
OPSEARCH 46(1):3–24 3

Paper accepted on February 17, 2009
©Operational Research Society of India

Hybridization of particle swarm optimization
with quadratic approximation

Kusum Deep, Jagdish Chand Bansal
Department of Mathematics

Indian Institute of Technology Roorkee
Roorkee - 247667 India

kusumfma@iitr.ernet.in, jcbansal@gmail.com

Abstract
Particle swarm optimization (PSO) has been extensively used in recent years
for the optimization of nonlinear optimization problems. Two of the most
popular variants of PSO are PSO-W (PSO with inertia weight) and PSO-C
(PSO with constriction factor). Efforts have also been made to hybridize
PSO with other methodologies to improve its performance. In this paper
we present the hybridization of PSO with quadratic approximation operator
(QA). The hybridization is performed by splitting the whole swarm into two
subswarms in such a way that the PSO operators are applied on one subswarm,
whereas the QA operator is applied on the other subswarm, ensuring that both
subswarms are updated using the global best particle of the entire swarm.
Based on this concept, two algorithms, namely qPSO-W and qPSO-C have
been developed and their performance is evaluated with respect to PSO-W and
PSO-C on the basis of 15 benchmark test problems and 3 real life problems
taken from literature. The numerical and graphical results are a proof that
the hybridized approach is a defi nite improvement in terms of effi ciency,
reliability and robustness.

Keywords
Particle swarm optimization, Quadratic approximation, Nonlinear optimization,
Hybridization

1. Introduction
Particle swarm optimization (PSO) technique is considered as one of the
modern heuristic algorithms for optimization introduced by James Kennedy
and Eberhart in 1995. It is based on the social behavior metaphor [1]. It is
a population-based optimization technique, which is sometimes regarded
as an alternative tool to genetic algorithm (GAs) and other evolutionary

THEORY AND METHODOLOGY

OPSEARCH 46(1):3–244

algorithms (EAs) and gained a lot of attention in the recent years. As
compared to EAs, PSO is a stochastic search technique with reduced memory
requirement, computationally effective and easier to implement. Also
PSO has a more global searching ability at the beginning of the run and has
greater local search ability near the end of the run [2].

The “No free Lunch Theorem” by Wolpert and Macready [3], shows that
there is no single method which can solve all the problems optimally. As
a result research on hybrid optimization algorithms has gained momentum
over the past few years. ‘‘Hybridization” is an approach that combines
the capabilities of two strong concepts in such a way that the good traits
of both are adopted. Hybrid strategy is generally regarded as an effi cient
strategy (requiring fewer evaluations) which is also generally more effective
(identifying higher quality solutions) for solving complex optimization
problems. A number of approaches of hybridization of PSO have been
recently reported in the literature.

A large number of PSO variants have been developed by combining
certain aspects from evolutionary computation (EC) and ant colony
optimization (ACO) with the PSO. In the case of EC hybrids, ideas have
been borrowed from specifi c EC paradigms, including GA, evolutionary
programming (EP), evolutionary strategies (ES), differential evolution (DE)
and cartesian genetic programming (CGP).

Another trend is to merge or combine the PSO with the other techniques,
especially the EC techniques. Evolutionary operators like selection,
crossover and mutation have been incorporated into the PSO. By applying
the selection operation in PSO, the particles with the best performance
are copied into the next generation; so that the PSO can always keep
the best performing particles [4]. By incorporating crossover operation,
information can be swapped between two individuals to have the ability
to “fly” to the new search area [5]. Among the three evolutionary
operators, the mutation operators are the most commonly applied
evolutionary operators in PSO. The purpose of applying mutation to PSO
is to increase the diversity of the population and to provide the ability
to the PSO to escape local minima [6–11]. Juang [12] also incorporated
mutation alongside crossover and elitism. This process imitates the natural
phenomenon of maturation and outperformed both PSO and GA in the
study. Another approach is to prevent particles from moving too close to
each other so that the diversity can be maintained and therefore escape
from being trapped into local minima is achieved. In [7], the particles are
relocated when they are too close to each other. Blackwell and Bentley [13]

OPSEARCH 46(1):3–24 5

and Krink et al. [9], designed collision-avoiding mechanisms to prevent
particles from colliding with each other and increase the diversity of
the swarm.

Besides incorporating evolutionary operations into PSO, different
approaches to combine PSO with the evolutionary algorithms have also
been reported. Robinson et al. [14] obtained better results by applying
PSO first followed by GA in their profiled corrugated horn antenna
optimization problem. Jian and Chen [15] introduced a PSO hybrid with
the GA recombination operator and dynamic linkage discovery to optimize
diffi cult real number optimization problems. Dynamic linkage discovery is a
technique based on the notion that if the links between the basic building
blocks of the objective function can be discovered, then optimization of that
problem can be improved. In [16], genetical swarm optimization is presented
by combining PSO and GA. In each iteration the population is divided into
two parts and these are evolved with the two techniques respectively. They
are then recombined in the updated population, which is again divided
randomly into two parts in the next iteration for another run of genetic or
particle swarm operators. Poli et al. [17–18] proposed a hybrid PSO based
on genetic programming (GP). GP is used to evolve new laws for the control
of particles’ movement for specifi c classes of problems. In [19], either PSO
algorithm, GA or hill-climbing search algorithm is applied to a different
subpopulation of individuals in which each individual is dynamically assigned
according to some pre-designed rules. In [20], DE is combined with PSO.
Particles fl y according to position update equation, but occasionally DE is
applied to replace one poorly performed particle with a better one while
retaining its velocity. Zhang and Xie [21], in their DEPSO use DE and
canonical PSO operators in alternate generations. The hybrid was found
to be successful for some functions, but not all, with results indicating that
DEPSO improves on PSO in problems with higher dimensionality. In [22],
ACO is combined with PSO. A list of best positions found so far is recorded
and the neighborhood best is randomly selected from the list instead of
the current neighborhood best.

