−
32

,
32

]
f(

o)
=

f b
ia

s
=

−1
40

10
1.

0E
−0

5

G
ol

ds
te

in
-P

ri
ce

f 1
9
(x

)
=

(1
+

(x
1
+

x 2
+

1)
2
(1

9
−

14
x 1

+
3x

2 1
−

14
x 2

+
6x

1
x 2

+
3x

2 2
))

(3
0

+
(2

x 1
−

3x
2
)2

(1
8

−
32

x 1
+

12
x2 1

+
48

x 2
−

36
x 1

x 2
+

27
x2 2

))

[−
2,

2]
f(

0,
−1

)
=

3
2

1.
0E

−1
4

Si
x-

hu
m

p
ca

m
el

ba
ck

f 2
0
(x

)
=

(4
−

2.
1x

2 1
+

x4 1
/
3)

x2 1
+

x 1
x 2

+
(−

4
+

4x
2 2
)x

2 2
[−

5,
5]

f(
−0

.0
89

8,
0.

71
26

)
=

−1
.0

31
6

2
1.

0E
−0

5

Si
nu

so
id

al
pr

ob
le

m
f 2

1
(x

)
=

−[
A

∏
D i=

1
si

n(
x i

−
z)

+
∏

D i=
1

si
n(

B
(x

i
−

z)
)],

A
=

2.
5,

B
=

5,
z

=
30

[0,
18

0]
f(

90
+

z)
=

−(
A

+
1)

10
1.

0E
−0

2

M
ov

ed
ax

is
pa

ra
lle

l
hy

pe
r-

el
lip

so
id

f 2
2
(x

)
=

∑
D i=

1
5i

×
x2 i

[−
5.

12
,
5.

12
]

f(
x)

=
0;

x(
i)

=
5

∗i
,

i
=

1
:D

30
1.

0E
−1

5

123

308 Memetic Comp. (2012) 4:303–316

range [0.1, 1]. The value of C R are changed by a probability
or remains unchanged. C R is assigned to each individual but
in an identical fashion. SF L SDE is a self-adaptive scheme
with the two local search algorithms: Scale factor hill-climb
and Scale factor golden section search. These local search
algorithms are used for detecting the value of scale factor
F corresponding to an offspring with a better performance.
Therefore, the local search algorithms support in the global
search (exploration process) and in generating offspring with
high performance.

The comparative analysis has been carried out through
reliability [due to success rate (SR)], efficiency [due to aver-
age number of function evaluations (AFE)] and accuracy [due
to mean error (ME)]. After calculating SR, AFE and ME, sta-
tistical analyses based on t test, Acceleration Rate (AR) [34],
Boxplot and Performance Index [9] have been carried out. In
order to show the superiority of proposed algorithm from dif-
ferent point of view, these intensive statistical analysis have
been carried out.

To test DE or DE variants over test problems, following
experimental setting is adopted:

– Parameters for the basic DE are C R = 0.8, F = 0.5
[11,32,38].

– The value of F and C R for S ADE and SF L SDE
are kept same as suggested by their respective authors
[27,42].

– Population size N P = 50.
– The stopping criteria is either maximum number of func-

tion evaluations (which is set to be 2.0 × 105) is reached
or the corresponding acceptable error (mentioned in
Table 1) has been achieved.

– The number of simulations/run = 100.
– In order to investigate the effect of the parameter C R

on the performance of F B DE , its sensitivity with dif-
ferent values of C R in the range [0.1, 1], is examined
in Fig. 1. This figure shows the graph between different
values of C R and corresponding sum of average number
of function evaluations for 22 problems in meeting the
termination criteria for F B DE . It is clear from Fig. 1
that F B DE is very sensitive for C R and the value 0.3
gives comparatively better results. Therefore C R = 0.3
is selected for the experiments in this paper.

4.3 Results and discussion

In this subsection, a comparison among F B DE , DE/rand/

bin/1, S ADE and SF L SDE is carried out. Numerical
results with experimental settings of Sect. 4.2, are given in
Table 2. In Table 2, success rate (SR) which is the measure of
reliability, mean error (M E) which is a measure of accuracy,
average function evaluations (AF E) which is a measure of

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

6

CR

S
u

m
 o

f
A

F
E

 f
o

r
22

 T
es

t
P

ro
b

le
m

s

Fig. 1 Effect of parameter C R on average function evaluations

efficiency and standard deviation (SD) are reported. Table 2
shows that most of the time F B DE improves the reliabil-
ity, efficiency and accuracy. Some more intensive statistical
analyses based on t test, Acceleration Rate (AR) [34], Box-
plot and Performance Index (PI) [9] have been carried out
for results of basic F B DE, DE, S ADE and SF L SDE .

