
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gopt20

Download by: [South Asian University] Date: 20 September 2016, At: 02:59

Optimization
A Journal of Mathematical Programming and Operations Research

ISSN: 0233-1934 (Print) 1029-4945 (Online) Journal homepage: http://www.tandfonline.com/loi/gopt20

Self-adaptive artificial bee colony

Jagdish Chand Bansal, Harish Sharma, K.V. Arya, Kusum Deep & Millie Pant

To cite this article: Jagdish Chand Bansal, Harish Sharma, K.V. Arya, Kusum Deep &
Millie Pant (2014) Self-adaptive artificial bee colony, Optimization, 63:10, 1513-1532, DOI:
10.1080/02331934.2014.917302

To link to this article: http://dx.doi.org/10.1080/02331934.2014.917302

Published online: 20 May 2014.

Submit your article to this journal

Article views: 474

View related articles

View Crossmark data

Citing articles: 5 View citing articles

http://www.tandfonline.com/action/journalInformation?journalCode=gopt20
http://www.tandfonline.com/loi/gopt20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02331934.2014.917302
http://dx.doi.org/10.1080/02331934.2014.917302
http://www.tandfonline.com/action/authorSubmission?journalCode=gopt20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=gopt20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/02331934.2014.917302
http://www.tandfonline.com/doi/mlt/10.1080/02331934.2014.917302
http://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2014.917302&domain=pdf&date_stamp=2014-05-20
http://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2014.917302&domain=pdf&date_stamp=2014-05-20
http://www.tandfonline.com/doi/citedby/10.1080/02331934.2014.917302#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/02331934.2014.917302#tabModule

Optimization, 2014
Vol. 63, No. 10, 1513–1532, http://dx.doi.org/10.1080/02331934.2014.917302

Self-adaptive artificial bee colony

Jagdish Chand Bansala, Harish Sharmab∗, K.V. Aryac, Kusum Deepd and Millie Pantd

aDepartment of Mathematics, South Asian University, New Delhi, India; bComputer Engineering,
Vardhaman Mahaveer Open University, Kota, India; cABV–Indian Institute of Information

Technology and Management, Gwalior, India; d Department of Mathematics, Indian Institute of
Technology, Roorkee, India

(Received 30 April 2013; accepted 26 January 2014)

Artificial Bee Colony (ABC) optimization algorithm is a swarm intelligence-
based nature inspired algorithm, which has been proved a competitive algorithm
with some popular nature-inspired algorithms. ABC has been found to be more
efficient in exploration as compared to exploitation. With a motivation to balance
exploration and exploitation capabilities of ABC, this paper presents an adaptive
version of ABC. In this adaptive version, step size in solution modification and
ABC parameter ‘limit’ are set adaptively based on current fitness values. In the
present self-adaptive ABC, good solutions are appointed to exploit the search
region in their neighbourhood, while worse solutions are appointed to explore the
search region. The better solutions are given higher chances to update themselves
with the help of parameter ‘limit’, which changes adaptively in the present study.
The experiments on 16 unbiased test problems of different complexities show
that the proposed strategy outperforms the basic ABC and some recent variants
of ABC.

Keywords: numerical optimization; swarm intelligence; artificial bee colony;
exploration-exploitation

1. Introduction

Swarm intelligence has become an emerging and interesting area in the field of nature-
inspired techniques during the past decade. It is based on the collective behaviour of
social creatures. Optimization algorithms based on swarm intelligence find solution by
collaborative trial and error process. Social creatures utilize their ability of social learning
to solve complex tasks. Behaviour of learning from each other in social colonies is the main
inspiration behind the development of many efficient swarm-based optimization algorithms.
Researchers have analysed such behaviours and designed algorithms that can be used to
solve nonlinear, nonconvex or discrete optimization problems. Previous research [1–5] has
shown that algorithms based on swarm intelligence have great potential to find solutions
to real world optimization problems. The algorithms imitating the social behaviour of
species include ant colony optimization,[1] particle swarm optimization (PSO),[2] bacterial
foraging optimization (BFO) [6], etc.

Artificial bee colony (ABC) optimization algorithm introduced by Karaboga [7] is a
recent addition in this category. This algorithm is inspired by the behaviour of honey

∗Corresponding author. Email: hsharma@vmou.ac.in

© 2014 Taylor & Francis

1514 J.C. Bansal et al.

bees when seeking a quality food source. Like any other population-based optimization
algorithm, ABC consists of a population of possible solutions. The possible solutions are
food sources of honey bees. The fitness is determined in terms of the quality (nectar amount)
of the food source. ABC is a relatively simple, fast and population-based stochastic search
technique in the field of nature-inspired algorithms.

There are two fundamental processes which drive the swarm to update in ABC: the vari-
ation process, which enables exploring different areas of the search space, and the selection
process, which ensures the exploitation of the previous experience. However, it has been
shown that the ABC may occasionally stop proceeding towards the global optimum even
though the population has not converged to a local optimum.[8] It can be observed that the
solution search equation ofABC algorithm is good at exploration but poor at exploitation.[9]
Therefore, to maintain the proper balance between exploration and exploitation behaviour
of ABC, it is necessary to develop a strategy in which better solutions exploit the search
space in close proximity, while less fit solutions explore the search space. Therefore, in this
paper, we proposed a self-adaptive step size strategy to update a solution. In the proposed
strategy, a solution takes small step sizes in position updating process if its fitness is high,
i.e. it searches the solution in its vicinity, whereas a solution takes large step sizes if its
fitness is low, and hence explore the search space. The proposed strategy is used for finding
the global optima of a unimodal and/or multimodel functions by adaptively modifying the
step sizes in updating process of the candidate solution in the search space within which
the optima is known to exist. In the proposed strategy, ABC algorithm’s parameter ‘limit’ is
modified self-adaptively based on the fitness of the solution. Now, there is separate ‘limit’
for every solution according to the fitness. For high fitness solutions, value of ‘limit’ is high,
while for less fit solutions, it is low. Hence, a better solution has more time to update itself
in comparison to the less fit solutions. Further, to improve the diversity of the algorithm,
the number of scout bees is increased. The proposed strategy is compared with ABC and
its recent variants, named, Gbest-guided ABC algorithm (GABC),[9] Best-So-Far Artificial
Bee Colony (BSFABC) [10] and Modified Artificial Bee Colony (MABC).[11] Finally, the
performance of the proposed strategy is evaluated by solving the clustering problem on
well-known benchmark data-sets and the results are compared with the basic ABC.

The rest of the paper is organized as follows: Basic ABC is explained in Section 2.
Section 3 describes a brief review on recent modifications in ABC. In Section 4, self-
adaptiveABC is proposed and explained. In Section 5, performance of the proposed strategy
is analysed. Finally, in Section 6, paper is concluded.