Non-evolutionary techniques have also been incorporated into PSO.
In [23], a cooperative particle swarm optimizer (CPSO) is implemented.
The CPSO employs cooperative behavior to significantly improve the
performance of the original PSO algorithm using multiple swarms to
optimize different components of the solution vector cooperatively. In
[5], the population of particles is divided into subpopulations which
breed within their own subpopulation or with a member of another with

OPSEARCH 46(1):3–246

some probability so that the diversity of the population can be increased.
Parsopoulos and Vrahatis [24], incorporate deflection and stretching
techniques as well as a repulsion technique are into the original PSO to
avoid particles moving toward the already found global minima so that the
PSO can have more chances to fi nd as many global minima as possible.
In [25], a “dissipative particle swarm” is designed by adding negative entropy
into the PSO to discourage premature convergence. Liu and Abraham [26] have
hybridized a turbulent PSO (TPSO) with a fuzzy logic controller to produce
a fuzzy adaptive TPSO (FATPSO). The TPSO uses the principle that PSO’s
premature convergence is caused by particles stagnating about a suboptimal
location. Arumugam et al. [2] have used extrapolation technique to update
the particles’ best position along with PSO (ePSO) for solving optimization
problems. A detailed review on the hybrid PSO can be found in [27].

More and more hybrid algorithms are being designed and implemented
with the hope of further improving their performance. In this paper we
propose a novel, effective and effi cient algorithm based on the hybridization
of PSO and quadratic approximation operator, namely quadratic approxi-
mation particle swarm optimization (qPSO).

In the proposed hybrid algorithm, quadratic approximation operator is used
to update a part of the swarm while the remaining of the swarm is updated
by PSO as usual. In each iteration, a predetermined number of particles of
the swarm are updated using the minima of quadratic surface passing through
the global best and two random particles chosen from the entire swarm
while others use PSO to update their positions. qPSO and standard PSO are
simulated to test their effi cacy by solving a set of 15 benchmark problems
and the results are analyzed through various statistical parameters and
performance index. Three real life applications are then considered to test
the robustness of the proposed method.

The remaining paper is organized as follows. Section 2 describes standard
PSO and some of its variations. The proposed qPSO is explained in Section
3. In Section 4, the testing of the proposed method through a set of 15
benchmark problems is carried out and the simulation results are compared
with those obtained via PSO and some of its variants. Three real life
applications are solved in Section 5 and the experimental results are presented.
Finally, in Section 6, the conclusion is drawn based on the analysis.

2. Standard PSO and some of its variants
The idea behind PSO is based on the simulation of the social behavior of
bird fl ock and fi sh schools. PSO is a swarm intelligence method for global

OPSEARCH 46(1):3–24 7

optimization problems. It differs from well-known evolutionary algorithms
as in evolutionary algorithms a population of potential solutions is used to
probe the search space, but no operators, inspired by evolution procedures,
are applied on the population to generate new promising solutions. Instead
in PSO, each individual, namely particle, of the population, called swarm,
adjusts its trajectory towards its own previous best position (pbest), and
towards the previous best position of any member of its topological
neighborhood (gbest). Two variants of the PSO have been developed,
one with a global neighborhood and the other with a local neighborhood.
According to the global variant, each particle moves towards its best previous
position and towards the best particle in the whole swarm. On the other hand,
in the local variant, each particle moves towards its best previous position
and towards the best particle in its restricted neighborhood.

Working of PSO may be briefl y described as under:

Suppose the search space is D-dimensional, then the i-th particle of the
swarm can be represented by a D-dimensional vector, Xi = (xi1, xi2, …,xiD)T .
The velocity (position change) of this particle can be represented by another
D-dimensional vector Vi = (vi1, vi2,…,viD)T . The best previously visited
position of the i-th particle is denoted as Pi = (pi1, pi2, …,piD)T. Defi ning g
as the index of the best particle in the swarm, the swarm is manipulated
according to the following two equations:

Velocity update equation:

 (1)

Position update equation:

 (2)

where d = 1, 2… D; i = 1, 2… S, where S is the size of the swarm; c1 and
c2 are constants, called cognitive and social scaling parameters respectively
(usually, c1= c2; r1, r2 are random numbers, uniformly distributed in
[0, 1]). Equations (1) and (2) defi ne the initial version of PSO algorithm.
A constant, Vmax, is used to arbitrarily limit the velocities of the particles
and improve the resolution of the search.

The pseudo code of PSO is shown below:

Algorithm PSO:
 For t= 1 to the max. bound of the number on iterations,
 For i=1 to the swarm size,

OPSEARCH 46(1):3–248

 For d=1 to the problem dimensionality,
 Apply the velocity update equation:
 Update Position
 End- for-d;
 Compute fi tness of updated position;
 If needed, update historical information for Pi and Pg;
 End-for-i;
 Terminate if Pg meets problem requirements;
 End-for-t;
End algorithm.

The maximum velocity Vmax, serve as a constraint to control the global
exploration ability of particle swarm. A larger Vmax facilitates global
exploration, while a smaller Vmax encourages local exploitation. The
concept of an inertia weight was also developed to better control exploration
and exploitation. The motivation was to be able to eliminate the need for
Vmax. The inclusion of an inertia weight in the particle swarm optimization
algorithm was fi rst reported in the literature in 1998 [28–29].

After some experience with the inertia weight, it was found that although
the maximum velocity factor, Vmax, couldn’t always be eliminated, the
particle swarm algorithm works well if Vmax is set to the value of the
dynamic range of each variable (on each dimension). The resulting velocity
update equation becomes:

Eberhart and Shi [30] indicates that the optimal strategy is to initially set w
to 0.9 and reduce it linearly to 0.4, allowing initial exploration followed by
acceleration toward an improved global optimum.