4.3.1 Statistical analysis

The t test is quite popular among researchers in the field
of evolutionary computing. In this paper student’s t test is
applied according to the description given in [6] for a con-
fidence level of 0.95. Table 3 shows the results of the t
test for the null hypothesis that there is no difference in
the mean number of function evaluations of 100 runs using
F B DE, DE, S ADE and SF L SDE . Note that here ‘+’
indicates the significant difference (or the null hypothesis is
rejected) at a 0.05 level of significance, ‘−’ implies that there
is no significant difference while ‘=’ indicates that compar-
ison is not possible. In Table 3, F B DE is compared with
the DE, S ADE and SF L SDE . The last row of Table 3,
establishes the superiority of F B DE over DE, S ADE and
SF L SDE .

Further, a comparison is made on the basis of conver-
gence speed of the considered algorithms by measuring the
average function evaluations (AFEs). A smaller AFEs means
higher convergence speed. In order to minimize the effect of
the stochastic nature of the algorithms, the reported function
evaluations for each test problem is the average over 100
runs. In order to compare convergence speeds, we use AR
which is defined as follows, based on the AFEs for the two
algorithms ALG O and F B DE :

AR = AF E ALG O

AF EF B DE
, (7)

where, ALG O ∈ {DE, S ADE, SF L SDE} and AR > 1
means F B DE converges faster. Table 4 shows a clear
comparison between F B DE-DE, F B DE-S ADE and