2. ABC algorithm

In ABC, honey bees are classified into three groups, namely employed bees, onlooker bees
and scout bees. The number of employed bees is equal to the number of onlooker bees. The
employed bees are the bees which searches the food source and gather the information about
the quality of the food source. Onlooker bees stay in the hive and search the food sources
on the basis of the information gathered by the employed bees. The scout bee searches
new food sources randomly in places of the abandoned foods sources. Similar to the other
population-based algorithms, ABC solution search process is an iterative process. After,
initialization of the ABC parameters and swarm, it requires the repetitive iterations of the
three phases namely employed bee phase, onlooker bee phase and scout bee phase. Each
phase is described as follows:

Optimization 1515

2.1. Initialization of the swarm

The parameters for the ABC are the number of food sources, the number of trials after
which a food source is considered to be abandoned and the termination criteria. In the
basic ABC, the number of food sources are equal to the employed bees or onlooker bees.
Initially, a uniformly distributed initial swarm of SN food sources, where each food source
xi (i = 1, 2, . . . , SN) is a D-dimensional vector, is generated. Here, D is the number of
variables in the optimization problem and xi represents the i th food source in the swarm.
Each food source is generated as follows:

xi j = xmin j + rand[0, 1](xmax j − xmin j) (1)

here xmin j and xmax j are bounds of xi in j th direction and rand[0, 1] is a uniformly
distributed random number in the range [0, 1].

2.2. Employed bee phase

In the employed bee phase, modification in the current solution (food source) is done by
employed bees according to the information of individual experience and the new solution
fitness value. If the fitness value of the new solution is greater than that of the old solution,
then the bee updates her position to the new solution and old one is discarded. The position
update equation for i th candidate in this phase is

vi j = xi j + φi j (xi j − xk j) (2)

here k ∈ {1, 2, . . . , SN } and j ∈ {1, 2, . . . , D} are randomly chosen indices. k must be
different from i . φi j is a random number between [−1, 1].

2.3. Onlooker bees phase

In this phase, the new fitness information (nectar) of the new solutions (food sources) and
their position information is shared by all the employed bees with the onlooker bees in
the hive. Onlooker bees analyse the available information and selects a solution with a
probability probi related to its fitness, which can be calculated using following expression
(there may be some other but must be a function of fitness):

probi (G) = 0.9 × f i tnessi

max f i t
+ 0.1, (3)

here f i tnessi is the fitness value of the i th solution and max f i t is the maximum fitness
of the solutions. As in the case of employed bee, it produces a modification on the position
in its memory and checks the fitness of the new solution. If the fitness is higher than the
previous one, the bee memorizes the new position and forgets the old one.

2.4. Scout bees phase

A food source is considered to be abandoned if its position is not getting updated during
a predetermined number of cycles. In this phase, the bee whose food source has been
abandoned becomes scout bee and the abandoned food source is replaced by a randomly

1516 J.C. Bansal et al.

chosen food source within the search space. In ABC, predetermined number of cycles is a
crucial control parameter which is called limit for abandonment.

Assume that the abandoned source is xi . The scout bee replaces this food source by a
randomly chosen food source, which is generated as follows:

xi j = xminj + rand[0, 1](xmax j − xminj), for j ∈ {1, 2, . . . , D} (4)

where xminj and xmax j are bounds of xi in j th direction.

2.5. Main steps of the ABC algorithm

Based on the above explanation, it is clear that the ABC search process contains three
important control parameters: The number of food sources SN (equal to number of onlooker
or employed bees), the value of limit and the maximum number of iterations. The pseudo-
code of the ABC is shown in Algorithm 1.[8]

Algorithm 1 ABC Algorithm:
Initialize the parameters;
while Termination criteria is not satisfied do

Step 1 Employed bee phase for generating new food sources;
Step 2 Onlooker bees phase for updating the food sources depending on their nectar amounts;
Step 3 Scout bee phase for discovering the new food sources in place of abandoned food sources;
Step 4 Memorize the best food source found so far;

end while
Output the best solution found so far.

3. Brief review on basic improvements in ABC

In order to get rid of the drawbacks of basic ABC, researchers have improved ABC in
many ways. The potentials where ABC can be improved may be broadly classified into two
categories:

• Fine tuning of ABC control parameters SN , φi j , limit or introducing new control
parameters.

• Hybridization of ABC with other population-based probabilistic or deterministic
algorithms.

Karaboga [7] observed that the value of φi j should be in the range of [−1, 1]. The value
of limit should be SN × D, where SN is the number of solutions and D is the dimension
of the problem.

Wei-feng Gao and Liu [12] proposed an improved solution search equation in ABC,
which is based on the fact that to improve the exploitation the bee searches only around the
best solution of the previous iteration. Banharnsakun et al. [10] introduced a new variant of
ABC namely the best-so-far selection in ABC algorithm. In that modified ABC (MABC),
they introduced three major changes in ABC: The best-so-far method, an adjustable search
radius and an objective-value-based comparison method.

Optimization 1517

Qingxian and Haijun proposed two modifications in the ABC: one, in the initializa-
tion scheme, by making the initial group symmetrical and second, in the solution selec-
tion scheme, by employing the Boltzmann selection mechanism instead of roulette wheel
selection.[13]

Tsai et al. [14] introduced the Newtonian law of universal gravitation in the onlooker
phase of the basic ABC algorithm, in which onlookers are selected based on a roulette wheel
to maximize the exploitation capacity of the solutions in this phase and the strategy is named
as Interactive ABC (IABC). Baykasoglu et al. [15] incorporated the ABC algorithm with
shift neighbourhood searches and greedy randomized adaptive search heuristic and applied
it to the generalized assignment problem.

Furthermore, a modified version of the ABC algorithm is introduced and applied for
efficiently solving real-parameter optimization problems by Akay and Karaboga [11]. In
the proposed work, effects of the perturbation rate that controls the frequency of parameter
change, the scaling factor (step size) that determines the magnitude of change in parameters,
while producing a neighbouring solution and the limit parameter on the performance of
the ABC algorithm are investigated on real-parameter optimization. Karaboga and Akay
also modified the ABC to solve constrained optimization problems.[16] They used Deb’s
rules [17] consisting of three simple heuristic rules and a probabilistic selection scheme for
constraint handling in ABC algorithm.

Zhu and Kwong [9] proposed a variant of ABC for numerical function optimization
inspired by the solution search strategy of PSO and named it Gbest-guided ABC (GABC).
In GABC, the knowledge of global best (gbest) solution is incorporated in the basic ABC
solution search mechanism to enhance the exploitation.