In 1999, Clerc has introduced a constriction factor, , which improves PSO’s
ability to constrain and control velocities [31]. is computed as:

()42

2

−−−
=

φφφ
χ (3)

where 4,21 >+= φφ cc , and the velocity update equation is then

Eberhart and Shi [30] found that , combined with constraints on Vmax,
signifi cantly improved the performance of PSO.

OPSEARCH 46(1):3–24 9

It was observed that PSO usually suffers from premature convergence,
tending to get stuck in local optima, low solution precision and so on. In
order to overcome these shortcomings and get better results, numerous
improvements to PSO have been proposed. In this paper we propose another
hybrid version of PSO which uses quadratic approximation operator.

3. Proposed quadratic approximation particle swarm optimization
(qPSO)

3.1 Motivation
Deep and Das [32], hybridize a binary GA by incorporating QA operator
as an additional operator for local search. This showed a substantial
improvement in the performance of GA. PSO has the effi ciency to solve a
wide variety of problems with a larger percentage of success. Mohan and
Shankar [33] proved that random search technique (RST) which uses QA
operator provides fast convergence rate but once stuck in a local optima, it
is generally diffi cult to come out of it. Perhaps social knowledge concept
of PSO could help RST in coming out of the local optima. As compared
to GAs, the PSO has much more profound intelligent background and
could be performed more easily. These two facts motivated us to hybridize
PSO and QA with the expectation of faster convergence (from QA) and
improved results (from PSO).

3.2 Quadratic approximation operator
QA is an operator which determines the point of minima of the quadratic
hyper surface passing through three points in a D-dimensional space.
It works as follows:

1. Select the particle R1, with the best objective function value. Choose two
random particles R2 and R3 such that out of R1, R2 and R3, at least two
are distinct.

2. Find the point of minima R* of the quadratic surface passing through
R1, R2 and R3, where

 (4)

where f(R1), f(R2) and f(R3) are the objective function values at R1, R2 and
R3 respectively. The calculations are to be done component-wise using

OPSEARCH 46(1):3–2410

(4) to obtain R*. QA operator has been successfully applied to solve
application problems as well [34].

3.3 The process of hybridization
In each iteration, the whole swarm S is divided into two subswarms
(say S1 and S2). From one generation to the next generation, S1 is evolved
using PSO, whereas S2 is evolved using QA. Figure 1 shows the idea that
stands behind qPSO and the way to integrate the two techniques. qPSO
consists in a strong co-operation of QA and PSO, since it maintains the
integration of the two techniques for the entire run.

Fig. 1. Transition from ith iteration to i+1th iteration

It is possible to understand the key steps of the qPSO, in a better way
through an intuitive fl owchart shown in Fig. 2. In the fi gure, ITER stands
for iteration number and R1, R2 and R3 has same meaning as in Section 3.2.
It should be noted that R1 used in QA and gbest used in PSO both are
the global best position of the entire swarm (let us call it GBEST) i.e R1 =
GBEST and gbest = GBEST. The strength of the qPSO lies in the facts that
both PSO and QA use the GBEST simultaneously or in other words,
subswarm S1 and S2 share their best positions with each other and
for transition from one iteration to the next, both updating schemes
use the entire swarm’s information. However, in updating a particle’s
position by QA, no information about its current position is applied as
in PSO but the presence of memory of the corresponding subswarm
preserves the best performed particles. So in i+1th iteration QA
will not produce worse solution than that in ith iteration.

s1
s2
-
-
-
sp

sp+1
sp+2
-
-
sm

s'1
s'2
-
-
-
s'p

s'p+1
s'p+2
-
-
s'm

 qPSO

PSO

QA

 qPSO

PSO

QA

ith iteration i+1th iteration

Particle
Index

OPSEARCH 46(1):3–24 11

We consider two versions of PSO, namely PSO-W (PSO with time varying
inertia weight) and PSO-C (PSO with constriction factor) in order to compare
the performance of qPSO. Thus two versions of qPSO come into existence,
qPSO-W (qPSO with time varying inertia weight) and qPSO-C (qPSO with
constriction factor). Percentage of swarm to be updated by PSO or QA is
an important parameter of qPSO. We call this parameter as coeffi cient of
hybridization (CH). CH is the percentage of swarm which is evolved using
QA in each iteration. Thus, if CH = 0, then the algorithm is pure PSO
(the whole swarm is updated by PSO operators), and if CH = 100 then
the algorithm is pure QA (the whole swarm is updated by QA operator)
while for 0<CH<100 the corresponding percentage of swarm is evolved by
QA and the rest with PSO.

4. Testing with benchmark functions
From the standard set of benchmark problems available in the
literature [32], 15 important problems have been selected to test the effi cacy
of the proposed methods. These problems are of continuous variables and
have different degree of complexity and multimodality. The set of test
functions includes unimodal and multimodal functions which are scalable
(the problem size can be varied as per the user’s choice). The problem
size for all problems is taken to be 30. All the problems are of minimization
type having minimum at 0.

4.1 Selection of parameters
In case of many algorithms values of some parameters have to be provided
by the user. PSO also has some parameters. In literature, different values
of these parameters are used. In this paper we use the parameter setting as
suggested in [35–37]. We set swarm size S =50. The inertia weight w is set
to reduce linearly from 0.8 to 0.4. Constriction coeffi cient is calculated
from equation (3). For PSO-C the cognitive and social parameters c1 and
c2 are 2.8 and 1.3, respectively; for PSO-W both are set to 2. All PSOs are
global versions i.e. each particle fl ies through the search space. Maximum
velocity Vmax set equal to 0.5*(Xmax-Xmin), where Xmax and Xmin are the
upper and lower bounds of the decision variables. Two criteria are applied
to terminate the simulation of the algorithms: reaching maximum number
of iterations (which was set as 1000) and the second criterion was getting
a minimum error (0.001 for this study). For fair comparison we used the
parameters of qPSO-W and qPSO-C algorithms as in original PSO-W and

OPSEARCH 46(1):3–2412

PSO-C (i.e. parameters for PSO-C and qPSO-C are same and for PSO-W
and qPSO-W are same). One of the questions concerning the proposed
method is what percentage of the swarm (i.e. coeffi cient of hybridization)
should be updated using QA? After a few preliminary tests, the value of
CH = 30% is adopted for our study which yielded the best results for
considered test functions.