123

Memetic Comp. (2012) 4:303–316 309

Table 2 Comparison of the results of F B DE, DE, S ADE and SF L SDE

Test problem Algorithm SD ME AFE SR

f1 FBDE 6.98E−07 9.21E−06 20,722 100

DE 8.24E−07 9.06E−06 22,444 100

SADE 9.13E−07 8.97E−06 22,824 100

SFLSDE 6.86E−07 9.22E−06 51,686.74 100

f2 FBDE 8.60E−07 9.18E−06 42,471.25 100

DE 4.81E−03 2.37E−03 68,869 78

SADE 2.15E−03 5.26E−04 43,190 94

SFLSDE 7.07E−07 9.12E−06 75,301.68 100

f3 FBDE 1.64E+01 2.99E+01 20,0035.1 0

DE 2.87E+01 3.76E+01 19,8906.5 1

SADE 3.52E+00 7.05E+00 199,972 2

SFLSDE 2.74E+01 3.04E+01 199,973.94 0

f4 FBDE 7.89E−07 9.19E−06 130,816.83 100

DE 4.35E+00 1.44E+01 200,050 0

SADE 3.87E+00 5.37E+00 199,859 4

SFLSDE 3.38E+00 2.43E+01 199,962.52 0

f5 FBDE 4.77E−07 9.51E−06 39,100.32 100

DE 5.09E−07 9.42E−06 42,970.5 100

SADE 4.71E−07 9.47E−06 43,522 100

SFLSDE 4.21E−07 9.55E−06 97,538.56 100

f6 FBDE 7.13E−03 1.31E−03 27,538.8 96

DE 5.47E−02 5.09E−02 167,464.5 23

SADE 5.32E−02 2.06E−02 99,597 72

SFLSDE 2.04E−02 5.42E−03 73,381.35 85

f7 FBDE 8.81E−07 9.06E−06 32,078.01 100

DE 3.77E−02 1.04E−02 35,630.5 93

SADE 8.64E−07 8.88E−06 23,097 100

SFLSDE 7.80E−07 9.16E−06 51,046.39 100

f8 FBDE 0.00E+00 0.00E+00 19,731.95 100

DE 4.49E−01 9.00E−02 26,860 94

SADE 1.00E−06 1.00E−06 15,181 100

SFLSDE 1.00E−06 1.00E−06 33,567.17 100

f9 FBDE 3.93E−01 9.57E+00 200,045.62 0

DE 3.11E−01 9.13E+00 200,050 0

SADE 3.49E−01 8.66E+00 200,000 0

SFLSDE 3.56E−01 9.34E+00 199,961.53 0

f10 FBDE 1.99E−06 7.48E−06 103,199.62 100

DE 6.30E−01 9.63E−01 180,142 14

SADE 7.21E−01 4.60E−01 142,282 46

SFLSDE 6.93E−01 5.77E−01 156,354.59 31

f11 FBDE 4.95E−05 9.71E−05 47,104.69 97

DE 2.00E−03 4.42E−04 54,410.5 75

SADE 1.81E−04 5.97E−04 185,152 11

SFLSDE 1.57E−04 6.20E−04 190,930.5 8

f12 FBDE 2.18E−01 5.00E−02 17,640.59 95

DE 2.55E−01 7.00E−02 18,004 93

SADE 2.30E−07 6.58E−07 14,705 100

SFLSDE 1.40E−01 2.00E−02 18,773.5 98

123

310 Memetic Comp. (2012) 4:303–316

Table 2 continued

Test problem Algorithm SD ME AFE SR

f13 FBDE 3.53E−01 2.00E−01 126,758.1 74

DE 1.78E+00 2.42E+00 191,330.5 5

SADE 4.57E−03 9.46E−02 60,960 100

SFLSDE 7.31E−03 9.29E−02 107,819.14 100

f14 FBDE 1.57E−06 8.07E−06 9,270.67 100

DE 1.68E−06 7.85E−06 10,358 100

SADE 1.60E−06 7.97E−06 15,681 100

SFLSDE 1.40E−06 8.11E−06 24,678.66 100

f15 FBDE 1.57E+01 1.10E+02 200,034.9 0

DE 1.25E+01 7.80E+01 200,050 0

SADE 1.54E+01 1.05E+02 200,000 0

SFLSDE 1.24E+01 1.08E+02 199,959.98 0

f16 FBDE 2.01E+03 1.03E+04 200,034.01 0

DE 4.14E+03 1.06E+04 200,050 0

SADE 5.41E+03 1.94E+04 200,000 0

SFLSDE 5.25E+03 2.00E+04 199,959.78 0

f17 FBDE 2.06E−06 7.49E−06 29,421.97 100

DE 1.30E−02 1.40E−02 160,446 26

SADE 1.49E−06 8.04E−06 83,632 100

SFLSDE 1.46E−06 8.01E−06 91,227.93 100

f18 FBDE 8.51E−07 9.07E−06 21,833.79 100

DE 1.08E−06 8.70E−06 15,577.5 100

SADE 1.13E−06 8.66E−06 23,258 100

SFLSDE 8.87E−07 9.11E−06 36,540.41 100

f19 FBDE 4.21E−15 5.12E−15 10,651.27 100

DE 4.23E−15 4.61E−15 3,806.5 100

SADE 4.84E−14 5.67E−14 118,225 43

SFLSDE 4.84E−14 5.54E−14 116,232.94 45

f20 FBDE 1.49E−05 1.53E−05 84,391.2 57

DE 1.44E−05 1.67E−05 102,772 49

SADE 1.48E−05 1.63E−05 99993 51

SFLSDE 1.44E−05 1.49E−05 86656.62 58

f21 FBDE 1.71E−03 7.96E−03 56940.16 100

DE 2.30E−01 5.73E−01 198890 2

SADE 1.53E−01 8.78E−01 200000 0

SFLSDE 1.05E−01 4.05E−01 199960.08 0

f22 FBDE 5.75E−17 9.31E−16 60081.25 100

DE 9.03E−17 8.94E−16 59160.5 100

SADE 8.48E−17 8.89E−16 61167 100

SFLSDE 7.50E−17 9.10E−16 137125.49 100

F B DE-SF L SDE in terms of AR. It is clear from Table 4
that, for most of the test problems, convergence speed of
F B DE is faster among all the considered algorithms.

For the purpose of comparison in terms of performance,
boxplot analysis is carried out for all the considered algo-
rithms. The empirical distribution of data is efficiently
represented graphically by the boxplot analysis tool [41].