Researchers are also developing self-adaptive strategies for ABC to balance the con-
vergence and diversity capability of the swarm. Alam et al. [18] proposed a self-adaptation
of mutation step size in ABC solution update process. In their work, authors introduced
exponentially distributed mutation strategy in ABC, which produces mutation steps with
varying lengths and suitably adjusts the current step length.

El-Abd introduced a cooperative approach to ABC algorithm (CABC).[19] The strategy
is based on the explicit space decomposition approach. In explicitly decomposing strategy,
a set of algorithm instances explore the search space to find out an optimum solution of
the problem. The algorithm’s outcome is the concatenated solution of the best solutions,
provided by these algorithm instances.

Further, Kang et al. [20] described a Rosenbrock ABC (RABC) that combines
Rosenbrock’s rotational direction method withABC for accurate numerical optimization. In
RABC, exploitation phase is introduced in the ABC using Rosenbrock’s rotational direction
method.

4. Self-adaptive ABC

Exploration and exploitation are the two important characteristics of the population-based
optimization algorithms such as GA [21], PSO [2], DE [22], BFO [6] and so on. In
these optimization algorithms, the exploration represents the ability to discover the global
optimum by investigating the various unknown regions in the solution search space, while
the exploitation represents the ability to find better solutions by implementing the knowledge
of the previous good solutions. In behaviour, the exploration and exploitation contradict
with each other. But both abilities should be well balanced to achieve better optimization

1518 J.C. Bansal et al.

performance. Karaboga and Akay [8] tested different variants of ABC for global optimiza-
tion and found that theABC shows poor performance and remains inefficient in exploring the
search space. In ABC, any potential solution updates itself using the information provided
by a randomly selected potential solution within the current swarm. In this process, a step
size, which is a linear combination of a random number φi j ∈ [−1, 1], current solution
and a randomly selected solution are used. Now, the quality of the updated solution highly
depends upon this step size. If the step size is too large, which may occur if the difference
of current solution and randomly selected solution is large with high absolute value of φi j ,
then updated solution can surpass the true solution and if this step size is too small, then the
convergence rate of ABC may significantly decrease. A proper balance of this step size can
balance the exploration and exploitation capabilities of the ABC, simultaneously. Since this
step size consists of random components so the balance cannot be done manually. Therefore,
to balance the exploration and exploitation, we modified the solution update strategy and
the parameter ‘limit’ according to the fitness of the solution. In the basic ABC, the food
sources are updated, as shown in Equation (2). Inspired by PSO [2] and Gbest-guided ABC
(GABC) [9] algorithms which, in order to improve the exploitation, take advantage of the
information of the gbest solution to guide the search of candidate solutions, the solution
search equation described by Equation (2) is modified as follows [9]:

vi j = xi j + φi j (xi j − xk j)+ ψi j (xbest j − xi j),

here, ψi j is a uniform random number in [0,C2], where C2 is a nonnegative constant. We
call C2 an acceleration parameter. In this paper, to balance the diversity and convergence
abilities of ABC, three modifications are proposed:

(1) To enhance the exploitation capability of ABC, self-adaptive step size mechanism
is introduced. In the proposed strategy, step sizes are based on the fitness of the
solution. The strategy is based on the concept that a high fit solution should search
in its neighbourhood to exploit the search space, while a low fit solution should
explore the search area. In this way, the situation of skipping true solution can
be avoided, while maintaining the speed of convergence. Therefore, the solution
update strategy in employed bee phase is modified and for a solution xi and it is
shown in Algorithm 2:

Algorithm 2 Solution update in employed bee phase:
Input: solution xi , probi and j ∈ (1, D);
if U (0, 1) < probi then
φi j = U (−R, R)× (C1 − probi);
ψi j = U (0, (C1 − probi));

else
φi j = U (−1, 1) (same as in ABC);
ψi j = U (0,C2);

end if
x ′

i j = xi j + φi j (xi j − xk j)+ ψi j (xbest j − xi j);

Optimization 1519

In Algorithm 2, probi is a function of fitness and calculated as shown in Equation (3),
while C1 and C2 are constants. It is clear from this algorithm that for a solution, if value
of probi is high and that is the case of high fit solution then for that solution the step size
will be small as both the factor φi j and ψi j will be low. Therefore, it is obvious that there is
more chance for the high fit solution to update in its neighbourhood compared with the low
fit solution and hence, a better solution could exploit the search area in its vicinity. In other
words, we can say that solutions exploit or explore the search area based on a probability,
which is the function of fitness.

(2) Further, the solution update strategy for onlooker bees phase is also modified and
is shown in Algorithm 3.

Algorithm 3 Solution update in Onlooker bee phase:
Input: solution xi , probi , j1 ∈ (1, D) and j2 ∈ (1, D) where j1 �= j2;
for j ∈ { j1, j2} do

if U (0, 1) < ε × probi then
φi j = U (−R, R)× (C1 − probi);
ψi j = U (0, (C1 − probi));

else
φi j = U (−1, 1);(same as in ABC)
ψi j = U (0,C2);

end if
x ′

i j = xi j + φi j (xi j − xk j)+ ψi j (xbest j − xi j);
end for

We know that in onlooker bee phase, better solutions get more chance to update them-
selves. Therefore, it is expected that updates in two components instead of the traditional
one can make the algorithm converge faster to the global optima. In Algorithm 3, the value
of probi is reduced by multiplying it by ε (where ε ∈ [0.1, 0.9]) in the expectation that
only very high fit solutions get more chance to exploit the area in their neighbourhood.

(3) To enhance the exploration capability, the number of scout bees is increased. This
modification avoids the situation of stagnation of the algorithm. Therefore, in this
paper, all the bees which crosses the ‘limit’are treated as scout bees. However, only if
this modification has been done in the basic ABC, then it may make ABC relatively
less stable as the scout bees do not use the previous knowledge for generating
new food solutions and hence previous learning would have been lost. But in the
proposed strategy, the first and the second modifications use the experience of gbest-
guided solution and give more chance for better solutions to update themselves,
and hence improve the convergence. Therefore, in the first two modifications, better
solutions get more chance in search process and minimize the threat of less stability,
while taking advantage of third modification in exploration of the search space.

Further, in the basic ABC, the parameter ‘limit’ is fixed and calculated as ‘limit =
D × SN ’. But, in the proposed strategy, the parameter ‘limit’ is self-adaptive and is a
function of fitness. Algorithm 4 shows the self-adaptive strategy for calculating ‘limit’. It

1520 J.C. Bansal et al.

Algorithm 4 Setting of parameter limit:
Input: probi where i ∈ (1, SN);
for i = 1 to SN do

limiti = D × SN × probi ;
if limiti < D × SN/γ then

limiti = D × SN/γ ;
end if

end for

is clear from this algorithm that the range for parameter limit ∈ (D × SN/γ, D × SN).
Here, the lower boundary, D × SN/γ , is set to ensure that the solutions having poor fitness
should also get proper time to update themselves.