Fig. 2. Flowchart of qPSO process

Random Swarm

ITER =0

Yes

End

Evaluate Objective Function Value of all
Particles and Determine GBEST

Stopping Criterion
Satisfied?

ITER =ITER + 1

Split Swarm S into subswarms S1 and S2

Is it possible to Determine
R1, R2 and R3 such that
atleast two of them are

distinct?

No

Determine pbest and
gbest (= GBEST)

No

Yes

Velocity Update

Position Update using
PSO

Determine R1 (= GBEST), R2 and R3

Position Update using QA

Report Best Particle

Evaluate Objective Function Value of
all Particles and Determine GBEST

Start

For S1 For S2

OPSEARCH 46(1):3–24 13

4.2 Comparisons and discussions
This section focuses on the efficiency of qPSO as tested against 15
benchmark functions with 30 variables, which are taken from [32]. To
avoid attributing the optimization results to the choice of a particular initial
population and to conduct fair comparisons, we perform each test 100 times,
starting from various randomly selected points in the hyper-rectangular
search domain given in the literature and the results are recorded. The four
PSOs (PSO-W, PSO-C, qPSO-W and qPSO-C) are implemented in C++.
From the recorded simulated results statistical analyses are carried out
and presented in Table 1. For each method the mean error, minimum error
(Min Error), standard deviation (SD), success rate (SR) and the average
number of function evaluations required to fulfill the termination
condition (Mean Eval) are calculated from 100 simulated runs and are
compared. A success was counted when the condition fmin– fopt ≤ 0.001 was
met, where fmin is the best solution found when an algorithm terminates
and fopt is the known global minimum of the problem.

The fi rst goal of the analysis is to observe if the hybridization shows an
improvement over the original PSOs for proposed two versions or not.
From Table 1, it is clear that from the point of view of success rate qPSO-W
is better than PSO-W in 9 problems, and worse in 1 problem while both
perform same in 4 problems. Also on the same criteria qPSO-W is better
than qPSO-C in 1 problem and worse in 6 problems while qPSO-W and
qPSO-C both perform same in 7 problems. On the criteria of success
rate qPSO-C is better than PSO-C in 5 problems while in remaining 9
problems both the methods have same performance. Clearly, qPSOs are
better than their respective original versions and qPSO-C has the highest
success rate than any method considered. Thus on the criteria of success rate
qPSO-C stands fi rst. If we consider mean number of function evaluations
then qPSO-W is better than PSO-W in 9 problems, worse in 2 problems
and has same performance as PSO-W in 3 problems. qPSO-C is better than
PSO-C in 9 problems, worse in 2 problems and same in 3 problems.
Also, if we compare hybridized PSOs then qPSO-C takes less number of
functions evaluations to converge than qPSO-W in 10 problems, higher
in 1 problem while same in 3 problems. From above discussion we can
conclude that hybridization shows an improvement over the original
PSOs for both versions.

In order to compare the consolidated performance of PSO-W, PSO-C,
qPSO-W and the qPSO-C algorithm, the value of a performance index
PI [38] is computed for these four algorithms. This index gives a

OPSEARCH 46(1):3–2414

Ta
bl

e
1:

 C
om

pa
ris

on
 o

f a
ll

PS
O

 v
ar

ia
tio

ns

Sr
. N

o.
Te

st
 fu

nc
tio

n
A

lg
or

ith
m

Pe
rf

or
m

an
ce

SR
 (%

)
M

ea
n

ev
al

M
ea

n
er

ro
r

M
in

 e
rr

or
SD

1.
Sp

he
re

(D

e
Jo

ng
’s

 f1
)

PS
O

-W
10

0
14

63
4

0.
00

09
32

0.
00

07
28

6.
22

E-
05

PS
O

-C
10

0
69

08
0.

00
09

02
0.

00
05

33
8.

86
E-

05
qP

SO
-W

10
0

13
52

6
0.

00
09

21
0.

00
07

41
6.

64
E-

05
qP

SO
-C

10
0

71
37

0.
00

09
14

0.
00

06
53

7.
78

E-
05

2.
A

xi
s p

ar
al

le
l

hy
pe

r e
lli

ps
oi

da
l

PS
O

-W
99

16
33

8
1.

61
67

0.
00

05
53

5.
12

5
PS

O
-C

10
0

62
02

0.
00

08
68

0.
00

05
73

9.
33

E-
05

qP
SO

-W
10

0
11

09
8

0.
00

08
73

0.
00

02
59

0.
00

01
19

qP
SO

-C
10

0
58

26
0.

00
08

63
0.

00
05

46
0.

00
01

3.
G

rie
w

an
k

PS
O

-W
36

40
22

4
0.

01
06

33
0.

00
06

93
0.

01
21

85
PS

O
-C

52
29

72
2

0.
00

93
44

0.
00

06
56

0.
01

39
28

qP
SO

-W
46

37
44

1
0.

00
94

74
0.

00
05

93
0.

01
12

01
qP

SO
-C

61
22

82
8

0.
00

10
98

0
0.

01
14

58
4.

R
os

en
br

oc
k

PS
O

-W
0

50
00

0
65

.1
8

9.
68

55
8

45
.9

PS
O

-C
0

50
00

0
34

.7
60

2
2.