Analysis of univariate expression, where the variability of
measurements may be affected many parameters, is effec-
tively done by the boxplot tool. Degree of dispersion and
skewness in the data are easily analyzed by measuring
the spacings between the different parts of the box. The
boxplots for comparison among F B DE, DE, S ADE and
SF L SDE based on AFE are shown in Fig. 2. It is clear

123

Memetic Comp. (2012) 4:303–316 311

Table 3 Results of the Student’s t test

Test
problems

FBDE
vs. DE

FBDE vs.
SADE

FBDE vs.
SFLSDE

f1 + + +
f2 + + +
f3 = = =
f4 + + +
f5 + + +
f6 + + +
f7 + − +
f8 + − +
f9 = = =
f10 + + +
f11 + + +
f12 + − +
f13 + − −
f14 + + +
f15 = = =
f16 = = =
f17 + + +
f18 − + +
f19 − + +
f20 + + +
f21 + + +
f22 − + +
Total number

of + sign
15 14 17

from this figure that F B DE is best among all considered
strategies as Interquartile Range and Median are low for
F B DE .

In order to compare the consolidated performance of
F B DE with DE and its variant (S ADE and SF L SDE), the
value of performance index P I [9] is computed. This index
gives a weighted importance to the success rate, the mean
error as well as the average number of function evaluations.
The value of this performance index for a computational algo-
rithm under comparison is given by Eq. (8).

P I = 1

Np

Np
∑

i=1

(k1α
i
1 + k2α

i
2 + k3α

i
3) (8)

where αi
1 = Sri

T ri ; αi
2 =

{

M f i

A f i , if Sri > 0.

0, if Sri = 0.
; and αi

3 = Moi

Aoi

i = 1, 2, . . ., Np

– Sri = Number of successful runs of i th problem.
– T ri = Total number of runs of i th problem.

Table 4 Acceleration rate (AR) of F B DE compare to the basic
DE, S ADE and SF L SDE

Test problems DE SADE SFLSDE

f1 1.083100087 1.101438085 2.494293022

f2 1.621543986 1.016923213 1.77300362

f3 0.99435799 0.999684555 0.999694254

f4 1.529237484 1.527777427 1.528568763

f5 1.098980776 1.11308552 2.494571911

f6 6.081038389 3.616606388 2.664653144

f7 1.110745336 0.720025962 1.591320347

f8 1.361244074 0.769361366 1.701158274

f9 1.000021895 0.999771952 0.999579646

f10 1.745568443 1.378706627 1.515069435

f11 1.155097295 3.930648944 4.053322504

f12 1.020600785 0.833588899 1.064221775

f13 1.509414389 0.480916012 0.850589745

f14 1.1172871 1.691463508 2.66201472

f15 1.000075487 0.99982553 0.999625465

f16 1.000079936 0.999829979 0.999628913

f17 5.453271824 2.842501709 3.100673748

f18 0.71345836 1.065229628 1.67357156

f19 0.357375224 11.09961535 10.91258977

f20 1.2178047 1.184874726 1.026844268

f21 3.492965246 3.512459396 3.511758309

f22 0.984674919 1.018071362 2.282334172

FBDE DE SADE SFLSDE
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
5

A
ve

ra
g

e
F

u
n

ct
io

n
 E

va
lu

at
io

n
s

Fig. 2 Boxplot graph for average function evaluation: (1) F B DE , (2)
DE , (3) S ADE , (4) SF L SDE

– M f i = Minimum of average number of function evalua-
tions used by all the algorithms in obtaining the solution
of i th problem.

– A f i = Average number of function evaluations used by
an algorithm in obtaining the solution of i th problem.

– Moi = Minimum of mean error obtained by all the algo-
rithms for the i th problem.

– Aoi = Mean error obtained by an algorithm for the i th
problem.

– Np = Total number of problems analyzed.

123

312 Memetic Comp. (2012) 4:303–316

k1, k2 and k3 (k1 + k2 + k3 = 1 and k1, k2, k3 ≤ 1) are the
weights assigned to success rate, average number of func-
tion evaluations and mean error, respectively. From above
definition, it is clear that P I is a function of k1, k2 and k3.
Since k1 + k2 + k3 = 1 one of ki , i = 1, 2, 3 could be elimi-
nated to reduce the number of dependent variables from the
expression of P I . We adopt the same methodology as given
in [9] i.e. equal weights are assigned to two terms at a time
in the P I expression. This way P I becomes a function of
one variable. The resultant cases are as follows:

1. k1 = W, k2 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

2. k2 = W, k1 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

3. k3 = W, k1 = k2 = 1−W
2 , 0 ≤ W ≤ 1

The graphs corresponding to each of the cases (1), (2) and
(3) are shown in Fig. 3a–c respectively.

In these figures the horizontal axis represents the weight
W and the vertical axis represents the performance index P I .