4.1. Discussion

It is expected from a good search process that it should explore new solutions, while
maintaining satisfactory performance by exploiting existing solutions.[23] These three
modifications form an attempt to design a good search algorithm. Step size always plays an
important role for better exploration and exploitation of the search space. It is obvious from
the first two modifications that rich solutions (in terms of fitness) take small size steps and
usually produces small variations that are better for exploitation around the already found
solutions, while the poor solutions take large step sizes, which is likely to produce large
variations to facilitate better exploration of the undiscovered regions of the search space.
Further, the third modification is proposed for exploring the new solutions in the search
space. In the basic ABC, scout bee is responsible for the exploration and it is the bee having
a ‘trial counter’higher than the ‘limit’and maximum in the colony. In the third modification,
we increased the number of scout bees as well as made the ‘limit’ a function of fitness. This
modification is expected to improve the exploration with the threat of instability, which may
have occurred by loosing the previous experience. This threat is moderated by incorporating
the first two modifications in basic ABC to improve the exploitation and by setting up the
lower boundary for the ‘limit’. Since, in the proposed strategy, the step sizes and limit
are adaptively changing based on the fitness of the solutions, the strategy is named ‘Self
Adaptive Artificial Bee Colony’ (SAABC) algorithm.

5. Experimental results and discussion

5.1. Test problems under consideration

In order to analyse the performance of S AABC , 16 unbiased optimization problems
(solutions do not exist on axis, diagonal or origin) (f1 to f16) are selected (listed in Table 1).
These are continuous optimization problems and have different degrees of complexity and
multimodality. Test problems f1 to f3 and f10 to f16 are taken from [24] and test problems
f4 to f9 are taken from [25] with the associated offset values.

Optimization 1521

Ta
bl

e
1.

Te
st

pr
ob

le
m

s.

T
P

O
bj

ec
tiv

e
fu

nc
tio

n
Se

ar
ch

R
an

ge
O

pt
im

um
va

lu
e

D
A

E

B
ea

le
fu

nc
tio

n
f 1
(x
)
=

[1.
5−

x 1
(1

−x
2
)]2

+[
2.

25
−x

1
(1

−x
2 2
)]2

+[
2.

62
5−

x 1
(1

−x
3 2
)]2

[−
4.

5,
4.

5]
f(

3,
0.

5)
=

0
2

1.
0

E
−

05
C

ol
vi

lle
fu

nc
tio

n
f 2
(x
)

=
10

0[x
2

−
x2 1

]2
+
(1

−
x 1
)2

+
90
(x

4
−

x2 3
)2

+
(1

−
x 3
)2

+
10
.1

[(x
2

−
1)

2
+
(x

4
−

1)
2
]+

19
.8
(x

2
−

1)
(x

4
−

1)

[−
10

,1
0]

f(
� 1)

=
0

4
1.

0
E

−
05

K
ow

al
ik

fu
nc

tio
n

f 3
(x
)
=

∑ 11 i=
1

[a i
−

x 1
(b

2 i
+b

ix
2
)

b2 i
+b

ix
3
+x

4

] 2
[−

5,
5]

f(
0.

19
28
,

0.
19

08
,
0.

12
31

,
0.

13
57
)
=

3.
07

E
−

04
4

1.
0

E
−

05

Sh
if

te
d

R
os

en
br

oc
k

f 4
(x
)
=

∑ D
−1

i=
1
(1

00
(z

2 i
−

z i
+1
)2

+
(z

i
−

1)
2
)
+

f b
ia

s,
z

=
x

−
o

+
1,

x
=

[x 1
,

x 2
,
..
.,

x D
],o

=
[o 1
,
o 2
,
..
.,

o
D

]
[−

10
0,

10
0]

f(
o)

=
f b

ia
s

=
39

0
10

1.
0

E
−

01

Sh
if

te
d

Sp
he

re
f 5
(x
)

=
∑ D i=

1
z2 i

+
f b

ia
s,

z
=

x
−

o,
x

=
[x 1
,

x 2
,
..
.,

x D
],

o
=

[o 1
,
o 2
,
..
.,

o
D

]
[−

10
0,

10
0]

f(
o)

=
f b

ia
s

=
−4

50
10

1.
0

E
−

05

Sh
if

te
d

R
as

tr
ig

in
f 6
(x
)

=
∑ D i=

1
(z

2 i
−

10
co

s(
2π

z i
)
+

10
)
+

f b
ia

s,
z

=
(x

−
o)

,
x

=
(x

1
,

x 2
,
..
.,

x D
),

o
=

(o
1
,
o 2
,
..
.,

o
D

)
[−

5,
5]

f(
o)

=
f b

ia
s

=
−3

30
10

1.
0

E
−

02

Sh
if

te
d

Sc
hw

ef
el

f 7
(x
)
=

∑ D i=
1
(∑ i j=

1
z

j)
2

+
f b

ia
s,

z
=

x
−

o,
x

=
[x 1
,

x 2
,
..
.,

x D
],

o
=

[o 1
,
o 2
,
..
.,

o
D

]
[−

10
0,

10
0]

f(
o)

=
f b

ia
s

=
−4

50
10

1.
0

E
−

05

Sh
if

te
d

G
ri

ew
an

k
f 8
(x
)

=
∑ D i=

1
z2 i

40
00

−
∏ D i=

1
co

s(
z i √ i)

+
1

+
f b

ia
s,

z
=
(x

−
o)

,x
=

[x 1
,

x 2
,
..
.,

x D
],o

=
[o 1
,
o 2
,
..
.,

o
D

]
[−

60
0,

60
0]

f(
o)

=
f b

ia
s

=
−1

80
10

1.
0

E
−

05

Sh
if

te
d

A
ck

le
y

f 9
(x
)

=
−2

0
ex

p

(-0
.2

√ 1 D
∑ D i=

1
z2 i

) −
ex

p(
1 D

∑ D i=
1

co
s(

2π
z i
))

+
20

+e
+

f b
ia

s,
z

=
(x

−o
),

x
=
(x

1
,

x 2
,
..
.,

x D
),

o
=
(o

1
,
o 2
,
..
.,

o
D
)

[−
32

,3
2]

f(
o)

=
f b

ia
s

=
−1

40
10

1.
0

E
−

05

G
ol

ds
te

in
-P

ri
ce

f 1
0
(x
)

=
(1

+
(x

1
+

x 2
+

1)
2
(1

9
−

14
x 1

+
3x

2 1
−

14
x 2

+
6x

1
x 2

+
3x

2 2
))
(3

0
+(

2x
1
−3

x 2
)2
(1

8
−3

2x
1
+1

2x
2 1
+4

8x
2
−3

6x
1

x 2
+2

7x
2 2
))

[−
2,

2]
f(

0,
−1
)
=

3
2

1.
0

E
−

14

E
as

om
’s

fu
nc

tio
n

f 1
1
(x
)
=

−c
os

x 1
co

sx
2
e(
(−
(x

1
−�

)2
−(

x 2
−�

)2
))

[−
10

,1
0]

f(
π
,
π
)
=

−1
2

1.
0

E
−

13

(C
on

ti
nu

ed
)

1522 J.C. Bansal et al.

Ta
bl

e
1.