91
57

4
28

.6
50

7
qP

SO
-W

0
50

00
0

49
.4

33
3

1.
89

10
8

43
.2

53
7

qP
SO

-C
0

50
00

0
28

.0
61

8
1.

04
07

4
22

.6
27

5
5.

R
as

tri
gi

n
PS

O
-W

0
50

00
0

70
.1

38
8

28
.8

58
1

23
.6

20
4

PS
O

-C
0

50
00

0
32

.6
02

13
.9

29
4

9.
25

12
4

qP
SO

-W
0

50
00

0
53

.5
69

1
17

.4
67

19
.3

69
6

qP
SO

-C
0

50
00

0
27

.8
08

7
11

.9
71

1
7.

28
57

1

OPSEARCH 46(1):3–24 15

6.
A

ck
le

y
PS

O
-W

10
0

30
34

9
0.

00
09

6
0.

00
07

9
4.

16
E-

05
PS

O
-C

62
27

46
8

0.
47

28
19

0.
00

07
84

0.
63

32
73

qP
SO

-W
95

32
03

4
0.

43
97

87
0.

00
08

41
2.

79
73

4
qP

SO
-C

70
29

96
0

0.
34

23
96

0.
00

01
75

0.
57

33
62

7.
Le

vy
 a

nd

M
on

ta
lv

o
1

PS
O

-W
70

25
52

7
0.

14
65

21
0.

00
07

16
0.

31
52

24
PS

O
-C

94
83

38
0.

00
70

81
0.

00
06

12
0.

02
44

25
qP

SO
-W

80
20

78
9

0.
04

64
82

9.
94

E-
05

0.
12

49
63

qP
SO

-C
10

0
71

45
0.

00
09

04
0.

00
03

9.
31

E-
05

8.
Le

vy
 M

on
ta

lv
o

2
PS

O
-W

75
23

20
0

0.
06

73
38

0.
00

06
72

0.
38

79
77

PS
O

-C
83

13
96

1
0.

00
46

99
0.

00
01

61
0.

02
22

03
qP

SO
-W

76
23

58
8

0.
00

37
26

2.
28

E-
06

0.
00

61
02

qP
SO

-C
10

0
95

94
0.

00
07

83
2.

28
E-

06
0.

00
02

78
9.

El
lip

so
id

al
PS

O
-W

4
49

01
1

18
3.

89
0.

00
08

3
22

5.
55

1
PS

O
-C

10
0

86
68

0.
00

09
1

0.
00

06
93

7.
65

E-
05

qP
SO

-W
10

0
16

84
5

0.
00

09
26

0.
00

07
22

5.
96

E-
05

qP
SO

-C
10

0
61

17
0.

00
09

02
0.

00
05

67
8.

57
E-

05
10

.
C

os
in

e
m

ix
tu

re
PS

O
-W

47
34

64
8

0.
10

68
4

0.
00

08
03

0.
11

61
19

PS
O

-C
35

35
28

9
0.

14
80

96
0.

00
06

97
0.

13
83

01
qP

SO
-W

51
31

57
1

0.
09

63
3

0.
00

01
97

0.
10

39
71

qP
SO

-C
78

33
58

7
0.

03
72

16
0

0.
07

33
87

Ta
bl

e
1

(c
on

t.)
: C

om
pa

ris
on

 o
f a

ll
PS

O
 v

ar
ia

tio
ns

OPSEARCH 46(1):3–2416

11
.

Ex
po

ne
nt

ia
l

PS
O

-W
99

99
77

0.
00

48
5

0.
00

06
61

0.
03

90
58

PS
O

-C
10

0
45

43
0.

00
09

1
0.

00
07

37
7.

00
E-

05
qP

SO
-W

10
0

88
14

0.
00

09
14

0.
00

06
23

7.
53

E-
05

qP
SO

-C
10

0
41

21
0.

00
09

11
0.

00
06

15
7.

72
E-

05
12

.
Za

kh
ar

ov
’s

PS
O

-W
0

50
00

0
64

.2
91

4
21

.7
45

2
21

.3
44

PS
O

-C
0

50
00

0
1.

45
93

0.
17

74
01

1.
03

65
9

qP
SO

-W
0

50
00

0
2.

21
79

2
0.

20
84

95
3.

13
94

8
qP

SO
-C

0
50

00
0

0.
04

86
74

0.
00

17
07

0.
05

66
63

13
.

C
ig

ar
PS

O
-W

54
39

97
46

.0
00

5
0.

00
07

09
49

.8
39

3
PS

O
-C

10
0

14
78

5
0.

00
09

04
0.

00
06

63
6.

92
E-

05
qP

SO
-W

96
29

50
8

4.
00

08
8

0.
00

05
71

19
.5

95
7

qP
SO

-C
10

0
11

60
1

0.
00

09
13

0.
00

06
22

7.
87

E-
05

14
.

B
ro

w
n3

PS
O

-W
26

40
81

3
2.

59
02

4
0.

00
08

25
2.

28
92

5
PS

O
-C

10
0

62
24

0.
00

09
0.

00
06

22
8.

33
E-

05
qP

SO
-W

79
20

26
8

0.
76

07
12

0.
00

01
57

1.
77

80
1

qP
SO

-C
10

0
59

21
0.

00
09

15
0.

00
06

59
7.