In case (1), the average number of function evaluations and
the mean error are given equal weights. In case (2) the success
rate and the mean error are given equal weights and in case
(3) the average number of function evaluations and the suc-
cess rate are given equal weights. P I s of all four algorithms
(F B DE, DE, S ADE and SF L SDE) are superimposed in
the Fig. 3a–c for comparison. It is observed that for F B DE ,
the value of PI is more than all the remaining three algorithms
i.e. DE, S ADE and SF L SDE .

In order to prove wide applicability of F B DE , the next
section presents application of F B DE to solve model order
reduction problem for single input single output system.

5 Application of FB DE in Model Order Reduction
(MOR) problem

Model Order Reduction (MOR) problem is studied in the
branch of systems and control theory. In a real world sit-
uation, usually we get a system of very high order which
is inappropriate for representing some properties that are
important for effective use of the system. Model Order
Reduction (MOR) problem deals with reduction of com-
plexity of a dynamical system, while preserving their input-
output behavior. Although many conventional approaches
[4,5,8,13,18,21] of model order reduction guarantee the sta-
bility of the reduced order model but sometimes the model
may turn out to be non-minimum phase. Therefore to obtain
better reduced order models, the use of some kind of opti-
mization is necessary by itself and in combination with other
techniques. Error minimization is one of the popular tech-
niques for model order reduction of continuous time systems.
In this technique, lower order model is obtained by minimiz-
ing an error function constructed from the time responses

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k1)

P
er

fo
rm

ac
e

In
d

ex

FBDE
DE
SADE
SFLSDE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k2)

P
er

fo
rm

ac
e

In
d

ex
FBDE
DE
SADE
SFLSDE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k3)

P
er

fo
rm

ac
e

In
d

ex

FBDE
DE
SADE
SFLSDE

(a)

(b)

(c)

Fig. 3 Performance index; a for case (1), b for case (2) and c for
case (3)

(or alternatively frequency responses) of the system and
reduced order model.

5.1 MOR as an optimization problem

Consider an nth order linear time invariant dynamic SISO
system given by

G(s) = N (s)

D(s)
=

∑n−1
i=0 ai si

∑n
i=0 bi si

(9)

where ai and bi are known constants.

123

Memetic Comp. (2012) 4:303–316 313

Table 5 List of MOR problem examples

S. No. Source Original model

1 Shamash [36] G1(s) = 18s7 + 514s6 + 5982s5 + 36380s4 + 122664s3 + 222088s2 + 185760s + 40320

s8 + 36s7 + 546s6 + 4536s5 + 22449s4 + 67284s3 + 118124s2 + 109584s + 40320

2 Lucas [22] G2(s) = 8169.13s3 + 50664.97s2 + 9984.32s + 500

100s4 + 10520s3 + 52101s2 + 10105s + 500

Table 6 Comparison of the Methods for example 1

Method of order reduction Reduced models; R1(s) ISE IRE

Original G1(s) − 21.740

FBDE
17.3217s + 5.3660

s2 + 7.0240s + 5.3660
0.8 × 10−3 21.74

DE
20s + 5.6158

s2 + 9.2566s + 5.6158
0.3729 × 10−1 21.908

Pade approximation
15.1s + 4.821

s2 + 5.993s + 4.821
1.6177 19.426

Routh approximation
1.99s + 0.4318

s2 + 1.174s + 0.4318
1.9313 1.8705

Gutman et al. [29]
4[133747200s + 203212800]

85049280s2 + 552303360s + 812851200
8.8160 4.3426

Hutton and Friedland [15]
1.98955s + 0.43184

s2 + 1.17368s + 0.43184
18.3848 1.9868

Krishnamurthy and Sheshadri [18]
155658.6152s + 40320

65520s2 + 75600s + 40320
17.5345 2.8871

Mittal et al. [1]
7.0908s + 1.9906

s2 + 3s + 2
6.9159 9.7906

Mukherjee and Mishra [26]
7.0903s + 1.9907

s2 + 3s + 2
6.9165 9.7893

Mukherjee et al. [25]
11.3909s + 4.4357

s2 + 4.2122s + 4.4357
2.1629 18.1060

Pal [30]
151776.576s + 40320

65520s2 + 75600s + 40320
17.6566 2.7581

Prasad and Pal [31]
17.98561s + 500

s2 + 13.24571s + 500
18.4299 34.1223

Shamash [36]
6.7786s + 2

s2 + 3s + 2
7.3183 8.9823

The problem is to find a r th order reduced model in the
transfer function form R(s), where r < n represented by
Eq. (10), such that the reduced model retains the important
characteristics of the original system and approximates its
step response as closely as possible for the same type of
inputs with minimum Integral Square Error.