(C
on

ti
nu

ed
).

T
P

O
bj

ec
tiv

e
fu

nc
tio

n
Se

ar
ch

R
an

ge
O

pt
im

um
V

al
ue

D
A

E

D
ek

ke
rs

an
d

A
ar

ts
f 1

2
(x
)
=

10
5

x2 1
+

x2 2
−
(x

2 1
+

x2 2
)2

+
10

−5
(x

2 1
+

x2 2
)4

[-
20

,2
0]

f(
0,

15
)
=

f(
0,

−1
5)

=
−2

47
77

2
5.

0
E

−
01

M
cC

or
m

ic
k

f 1
3
(x
)
=

si
n(

x 1
+

x 2
)
+
(x

1
−

x 2
)2

−
3 2

x 1
+

5 2
x 2

+
1

−1
.5

≤
x 1

≤
4,

−3
≤

x 2
≤

3

f(
−0
.5

47
,−

1.
54

7)
=

−1
.9

13
3

30
1.

0
E

−
04

M
ey

er
an

d
R

ot
h

f 1
4
(x
)
=

∑ 5 i=
1
(

x 1
x 3

t i
1+

x 1
t i
+x

2
v

i
−

y i
)2

[−
10

,1
0]

f(
3.

13
,
15
.1

6,
0.

78
)
=

0.
4

E
−

04
3

1.
0

E
−

03

Sh
ub

er
t

f 1
5
(x
)
=

−
∑ 5 i=

1
ic

os
((

i+
1)

x 1
+1
)
∑ 5 i=

1
ic

os
((

i+
1)

x 2
+1
)

[−
10

,1
0]

f(
7.

08
35
,
4.

85
80
)
=

−1
86
.7

30
9

2
1.

0
E

−
05

Si
nu

so
id

al
f 1

6
(x
)
=

−[
A

∏ D i=
1

si
n(

x i
−

z)
+

∏ D i=
1

si
n(

B
(x

i
−

z)
)],

A
=

2.
5,

B
=

5,
z

=
30

[0
,1

80
]

f(
�

90
+

z)
=

−(
A

+
1)

10
1.

0
E

−
02

N
ot

e:
T

P:
te

st
pr

ob
le

m
,A

E
:a

cc
ep

ta
bl

e
er

ro
r.

Optimization 1523

5.2. Experimental setting

In algorithms 2 and 3, U (−R, R) represents a uniform random number in the range (−R, R).
The sensitivity analysis for this constant R is carried out in Figure 1(a) and found that the
suitable range for SAABC is [−0.5, 0.5]. Further, the effect of constant C1 described by
algorithms 2 and 3 on the performance of SAABC is investigated. Its sensitivity with respect
to different values of C1 in the range [1.1, 2.5], is examined in the Figure 1(b). It can be
observed from this figure that SAABC is very sensitive towards C1, and value 1.1 gives
comparatively better results. A sensitivity analysis for the constant ε (refer algorithm 3)
and constant γ (refer algorithm 4) is also carried out in Figure 1(c) and (d), respectively.
It is observed from these figures that the SAABC performs better for ε = 0.5 and γ = 4.
Therefore, C1 = 1.1, ε = 0.5 and γ = 4 are selected for the experiments in this paper.

Further, Figure 1(e) shows the variation of the step size in the proposed strategy, with
respect to the probi at an iteration of a randomly selected solution for function f11. It is
clear from this figure that the step size is generally low for the high value of probi and vice
versa. The variation in number of scout bees with respect to iterations is shown in Figure
1(f) for function f11. Figure 1(g) and (h) show a variation in the parameter ‘limit’of SAABC
and probi with respect to iterations for function f7. Figure 1(g) shows this variations in the
range of 63 to 250 as for function f7, D = 10 and SN = 25, while Figure 1(h) shows this
variation along with probi with respect to iterations.

To prove the efficiency of SAABC, it is compared withABC and recent variants ofABC,
namely GABC,[9] Best-So-Far ABC (BSFABC) [10] and MABC.[11] To test SAABC,
ABC, GABC, BSFABC and MABC over considered problems, following experimental
setting is adopted:

• Colony size N P = 50,[26,27]
• φi j = rand[−1, 1],
• Number of food sources SN = N P/2,
• limit = D × SN ,[11,28]
• The stopping criteria is either maximum number of function evaluations (which is

set to be 200000) is reached or the acceptable error (mentioned in Table 1) has been
achieved,

• The number of simulations/run = 100,
• C2 = 1.5,[9]
• C1 = 1.1, (refer Figure 1(b))
• Parameter settings for the algorithms GABC, BSFABC and MABC are similar to

their original research papers.

5.3. Results comparison

Numerical results with experimental setting of Section 5.2 are given in Table 2. In Table 2,
standard deviation (SD), mean error (ME), average number of function evaluations (AFE)
and success rate (SR) are reported. Table 2 shows that most of the time SAABC outperforms
in terms of reliability, efficiency and accuracy as compared to the basic ABC, GABC,
BSFABC and MABC. Some more intensive analyses based on acceleration rate (AR),[29]
performance indices and boxplots have also been carried out for results of ABC and its
variants.

1524 J.C. Bansal et al.

(a) (b)

(c) (d)

(e)

(g)

(f)

(h)

Figure 1. (a) Effect of range U (−R, R) on sum of successes of all test functions, (b) Effect of
parameter C1 on sum of successes of all test functions, (c) Effect of ε on sum of successes of all test
functions, (d) Effect of γ on sum of successes of all test functions, (e) Step size v/s probi for f11,
(f) Number of scout bees with respect to iterations for f11, (g) & (h) Variation in parameter ‘limit’
according to probi with respect to iterations for f7.

Optimization 1525

Table 2. Comparison of the results of test problems.