20
E-

05
15

.
Sc

he
w

ef
el

 3
PS

O
-W

62
35

63
3

4.
90

05
87

0.
00

07
95

6.
99

88
75

PS
O

-C
10

0
13

80
5

0.
00

09
25

0.
00

01
25

0.
00

01
11

qP
SO

-W
10

0
23

65
5

0.
00

09
42

0.
00

03
67

7.
20

E-
05

qP
SO

-C
10

0
15

80
3

0.
00

09
04

2.
64

E-
05

0.
00

01
78

Ta
bl

e
1

(c
on

t.)
: C

om
pa

ris
on

 o
f a

ll
PS

O
 v

ar
ia

tio
ns

OPSEARCH 46(1):3–24 17

weighted importance to the success rate, the mean objective function
value as well as the average number of function evaluations. The value
of this performance index for a computational algorithm under
comparison is given by

()∑
=

++=
pN

i

iii

p

kkk
N

PI
1

332211
1 ααα

Where ; and .

i = 1,2,..., Np

Sri = Number of successful runs of ith problem

Tri = Total number of runs of ith problem

= Minimum of average number of function evaluations of successful
runs used by all algorithms in obtaining the solution of ith problem

= Average number of function evaluations of successful runs used by
an algorithm in obtaining the solution of ith problem

Moi= Minimum of mean objective function value obtained by all the
algorithms for the ith problem

Aoi= Mean objective function value obtained by an algorithm for the
ith problem

Np= Total number of problems analyzed.

k1, k2 and k3 (k1 + k2 + k3 and k1, k2, k3 ≤ 1) are the weights assigned to
success rate, average number of function evaluations of successful runs and
mean objective function value, respectively. From above defi nition it is clear
that PI is a function of k1, k2 and k3. Since k1 + k2 + k3 = 1 one of ki, i = 1,2,3
could be eliminated to reduce the number of dependent variables from the
expression of PI. But it is still diffi cult to analyze the behavior of PI, because
the surface plots of PI for PSOs and qPSOs are overlapping and it is diffi cult to
visualize them. So, we adopt the same methodology as given in [38] i.e. equal
weights are assigned to two terms at a time in the PI expression. This way PI
becomes a function of one variable. The resultant cases are as follows:

(i)

OPSEARCH 46(1):3–2418

As an overall conclusion from PI we can say that the qPSOs are better than
their respective pure versions.

Further, we would like to view the comparative decrease in the objective
function value by PSOs and the qPSOs. For this a typical run of each of
the method for each problem is shown in Fig. 4. The X-axis represents the
iteration number and the Y-axis represents the error. It is observed that the
qPSOs converges very rapidly to the minima as compared to PSOs in most
of the problems.

Fig. 3. Performance index; (a) for case (i), (b) for case (ii) and (c) for case (iii)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight W

P
e

rf
o

rm
a

n
ce

 In
d

e
x

(P
I)

PSO-W

PSO-C

qPSO-W

qPSO-C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight W

P
e

rf
o

rm
a

n
ce

 In
d

e
x

(P
I)

PSO-W

PSO-C

qPSO-W

qPSO-C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight W

P
er

fo
rm

an
ce

 In
de

x
(P

I)

PSO-W

PSO-C

qPSO-W

qPSO-C

 (a) (b) (c)

(ii)

(iii)

The graphs corresponding to each of the cases (i), (ii) and (iii) are shown in
Figures 3(a)–3(c) respectively. In these fi gures the horizontal axis represents
the weight W and the vertical axis represents the performance index PI.

In case (i), average number of function evaluations of successful runs and
the average objective function value are given equal weights. PI’s of all
four algorithms are superimposed in the Fig. 3(a) for comparison and to
get a ranking of the performance of the four algorithms. It is observed that
for qPSO-C the value of PI is more than all the remaining three PSOs. The
remaining PSOs perform in the order PSO-C > qPSO-W > PSO-W.

In case (ii), equal weights are assigned to the percentage of success and
average number of function evaluations of successful runs. From Fig. 3(b),
it is clear that all PSOs perform same as in case (i).

In case (iii), equal weights are assigned to the percentage of success
and average objective function value. Again the same conclusion is drawn
from Fig. 3(c).

OPSEARCH 46(1):3–24 19

5. Solution of some real life problems
In order to check the robustness of proposed methods, three real life problems
namely Girder design [39], pressure vessel [40] and water distribution [41]
have been solved using original PSOs and their hybrid versions developed
by us. The actual optimum values of these real life problems are not known.
Therefore the experiments were carried out by running all the PSO versions
for 50000 functions evaluations. The average objective function value, the
best objective function value and standard deviation were obtained and
given in Table 4. Constraints of these problems were handled using penalty
function approach [41].

In the case of girder design problem, as such all PSO algorithms obtained
the same minimum objective function value. However, mean objective
function value obtained in case of qPSO-C was better than all other versions
of PSO. Mean objective function value obtained by qPSO-W was better than
value obtained by its pure version i.e. PSO-W. In pressure vessel problem
again the minimum value obtained was same by all PSO versions but the mean
objective function value obtained by qPSO-C was the best. On the criteria
of mean objective function value the qPSO-W is better than PSO-W, in the
case of water distribution problem the best mean objective function value
is obtained by qPSO-C. However, in this problem qPSO-W shows inferior
performance as compared to PSO-W.

6. Conclusion
In this paper a novel PSO algorithm based on the hybridization of PSO
with quadratic approximation operator, namely, qPSO is introduced. Two
of the most popular variants of PSO algorithm namely PSO with linearly
decreasing inertia weight (PSO-W) and PSO with constriction factor
(PSO-C) are considered for hybridization. The two resultant hybridized
variants proposed are qPSO-W and qPSO-C. The hybridization is
performed by splitting the swarm into two subswarms in such a way that
one subswarm is evolved using PSO, whereas another is evolved using
QA. The performance of these variants is evaluated on the basis of 15
benchmark problems taken from literature. Based on the numerical results
it is clear that the proposed hybrid PSO variants outperform the original
PSO variants in terms of effi ciency, reliability and robustness. The various
performance criteria are consolidated into a performance index which
clearly indicates the effi cacy of the proposed algorithms.