R(s) = Nr (s)

Dr (s)
=

∑r−1
i=0 a′

i s
i

∑r
i=0 b′

i s
i

(10)

where a′
i and b′

i are unknown constants.

Mathematically, the Integral Square Error of step respon-
ses of the original and the reduced system can be expressed
by error index J [12],

J =
∞

∫

0

[y(t) − yr (t)]2 dt. (11)

where y(t) is the unit step response of the original system
and yr (t) is the unit step response of the reduced system.
This error index J is the function of unknown coefficients a′

i

123

314 Memetic Comp. (2012) 4:303–316

Table 7 Comparison of the
methods for example 2

Method of order reduction Reduced models; R2(s) ISE IRE

Original G2(s) − 34.069

FBDE
85.33529245s + 462.3004006

s2 + 113.6582937s + 462.3004006
0.17826566 × 10−2 34.06884

DE
220.8190s + 35011.744

s2 + 1229.4502s + 35011.744
0.4437568 × 10−2 34.069218

Singh [37]
93.7562s + 1

s2 + 100.10s + 10
0.8964 × 10−2 43.957

Pade approximation
23.18s + 2.36

s2 + 23.75s + 2.36
0.46005 × 10−2 11.362

Routh approximation
0.1936s + 0.009694

s2 + 0.1959s + 0.009694
2.3808 0.12041

Gutman et al. [29]
0.19163s + 0.00959

s2 + 0.19395s + 0.00959
2.4056 0.11939

Chen et al. [5]
0.38201s + 0.05758

s2 + 0.58185s + 0.05758
1.2934 0.17488

Marshall [23]
83.3333s + 499.9998

s2 + 105s + 500
0.193 × 10−2 35.450

and b′
i . The aim is to determine the coefficients a′

i and b′
i of

reduced order model so that the error index J is minimized.

5.2 Modified objective function for MOR

In this paper, minimization is carried out based on both I SE
and I RE . The low order model is obtained by minimizing
an error function, constructed from minimization of the Inte-
gral Square Error (I SE) between the transient responses of
original higher order model and the reduced low order model
pertaining to a unit step input as well as minimization of the
difference between the high order model’s impulse response
energy (I RE) and the reduced low order I RE .

The impulse response energy (I RE) for the original and
the various reduced order models is given by:

I RE =
∞

∫

0

g(t)2 dt. (12)

where, g(t) is the impulse response of the system.
Therefore, in this paper, both, I SE and I RE , are used to

construct the objective function for minimizing the I SE and
difference between I RE of high order model and reduced
order model. The following modified objective function is
constructed to carry out the results.

objective_value = |I SE | + |I RER − I REO |
I RER + I REO

(13)

where I SE is an integral squared error of difference between
the responses given by the Eq. (11), I REO is the impulse
response energy of the original high order model and I RER

is the impulse response energy of the reduced order model.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5
Step Response

Time (sec)

A
m

p
lit

u
d

e

Original Model
Routh Approximation
Pade Approximation
DE
FBDE

Fig. 4 Comparison of step responses for example 1

The advantage of this modified objective function is that it
minimizes I SE as well as the differences of I RE of both
the models (high order and reduced order).

5.3 Experimental results and numerical examples

Total two examples are taken into consideration in this sec-
tion (see Table 5).

The best solution obtained out of 100 runs is reported as
the global optimal solution. The reported solutions are in the
form of step and impulse responses. The results obtained by
F B DE are compared with that of DE and other stochastic
as well as deterministic methods.

Tables 6 and 7 present the original and the reduced sys-
tems for examples 1 and 2 respectively. In these tables results

123

Memetic Comp. (2012) 4:303–316 315

0 0.5 1 1.5 2 2.5
−5

0

5

10

15

20

Impulse Response

Time (sec)

A
m

p
lit

u
d

e

Original Model
Routh Approximation
Pade Approximation
DE
FBDE

Fig. 5 Comparison of impulse responses for example 1

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Step Response

Time (sec)

A
m

p
lit

u
d

e

Original Model
Routh Approximation
Pade Approximation
DE
FBDE

Fig. 6 Comparison of step responses for example 2

obtained by F B DE are compared with that of the basic DE ,
Pade approximation method, Routh approximation method
and other earlier reported results. Corresponding unit step
responses of the original and the reduced systems using
F B DE, DE , Pade Approximation and Routh Approxima-
tion are shown in Figs. 4 and 6 respectively. The impulse
responses of the original and the reduced systems using
F B DE, DE , Pade Approximation and Routh Approxima-
tion are shown in Figs. 5 and 7, respectively.