TP Algorithm SD ME AFE SR

f1

ABC 1.66E−06 8.64E−06 16520.09 100
GABC 3.05E−06 5.03E−06 9314.71 100
BSFABC 5.64E−05 1.98E−05 47522.01 95
MABC 2.68E−06 5.47E−06 10350.53 100
SAABC 2.99E−06 5.67E−06 1815.59 100

f2

ABC 1.03E−01 1.67E−01 199254.48 1
GABC 1.71E−02 1.95E−02 151300.35 46
BSFABC 1.61E−02 1.86E−02 153393.46 47
MABC 8.26E−03 1.25E−02 147787.15 52
SAABC 1.77E−03 8.53E−03 12817.47 100

f3

ABC 7.33E−05 1.76E−04 180578.91 18
GABC 2.15E−05 8.68E−05 90834.53 97
BSFABC 7.57E−05 1.41E−04 147931.24 50
MABC 8.02E−05 2.02E−04 187320.13 13
SAABC 3.26E−05 9.72E−05 43669.72 98

f4

ABC 1.05E+00 6.36E−01 176098.02 23
GABC 1.60E−02 8.45E−02 99219.48 99
BSFABC 3.79E+00 2.34E+00 179970.99 19
MABC 9.19E−01 6.99E−01 180961.73 23
SAABC 2.01E+00 7.93E−01 115099.24 72

f5

ABC 2.42E−06 7.16E−06 9013.5 100
GABC 2.08E−06 6.83E−06 5585.5 100
BSFABC 2.18E−06 7.44E−06 18122 100
MABC 1.61E−06 8.23E−06 8702 100
SAABC 1.81E−06 8.05E−06 4868.5 100

f6

ABC 1.21E+01 8.91E+01 200011.71 0
GABC 9.24E+00 8.56E+01 200006.8 0
BSFABC 1.77E+01 1.20E+02 200036.53 0
MABC 1.15E+01 8.00E+01 200015.14 0
SAABC 1.08E+01 8.20E+01 200023.12 0

f7

ABC 3.54E+03 1.11E+04 200029.02 0
GABC 3.00E+03 1.08E+04 200016.04 0
BSFABC 7.33E+03 2.70E+04 200035.12 0
MABC 2.76E+03 1.03E+04 200015.92 0
SAABC 2.18E+03 8.45E+03 200024.75 0

f8

ABC 2.21E−03 6.95E−04 61650.9 90
GABC 7.35E−04 7.88E−05 38328.96 99
BSFABC 6.34E−03 4.76E−03 115441.96 58
MABC 2.21E−03 6.24E−04 85853.52 92
SAABC 2.86E−03 1.14E−03 102258.18 86

f9

ABC 1.80E−06 7.90E−06 16767 100
GABC 1.37E−06 8.31E−06 9366 100
BSFABC 1.35E−06 8.39E−06 31224 100
MABC 9.96E−07 8.93E−06 14189.06 100
SAABC 1.52E−06 8.57E−06 19051.5 100

(Continued)

1526 J.C. Bansal et al.

Table 2. (Continued).

TP Algorithm SD ME AFE SR

f1

ABC 1.66E−06 8.64E−06 16520.09 100

f10

ABC 5.16E−06 1.04E−06 109879.46 62
GABC 4.37E−15 4.87E−15 3956.05 100
BSFABC 4.90E−15 6.62E−15 14031.79 100
MABC 4.11E−15 4.73E−15 14228.59 100
SAABC 4.75E−15 5.68E−15 3712.08 100

f11

ABC 4.44E−05 1.60E−05 181447.91 17
GABC 2.79E−14 4.02E−14 46909.7 100
BSFABC 3.03E−14 3.71E−14 4880.22 100
MABC 1.45E−03 6.64E−04 199872.75 1
SAABC 2.98E−14 5.09E−14 11411.95 100

f12

ABC 5.33E−03 4.91E−01 1460.56 100
GABC 5.40E−03 4.90E−01 792 100
BSFABC 5.82E−03 4.90E−01 2802.92 100
MABC 5.74E−03 4.91E−01 2370.5 100
SAABC 5.69E−03 4.90E−01 674.01 100

f13

ABC 6.67E−06 8.92E−05 1166.5 100
GABC 6.45E−06 8.79E−05 622 100
BSFABC 6.34E−06 8.91E−05 958.51 100
MABC 6.15E−06 8.95E−05 1702.28 100
SAABC 6.84E−06 8.88E−05 592.22 100

f14

ABC 2.89E−06 1.94E−03 24476.88 100
GABC 2.74E−06 1.95E−03 5127.73 100
BSFABC 2.98E−06 1.94E−03 15703.99 100
MABC 2.79E−06 1.95E−03 9019.7 100
SAABC 2.89E−06 1.95E−03 2037.28 100

f15

ABC 5.34E−06 4.86E−06 4752.21 100
GABC 5.72E−06 5.07E−06 2550.57 100
BSFABC 5.94E−06 5.27E−06 9036.83 100
MABC 5.60E−06 4.83E−06 33268.91 100
SAABC 5.82E−06 5.20E−06 2738.25 100

f16

ABC 1.83E−03 7.77E−03 54159.26 99
GABC 2.09E−03 7.87E−03 49230.85 100
BSFABC 2.08E−03 7.65E−03 66317.6 100
MABC 1.03E−01 6.44E−01 200035.08 0
SAABC 1.95E−03 7.74E−03 41851.58 100

Note: TP: test problem.

SAABC, ABC, GABC, BSFABC and MABC are compared based on SR, ME and AFE
mentioned in Table 2. First SR is compared for all these algorithms and if it is not possible
to distinguish the algorithms based on SR, then comparison is made on the basis of AFE.
ME is used for comparison if it is not possible to compare the algorithms on the basis of SR
and AFE both. The outcome of this comparison is summarized in Table 3. In Table 3, ‘+’
indicates that SAABC is better than the considered algorithms and ‘−’ indicates that the

Optimization 1527

Table 3. Summary of Table 2 outcome.

Function
SAABC Vs. SAABC Vs. SAABC Vs. SAABC Vs.

ABC GABC BSFABC MABC

f1 + + + +
f2 + + + +
f3 + + + +
f4 + − + +
f5 + + + +
f6 + − + +
f7 + + + +
f8 − − + −
f9 − − + −
f10 + + + +
f11 + + − +
f12 + + + +
f13 + + + +
f14 + + + +
f15 + − + +
f16 + + + +
Total number of + sign 16 11 15 14

algorithm is not better or the difference is very small. The last row of Table 3, establishes the
superiority of SAABC overABC, GABC, BSFABC and MABC over most of the considered
test functions.

Further, the convergence characteristics of the considered ABCs are graphically pre-
sented in Figure 2. It is clear from this figure that SAABC converges fast to the global
optima for functions f1, f2, f3 and f4, while for f5 and f8, ABC and GABC converge fast,
respectively.