OPSEARCH 46(1):3–2420

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

Iteration

E
rr

o
r

Sphere

PSO-W

PSO-C
qPSO-W

qPSO-C

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

4

Iterations

E
rr

o
r

De-Jong's f4

PSO-W

PSO-C
qPSO-W

qPSO-C

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

Iterations

E
rr

o
r

Griewank

PSO-W

PSO-C
qPSO-W

qPSO-C

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Iteration

E
rr

o
r

Rosenbrock

PSO-W

PSO-C
qPSO-W

qPSO-C

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

Iterations

E
rr

o
r

Rastrigin

PSO-W

PSO-C
qPSO-W

qPSO-C

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

Iterations

E
rr

o
r

Ackley

PSO-W

PSO-C
qPSO-W

qPSO-C

0 50 100 150
0

5

10

15

20

25

Iterations

E
rr

o
r

Levy and montalvo 1

PSO-W

PSO-C
qPSO-W

qPSO-C

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

Iterations

E
rr

o
r

Levy and montalvo 2

PSO-W

PSO-C
qPSO-W

qPSO-C

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Iterations

E
rr

o
r

Ellipsoidal

PSO-W

PSO-C
qPSO-W

qPSO-C

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

10

Iterations

E
rr

o
r

Cosine Mixture

PSO-W

PSO-C
qPSO-W

qPSO-C

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

E
rr

o
r

Exponential

PSO-W

PSO-C
qPSO-W

qPSO-C

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

Iterations

E
rr

o
r

Zakharov's

PSO-W

PSO-C
qPSO-W

qPSO-C

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7
x 10

7

Iterations

E
rr

o
r

Cigar

PSO-W

PSO-C
qPSO-W

qPSO-C

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Iterations

E
rr

o
r

Brown 3

PSO-W

PSO-C
qPSO-W

qPSO-C

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

Iterations

E
rr

o
r

Schewefel 3

PSO-W

PSO-C
qPSO-W

qPSO-C

Fig. 4. Convergence graphs of benchmark problems

OPSEARCH 46(1):3–24 21

Table 4: Results of real life problems

Problem Algorithm Average bjective
function value

Best objective
function value

Standard
deviation

Girder design PSO-W 0.905716 0.896857 0.006524
PSO-C 0.900075 0.896858 0.004062
qPSO-W 0.902558 0.896856 0.006554
qPSO-C 0.898947 0.896856 0.002578

Pressure vessel PSO-W 7049.35 7019.03 254.166
PSO-C 7023.44 7019.03 33.0765
qPSO-W 7022.33 7019.03 16.9434
qPSO-C 7021.42 7019.03 11.6045

Water PSO-W 2087746.114 2087600.322 170.4204655
distribution PSO-C 2087794.271 2087600.436 259.2144961

qPSO-W 2087866.586 2087600.818 338.4060376
qPSO-C 2087671.680 2087600.374 105.4344862

In order to demonstrate the versatility of the proposed algorithms, PSOs
and qPSOs are also used to solve three real life application problems
arising in the fi eld of engineering. Based on the numerical results it is
concluded that the proposed algorithms are very promising in determining
the global optimal solution of nonlinear optimization problems.

Acknowledgment
Authors acknowledge Prof. Chander Mohan for his valuable comments
and suggestions. The second author gratefully acknowledges funding
from University Grant Commission (UGC), India under grant number
6405-11-61.

References
[1] Kennedy, J., Eberhart, R.: Particle swarm optimization. Proceedings IEEE

International Conference Neural Networks, 4, 1942–1948 (1995)
[2] Arumugam, M., Senthil, Rao, M.V.C., Tan Alan W.C.: A novel and effective

particle swarm optimization like algorithm with extrapolation technique.
Applied Soft Computing, 9, 308–320 (2009)

[3] Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computations, 1, 67–82 (1997)

OPSEARCH 46(1):3–2422

[4] Angeline, P.J.: Using selection to improve particle swarm optimization.
Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1998),
Anchorage, Alaska, USA, 84–89 (1998)

[5] Løvbjerg, M., Rasmussen, T., Krink, T.: Hybrid particle swarm optimizer
with breeding and subpopulations. Proceedings of the 3rd Genetic and Evolu-
tionary Computation Conference (GECCO-2001), 1, 469–476 (2001)

[6] Miranda, V., Fonseca, N.: New evolutionary particle swarm algorithm (EPSO)
applied to voltage/VAR control. The 14th Power Systems Computation
Conference (PSCC’02), Seville, Spain (2002)

[7] Løvbjerg, M., Krink, T.: Extending particle swarms with self-organized
criticality. Proceedings of the 4th Congress on Evolutionary Computation
(CEC-2002), 1588–1593 (2002)

[8] Blackwell, T., Bentley, P.J.: Don’t push me! Collision-avoiding swarms.
IEEE Congress on Evolutionary Computation, 2002 Honolulu, Hawaii
USA, 1691–1696 (2002)

[9] Krink, T., Vesterstrøm, J.S., Riget, J.: Particle swarm optimization with
spatial particle extension. Proceedings of the 4th Congress on Evolutionary
Computation (CEC-2002), 1474–1479 (2002)

[10] Higashi, N., Iba, H.: Particle swarm optimization with Gaussian mutation.
Proceedings of the IEEE swarm intelligence symposium 2003 (SIS 2003),
Indianapolis, Indiana, USA, 72–79 (2003)

[11] Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical
particle swarm optimizer with time varying accelerating coeffi cients. IEEE
Transactions on Evolutionary Computation 8, No. 3, 240–255 (2004)

[12] Juang, C. F.: A hybrid of genetic algorithm and particle swarm optimiza-
tion for recurrent network design. IEEE Trans Syst Man Cybern – Part B:
Cybern 34(2), 997–1006 (2004)

[13] Blackwell, T., Bentley, P.J.: Don’t push me! collision-avoiding swarms.
IEEE Congress on Evolutionary Computation, 2002 Honolulu, Hawaii
USA, 1691–1696 (2002)