It can be observed from Tables 6 and 7 that for examples 1
and 2, I SE obtained by F B DE are relatively less than that of
other methods. Also for these examples, I RE of the reduced
models obtained by F B DE is most close to that of the origi-
nals. It may also be seen that the steady state responses of the
original and the reduced order models by F B DE are exactly
matching while the transient response matching is also very
close as compared to other methods. Thus these examples
establish the superiority of F B DE over other methods for
this problem. Overall, F B DE performance is superior than
the basic DE and other deterministic as well as probabilistic
methods.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−5

0

5

10

15

20
Impulse Response

Time (sec)

A
m

p
lit

u
d

e

Original Model
Routh Approximation
Pade Approximation
DE
FBDE

Fig. 7 Comparison of impulse responses for example 2

6 Conclusion

In this paper, F B DE is proposed, analyzed and validated
with the help of test problems and an engineering optimiza-
tion problem. With the introduction of a new position update
process, inspired from onlooker bee phase of ABC, F B DE
has improved the performance as compare to DE, S ADE and
SF L SDE . Through intensive statistical analysis, improve-
ment is shown in terms of reliability, efficiency and accuracy.
Overall, authors recommend F B DE as a better candidate in
the field of nature inspired algorithms for function optimiza-
tion due to its ability to exploit the better search regions in
an efficient way.

The future scope of this work is the implementation of the
proposed strategy to other nature inspired algorithms.

References

1. Prasad R, Mittal AK, Sharma SP (2004) Reduction of linear
dynamic systems using an error minimization technique. J Inst Eng
India 84:201–206

2. Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical
evaluation of several stochastic algorithms on selected continuous
global optimization test problems. J Glob Optim 31:635–672

3. Chakraborty UK (2008) Advances in differential evolution.
Springer, Berlin

4. Chen CF, Shieh LS (1968) A novel approach to linear model sim-
plification. Int J Control 8:561–570

5. Chen TC, Chang CY, Han KW (1979) Reduction of transfer func-
tions by the stability-equation method. J Franklin Inst 308:389–404

6. Croarkin C, Tobias P (2010) Nist/sematech e-handbook of statisti-
cal methods. Retrieved 1 Mar 2010

7. Das S, Konar A (2006) Two-dimensional IIR filter design with
modern search heuristics: a comparative study. Int J Comput Intell
Appl 6:329–355

8. Davison JE (1966) A method for simplifying linear dynamic sys-
tems. IEEE Trans Autom Control AC-11 1:93–101

9. Thakur M, Deep K (2007) A new crossover operator for real coded
genetic algorithms. Appl Math Comput 188(1):895–911

123

316 Memetic Comp. (2012) 4:303–316

10. Engelbrecht AP (2007) Computational intelligence: an introduc-
tion. Wiley, Hoboken

11. Gamperle R, Muller SD, Koumoutsakos A (2002) A parameter
study for differential evolution. Adv Intell Syst Fuzzy Syst Evol
Comput 10:293–298

12. Gopal M (2002) Control systems: principles and design. Tata
McGraw-Hill, New Delhi

13. Gustafson RD (1966) A paper and pencil control system design.
Trans ASME J Basic Eng 329–336

14. Holland JH (1975) Adaptation in natural and artificial systems.
University of Michigan press, Ann Arbor

15. Hutton M, Friedland B (1975) Routh approximations for reducing
order of linear, time-invariant systems. IEEE Trans Autom Control
20:329–337

16. Karaboga D, Akay B (2011) A modified artificial bee colony
(abc) algorithm for constrained optimization problems. Appl Soft
Comput 11:3021–3031

17. Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE
international conference on neural networks proceedings, vol 4.
IEEE, pp 1942–1948

18. Krishnamurthy V, Seshadri V (1978) Model reduction using the
routh stability criterion. IEEE Trans Autom Control 23:729–731

19. Lampinen J, Zelinka I (2000) On stagnation of the differential
evolution algorithm. Proceedings of MENDEL 6th international
Mendel conference on Soft Computing, pp 76–83