We also compare the convergence speed of the considered algorithms by measuring the
AFEs. A smaller AFEs means higher convergence speed. In order to minimize the effect
of the stochastic nature of the algorithms, the reported function evaluations for each test
problem are averaged over 100 runs. In order to compare convergence speeds, we use the
AR [29] which is defined as follows, based on the AFEs for the two algorithms ALG O and
S AABC :

AR = AFEALGO

AFESAABC
(5)

where ALGO ∈ {ABC,GABC,BSFABC,MABC} and AR > 1 means that SAABC is
faster than theALGO. In order to investigate theAR of the proposed algorithm, as compared
to the basic ABC and its variants, results of Table 2 are analysed and the value of AR is
calculated using Equation (5). Table 4 shows a clear comparison between SAABC andABC,
SAABC and GABC, SAABC and BSFABC, and SAABC and MABC in terms of AR. It is
clear from Table 4 that the convergence speed of SAABC is faster among all the considered
algorithms.

1528 J.C. Bansal et al.

5 10 15 20
10−5

10−4

10−3

10−2

10−1

Iteration

Fu
nc

tio
n

Va
lu

e

ABC
GABC
BSFABC
MABC
SAABC

10 20 30 40 50 60
10−2

10−1

100

101

102

103

104

Iteration

Fu
nt

io
n

Va
lu

e

ABC
GABC
BSFABC
MABC
SAABC

0 50 100 150
10−3

10−2

10−1

Iteration

Fu
nc

tio
n

Va
lu

e

ABC
GABC
BSFABC
MABC
SAABC

0 10 20 30 40 50 60 70 80 90
102

104

106

108

1010

Iterations

Fu
nc

tio
n

Va
lu

e

ABC
GABC
BSFABC
MABC
SAABC

10 20 30 40 50 60 70
103

104

Iterations

Fu
nc

tio
n

Va
lu

e

ABC
GABC
BSFABC
MABC
SAABC

10 20 30 40 50 60 70
−180

−160

−140

−120

−100

−80

−60

−40

−20

Iterations

Fu
nc

tio
n

Va
lu

e

ABC
GABC
BSFABC
MABC
SAABC

(a)

(c)

(e)

(d)

(b)

(f)

Figure 2. Convergence performance of the considered ABCs on (a) f1, (b) f2, (c) f3, (d) f4, (e) f5
and (f) f8 test functions.

For the purpose of comparison in terms of consolidated performance, boxplot analyses
have been carried out for all the considered algorithms. The empirical distribution of data is
efficiently represented graphically by the boxplot analysis tool.[30] The boxplots for ABC,
GABC, BSFABC, MABC and SAABC are shown in Figure 3(a). It is clear from this figure
that SAABC is better than the considered algorithms as interquartile range and median are
comparatively low.

Further, to compare the considered algorithms, by giving weighted importance to the
SR, the SD and the AFEs, performance indices (PI) are calculated.[31] The values of

Optimization 1529

Table 4. Acceleration Rate (AR) of S AABC as compared to the basic ABC, GABC, BSFABC and
MABC.

TP ABC GABC BSFABC MABC

f1 9.099020153 5.130403891 26.17441713 5.700918159
f2 15.54553902 11.80422892 11.96753025 11.53013426
f3 4.135105744 2.080034633 3.387501454 4.289474034
f4 1.529966836 0.862034189 1.563615798 1.5722235
f5 1.016350003 0.629813384 2.043412076 0.981225686
f6 0.999942957 0.999918409 1.000067042 0.999960105
f7 1.000021347 0.999956455 1.000051844 0.999955855
f8 0.602894556 0.374825368 1.12892641 0.839576061
f9 0.880088182 0.491614833 1.638926069 0.744773902
f10 29.60050969 1.06572326 3.780034374 3.833050473
f11 15.89981642 4.110577071 0.427641201 17.51433804
f12 1.499532859 0.813133335 2.877711728 2.433753247
f13 1.685157898 0.898558262 1.384689838 2.459160383
f14 12.01448991 2.516949069 7.708312063 4.427324668
f15 1.735491646 0.931459874 3.300220944 12.1496978
f16 1.29407922 1.176319986 1.584590116 4.779630303

Note: TP: test problems.

(a) (b)

(c) (d)

Figure 3. (a) Boxplot graphs for average function evaluation, performance index for test problems:
(b) for case (1), (c) for case (2) and (d) for case (3).

1530 J.C. Bansal et al.

PI for the ABC, SAABC, GABC, BSFABC and MABC are calculated using following
equations:

P I = 1

Np

Np∑
i=1

(
k1α

i
1 + k2α

i
2 + k3α

i
3

)

where αi
1 = Sri

T ri ; αi
2 =

{
M f i

A f i , if Sri > 0.

0, if Sri = 0.
; and αi

3 = Moi

Aoi i = 1, 2, . . . , Np

• Sri = Successful simulations/runs of i th problem.
• T ri = Total simulations of i th problem.
• M f i = Minimum of AFEs used for obtaining the required solution of i th problem.
• A f i = AFEs used for obtaining the required solution of i th problem.
• Moi = Minimum of SD obtained for the i th problem.
• Aoi = SD obtained by an algorithm for the i th problem.
• Np = Total number of optimization problems evaluated.

The weights assigned to the SR, the AFEs and the SD are represented by k1, k2 and k3,
respectively, where k1 + k2 + k3 = 1 and 0 ≤ k1, k2, k3 ≤ 1. To calculate the P I s, equal
weights are assigned to two variables, while weight of the remaining variable vary from 0
to 1 as given in [31]. Following are the resultant cases:

(1) k1 = W, k2 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

(2) k2 = W, k1 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

(3) k3 = W, k1 = k2 = 1−W
2 , 0 ≤ W ≤ 1

The graphs corresponding to each of the cases (1), (2) and (3) for ABC, SAABC,
GABC, BSFABC and MABC are shown in Figure 3(b)–(d), respectively. In these figures,
the weights k1, k2 and k3 are represented by horizontal axis, while the PI is represented by
the vertical axis.

In case (1), AFEs and SD are given equal weights. P I s of the considered algorithms
are superimposed in Figure 3(b) for comparison of the performance. It is observed that PI
of SAABC is higher than the considered algorithms. In case (2), equal weights are assigned
to SR and SD and in case (3), equal weights are assigned to SR and AFEs. It is clear from
Figure 3(c) and (d) that the algorithms perform same as in case (1).

After this intensive statistical analysis of numerical results of SAABC, ABC and some
variants of ABC, it can be stated that the proposed SAABC is quite good candidate to be
an algorithm for faster convergence and high probability of reaching to the global optima.