[14] Robinson, J., Sinton, S., Rahmat-Samii, Y.: Particle swarm, genetic algorithm,
and their hybrids: optimization of a profiled corrugated horn antenna.
IEEE International Symposium on Antennas & Propagation. San Antonio,
Texas, 314–317 (2002)

[15] Jian, M., Chen, Y.: Introducing recombination with dynamic linkage
discovery to particle swarm optimization. Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO2006), 85–86 (2006)

[16] Grimaccia, F., Mussetta, M., Zich, R.E.: Genetical swarm optimization:
self-adaptive hybrid evolutionary algorithm for electromagnetics. Antennas
and Propagation, IEEE Transactions on, 55(3), 781–785 (2007)

OPSEARCH 46(1):3–24 23

[17] Poli, R., Di, Chio. C., Langdon, W.B.: Exploring extended particle swarms:
a genetic programming approach. In: Beyer, H.-G. et al. (eds.), GECCO
2005: Proceedings of the 2005 Conference on Genetic and Evolutionary
Computation, Washington, DC, pp. 169–176. New York: ACM (2005)

[18] Poli, R., Langdon, W.B., Holland, O.: Extending particle swarm
optimization via genetic programming. In: Keijzer, M. et al. (eds.) Lecture
notes in computer science. Proceedings of the 8th European Conference
on Genetic Programming, Lausanne, Switzerland. vol. 3447, pp. 291–300.
Berlin: Springer (2005)

[19] Krink, T., Løvbjerg, M.: The lifecycle model: combining particle swarm
optimisation, genetic algorithms and hillclimbers. Proceedings of Parallel
Problem Solving from Nature (PPSN), Granada, Spain, 621–630 (2002)

[20] Hendtlass, T.: A combined swarm differential evolution algorithm for
optimization problems. Proceedings of the 14th International Conference
on Industrial and Engineering Applications of Artifi cial Intelligence and
Expert Systems. Lecture Notes in Computer Science, vol. 2070, pp. 11–18
Springer-Verlag (2001)

[21] Zhang, WJ., Xie, XF.: DEPSO: hybrid particle swarm with differential
evolution operator. IEEE International Conference on Systems, Man and
Cybernetics (SMCC), Washington DC, USA, 3816–3821 (2003)

[22] Hendtlass, T., Randall, M.: A survey of ant colony and particle swarm
metaheuristics and their application to discrete optimization problems.
Proceedings of The Inaugural Workshop on Artificial Life (AL’01),
15–25 (2001)

[23] Van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle
swarm optimization”, IEEE Transactions on Evolutionary Computation,
8(3) 225–239 (2004)

[24] Parsopoulos, K.E., Vrahatis, M.: On the computation of all global minimizers
through particle swarm optimization. IEEE Transactions on Evolutionary
Computation, 8(3), 211–224 (2004)

[25] Xie, X., Zhang, W., Yang, Z.: A dissipative particle swarm optimization.
IEEE Congress on Evolutionary Computation, 2002, Honolulu, Hawaii
USA, 1456–1461 (2002)

[26] Liu, H., Abraham, A.: Fuzzy adaptive turbulent particle swarm optimization.
Proceedings of 5th International Conference on Hybrid Intelligent Systems
(HIS’05), Rio de Janeiro, Brazil, 6–9 November 2005, 39–47 (2005)

[27] Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimiza-
tion. Part II: hybridisation, combinatorial, multicriteria and constrained
optimization, and indicative applications. Natural Computing: an
International Journal, 7(1), 109–124 (2008)

OPSEARCH 46(1):3–2424

[28] Shi, Y., Eberhart, R.C.: A modifi ed particle swarm optimizer. Proceedings
of the IEEE International Conference on Evolutionary Computation,
Piscataway, NJ: IEEE Press, 69–73 (1998)

[29] Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization.
The 7th Annual Conference on Evolutionary Programming, San Diego,
USA, 591–600 (1998)

[30] Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors
in particle swarm optimization. Congress on Evolutionary Computing,
1, 84–88 (2000)

[31] Clerc, M.: The swarm and the queen: towards a deterministic and adaptive
particle swarm optimization. Proceedings, 1999 ICEC, Washington, DC,
1951–1957 (1999)

[32] Deep, K., Das, K.N.: Quadratic approximation based hybrid genetic
algorithm for function optimization. Applied Mathematics and Computation,
203(1) 86–98 (2008)

[33] Mohan, C., Shanker, K. (now Deep, K.): A random search technique for
global optimization based on quadratic approximation. Asia Pacifi c Journal
of Operations Research, 11 93–101 (1994)

[34] Bharti: Controlled random search technique and their applications,
Ph.D. Thesis. Department of Mathematics, University of Roorkee, Roorkee,
India (1994)

[35] Ali, M.M., Kaelo, P.: Improved particle swarm algorithms for
global optimization. Applied Mathematics and Computation, 196, 578–593
(2008)

[36] Zhang, Li-ping., YU, Huan-jun, HU, Shang-xu: Optimal choice of parameters
for particle swarm optimization. Journal of Zhejiang University Science,
6A(6), 528–534 (2005)

[37] Schutte, Jaco. F., Groenwold, Albert. A.: A study of global optimization
using particle swarms. Journal of Global Optimization, 31, 93–108 (2005)

[38] Deep, K., Thakur, M.: A new crossover operator for real coded
genetic algorithms. Applied Mathematics and Computation 188(1),
pp. 895–911 (2007)

[39] Arora, J.S.: Introduction to Optimum Design, 2/e Academic Press, Elsevier.
UK (2006)

[40] Clerc, M.: Particle Swarm Optimization. ISTE Ltd., USA (2007)
[41] Bhave, P.R.: Optimal Design of Water Distribution Networks. Narosa

Publishing House, New Delhi, India (2003)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