20. Liu PK, Wang FS (2008) Inverse problems of biological systems
using multi-objective optimization. J Chin Inst Chem Eng 39:399–
406

21. Lucas TN (1983) Factor division: a useful algorithm in model
reduction. Control Theory and Applications, IEE Proceedings D,
vol 130, IET, pp 362–364

22. Lucas TN (1986) Continued-fraction expansion about two or more
points: a flexible approach to linear system reduction. J Franklin
Inst 321:49–60

23. Marshall S (1983) Comments on viability of methods for gen-
erating stable reduced order models. IEEE Trans Autom Control
28:630–631

24. Mezura-Montes E, Velázquez-Reyes J, Coello Coello CA (2006)
A comparative study of differential evolution variants for global
optimization, Proceedings of the 8th annual conference on genetic
and evolutionary computation, ACM, pp 485–492

25. Mukherjee S et al (2005) Model order reduction using response-
matching technique. J Franklin Inst 342:503–519

26. Mukherjee S, Mishra RN (1987) Order reduction of linear systems
using an error minimization technique. J Franklin Inst 323:23–32

27. Neri F, Tirronen V (2009) Scale factor local search in differential
evolution. Memet Comput 1:153–171

28. Omran MGH, Engelbrecht AP, Salman A (2005) Differential evo-
lution methods for unsupervised image classification, Evolutionary
Computation, The 2005 IEEE Congress on, vol 2. IEEE, pp 966–
973

29. Mannerfelt CF, Gutman PO, Molander P (1982) Contributions to
the model reduction problem. IEEE Trans Autom Control AC-27
2:454–455

30. Pal J (1979) Stable reduced-order padã â© approximants using the
routh-hurwitz array. Electron Lett 15:225–226

31. Prasad R, Pal J (1991) Stable reduction of linear systems by con-
tinued fractions. Inst Eng India Electr Eng Div 72:113–113

32. Price KV (1996) Differential evolution: a fast and simple numerical
optimizer, Fuzzy Information Processing Society, NAFIPS. 1996
Biennial Conference of the North American. IEEE, pp 524–527

33. Price KV, Storn RM, Lampinen JA (2005) Differential evolution:
a practical approach to global optimization. Springer, Berlin

34. Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-
based differential evolution. IEEE Trans Evol Comput 12:64–79

35. Rogalsky T, Kocabiyik S, Derksen RW (2000) Differential evolu-
tion in aerodynamic optimization. Can Aeronaut Space J 46:183–
190

36. Shamash Y (1975) Linear system reduction using pade approxima-
tion to allow retention of dominant modes. Int J Control 21:257–272

37. Singh N (2007) Reduced order modeling and controller design,
Ph.D. thesis, Indian Institute of Technology Roorkee, India

38. Storn R, Price K (1997) Differential evolution—a simple and effi-
cient adaptive scheme for global optimization over continuous
spaces. J Glob Optim 11:341–359

39. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A,
Tiwari S (2005) Problem definitions and evaluation criteria for the
cec 2005 special session on real-parameter optimization, KanGAL,
Report, pp 341–357

40. Vesterstrom J, Thomsen R (2004) A comparative study of dif-
ferential evolution, particle swarm optimization, and evolutionary
algorithms on numerical benchmark problems, Evolutionary Com-
putation CEC 2004. Congress on, vol 2. IEEE, pp 1980–1987

41. Williamson DF, Parker RA, Kendrick JS (1989) The box plot: a
simple visual method to interpret data. Ann Intern Med 110:916

42. Yan JY, Ling Q, Sun DM (2006) A differential evolution with
simulated annealing updating method. International Conference on
Machine Learning and Cybernetics, IEEE, pp 2103–2106

123

	Fitness based Differential Evolution
	Abstract
	1 Introduction
	2 Brief overview of Differential Evolution algorithm
	2.1 Mutation
	2.2 Crossover
	2.3 Selection

	3 Fitness based Differential Evolution
	3.1 A few drawbacks of DE
	3.2 The proposed strategy

	4 Experimental results and discussion
	4.1 Test problems under consideration
	4.2 Experimental setting
	4.3 Results and discussion
	4.3.1 Statistical analysis

	5 Application of FBDE in Model Order Reduction (MOR) problem
	5.1 MOR as an optimization problem
	5.2 Modified objective function for MOR
	5.3 Experimental results and numerical examples

	6 Conclusion
	References