6. Conclusion

In this paper, to improve the exploitation in ABC, a self-adaptive solution update strategy
is proposed and incorporated with ABC. Further, to give more time to better solutions
to update themselves, ‘limit’ parameter of ABC is modified self-adaptively based on the
fitness of the solutions. This setting of ‘limit’ makes low fit solutions less stable, which
helps in exploration. To enhance the exploration, scout bees are increased. The so obtained
MABC is named as, self-adaptive ABC (SAABC). It is shown that in the proposed strategy,

Optimization 1531

better solutions exploit the search space in their neighbourhood, while less fit solutions
explore the search area. Further, the proposed algorithm is compared to the recent variants
of ABC, namely GABC, BSFABC and MABC. With the help of numerical experiments
over test problems, it is shown that the SAABC is a competitive algorithm to the considered
algorithms in terms of reliability, efficiency and accuracy.

References

[1] Dorigo M, Di Caro G. Ant colony optimization: a new meta-heuristic. In: Proceedings of the
1999 Congress on Evolutionary Computation, 1999. CEC 99. Vol. 2. IEEE; 1999, Washington,
DC.

[2] Kennedy J, Eberhart R. Particle swarm optimization. In: Neural networks, 1995. Proceedings
IEEE international conference. Vol. 4. IEEE; 1995, Perth, Australia. p. 1942–1948.

[3] Price KV, Storn RM, Lampinen JA. Differential evolution: a practical approach to global
optimization. Berlin: Springer Verlag; 2005.

[4] Vesterstrom J, Thomsen R. A comparative study of differential evolution, particle swarm
optimization, and evolutionary algorithms on numerical benchmark problems. In: Congress on
Evolutionary Computation, 2004. CEC2004. Vol. 2, IEEE; Denmark: Aarhus University; 2004.
p. 1980–1987.

[5] Kim S-S, Byeon J-H, Liu H, Abraham A, McLoone S. Optimal job scheduling in grid computing
using efficient binary artificial bee colony optimization. Soft Comput. 2013;17:867–882.

[6] Passino KM. Biomimicry of bacterial foraging for distributed optimization and control. Control
Syst. Mag. IEEE. 2002;22:52–67.

[7] Karaboga D. An idea based on honey bee swarm for numerical optimization. Tech. Rep. TR06.
Erciyes: Erciyes University Press; 2005.

[8] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Appl. Math.
Comput. 2009;214:108–132.

[9] Zhu G, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function
optimization. Appl. Math. Comput. 2010;217:3166–3173.

[10] Banharnsakun A, Achalakul T, Sirinaovakul B. The best-so-far selection in artificial bee colony
algorithm. Appl. Soft Comput. 2011;11:2888–2901.

[11] Akay B, Karaboga D. A modified ABC algorithm for real-parameter optimization. Inf. Sci.
2012;192:120–142.

[12] Gao W, Liu S. A modified artificial bee colony algorithm. Comput. Oper. Res. 2011;9:687–697.
[13] Haijun D, Qingxian F. Bee colony algorithm for the function optimization. Science Paper Online.

August 2008.
[14] Tsai PW, Pan JS, Liao BY, Chu SC. Enhanced artificial bee colony optimization. Int. J. Innovative

Comput. Inf. Control. 2009;5:5081–5092.
[15] Baykasoglu A, Ozbakir L, Tapkan. P. Artificial bee colony algorithm and its application to

generalized assignment problem. In: Chan FTS, Tiwari MK, editors. Swarm intelligence:
focus on ant and particle swarm optimization. Vienna: Itech Education and Publishing; 2007.
p. 113–144.

[16] Karaboga D, Akay B. A modified artificial bee colony (ABC) algorithm for constrained
optimization problems. Appl. Soft Comput. 2011;11:3021–3031.

[17] Kalyanmoy Deb. An efficient constraint handling method for genetic algorithms. Comput. Meth.
Appl. Mech. Eng. 2000;186:311–338.

[18] Alam MS, Ul Kabir MW, Islam MM. Self-adaptation of mutation step size in artificial bee
colony algorithm for continuous function optimization. In: 13th International Conference
on Computer and Information Technology (ICCIT), 2010; Dhaka: Ahsanullah University of
Science & Technology; 2010. IEEE. p. 69–74.

1532 J.C. Bansal et al.

[19] El-Abd M.Acooperative approach to the artificial bee colony algorithm. In: 2010 IEEE Congress
on Evolutionary Computation (CEC). IEEE; Canberra: University of New South Wales atADFA;
2010. p. 1–5.

[20] Kang F, Li J, Ma Z. Rosenbrock artificial bee colony algorithm for accurate global optimization
of numerical functions. Inf. Sci. 2011;181:3508–3531.

[21] Goldberg DE. Genetic algorithms in search, optimization, and machine learning. Boston (MA):
Addison-Wesley; 1989.

[22] Storn R, Price K. Differential evolution – a simple and efficient adaptive scheme for global
optimization over continuous spaces. J. Global Optim. 1997;11:341–359.

[23] Hofmann K, Whiteson S, de Rijke M. Balancing exploration and exploitation in learning to rank
online. Adv. Inf. Retrieval. 2011;5:251–263.

[24] Ali MM, Khompatraporn C, Zabinsky ZB. A numerical evaluation of several stochastic
algorithms on selected continuous global optimization test problems. J. Global Optim.
2005;31:635–672.

[25] Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S. Problem definitions and
evaluation criteria for the CEC 2005 special session on real-parameter optimization. In: CEC
2005; Australia: Queensland University; 2005.

[26] Diwold K, Aderhold A, Scheidler A, Middendorf M. Performance evaluation of artificial bee
colony optimization and new selection schemes. Memetic Comput. 2011;3:1–14.

[27] El-Abd M. Performance assessment of foraging algorithms vs. evolutionary algorithms. Inf. Sci.
2011;182:243–263.

[28] Karaboga D, Basturk B. Artificial bee colony (ABC) optimization algorithm for solving
constrained optimization problems. In: Foundations of fuzzy logic and soft computing; Cancun;
2007. p. 789–798.

[29] Rahnamayan S, Tizhoosh HR, Salama MMA. Opposition-based differential evolution. IEEE
Trans. Evol. Comput. 2008;12:64–79.

[30] Williamson DF, Parker RA, Kendrick JS. The box plot: a simple visual method to interpret data.
Ann. Internal Med. 1989;110:916–921.

[31] Deep K, Thakur M. A new crossover operator for real coded genetic algorithms. Appl. Math.
Comput. 2007;188:895–911.

	Abstract
	1. Introduction
	2. ABC algorithm
	2.1. Initialization of the swarm
	2.2. Employed bee phase
	2.3. Onlooker bees phase
	2.4. Scout bees phase
	2.5. Main steps of the ABC algorithm

	3. Brief review on basic improvements in ABC
	4. Self-adaptive ABC
	4.1. Discussion

	5. Experimental results and discussion
	5.1. Test problems under consideration
	5.2. Experimental setting
	5.3. Results comparison

	6. Conclusion
	References

