
Memetic Comp. (2015) 7:215–230
DOI 10.1007/s12293-015-0158-x

REGULAR RESEARCH PAPER

Accelerating Artificial Bee Colony algorithm with adaptive local
search

Shimpi Singh Jadon · Jagdish Chand Bansal ·
Ritu Tiwari · Harish Sharma

Received: 25 March 2014 / Accepted: 5 February 2015 / Published online: 25 February 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Artificial Bee Colony (ABC) algorithm has been
emerged as one of the latest Swarm Intelligence based algo-
rithm. Though, ABC is a competitive algorithm as compared
to many other optimization techniques, the drawbacks like
preference on exploration at the cost of exploitation and skip-
ping the true solution due to large step sizes, are also associ-
ated with it. In this paper, two modifications are proposed in
the basic version of ABC to deal with these drawbacks: solu-
tion update strategy is modified by incorporating the role of
fitness of the solutions and a local search based on greedy log-
arithmic decreasing step size is applied. The modified ABC
is named as accelerating ABC with an adaptive local search
(AABCLS). The former change is incorporated to guide to
not so good solutions about the directions for position update,
while the latter modification concentrates only on exploita-
tion of the available information of the search space. To val-
idate the performance of the proposed algorithm AABCLS,
30 benchmark optimization problems of different complexi-
ties are considered and results comparison section shows the
clear superiority of the proposed modification over the Basic
ABC and the other recent variants namely, Best-So-Far ABC

S. S. Jadon · R. Tiwari
ABV-Indian Institute of Information Technology andManagement,
Gwalior, India
e-mail: shimpisingh2k6@gmail.com

R. Tiwari
e-mail: tiwariritu2@gmail.com

J. C. Bansal (B)
South Asian University, New Delhi, India
e-mail: jcbansal@gmail.com

H. Sharma
Vardhaman Mahaveer Open University, Kota, India
e-mail: harish.sharma0107@gmail.com

(BSFABC), Gbest guided ABC (GABC), Opposition based
levy flight ABC (OBLFABC) and Modified ABC (MABC).

Keywords Artificial Bee Colony · Memetic algorithm ·
Optimization · Exploration–exploitation · Swarm Intelli-
gence

1 Introduction

Swarm Intelligence is one of the recent outcome of the
research in the field of Nature inspired algorithms. The col-
laboration among social insects while searching for food and
creation of the intelligent structures is known as Swarm Intel-
ligence. Ant colony optimization (ACO) [12], particle swarm
optimization (PSO) [27], bacterial foraging optimization
(BFO) [39] are some examples of swarm intelligence based
optimization techniques. The work presented in the articles
[12,27,40,53] proved its efficiency and potential to deal with
non-linear, non convex and discrete optimization problems.
Karaboga [24] contributed the recent addition to this cate-
gory, known as Artificial Bee Colony (ABC) optimization
algorithm. The ABC algorithm mimics the foraging behav-
ior of honey bees while they search for food. ABC is a simple
and population based optimization algorithm. Here the pop-
ulation consists of possible solutions in terms of food sources
for honey bees. A food source’s fitness is measured in terms
of nectar amount which the food source contains. The swarm
updating in ABC is due to two processes namely, the varia-
tion process and the selection process which are responsible
for exploration and exploitation, respectively. It is observed
that the position update equation of ABC algorithm is good
at exploration but poor at exploitation [56] i.e, ABC has
not a proper balance between exploration and exploitation.
Therefore these drawbacks require a modification in position

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-015-0158-x&domain=pdf

216 Memetic Comp. (2015) 7:215–230

update equation and/or a local search approach to be imple-
mented in ABC. These drawbacks have also been addressed
in earlier research. To enhance the exploitation, Gao and
Liu [16] improved position update equation of ABC such
that the bee searches only in neighborhood of the previous
iteration’s best solution. Banharnsakun et al. [3] proposed
the best-so-far selection in ABC algorithm and incorporated
three major changes: The best-so-far method, an adjustable
search radius, and an objective-value-based comparison in
ABC.To solve constrained optimization problems,Karaboga
and Akay [26] used Deb’s rules consisting of three simple
heuristic rules and a probabilistic selection scheme in ABC
algorithm. Karaboga [24] examined and suggested that the
limit should be taken as SN × D, where, SN is the popu-
lation size and D is the dimension of the problem and coef-
ficient φi j in position update equation should be adopted in
the range of [−1, 1]. Further, Kang et al. [22] introduced
exploitation phase in ABC using Rosenbrock’s rotational
direction method and named modified ABC as Rosenbrock
ABC (RABC).

In this paper two modifications in ABC are proposed.
First, position update equation of basic ABC is modified
based on the fitness such that the solutions having rela-
tively low fitness search near the global best solution of
the current swarm only and other solutions having better
fitness include information of the global best solution and
a random solution in their position update procedure. Sec-
ond and an effective modification is the incorporation of a
local search strategy in ABC based on greedy and logarithm
decreasing range of step size. This local search strategy is
inspired from logarithmic decreasing inertia weight strategy
proposed in [17]. Our proposed modified ABC variant is
named as Accelerating ABC with an adaptive local search
(AABCLS).

The rest of the paper is organized as follows: Sect. 2 sum-
marizes different local search strategies which have been
incorporated in various optimization algorithms. ABC algo-
rithm is explained in Sect. 3. Section 4 presents the modified
ABC called AABCLS algorithm. The experimental results
and discussions are presented in Sect. 5. Finally, the conclu-
sion is drawn in Sect. 6.

2 Brief review on local search strategies

In the field of optimization, local search strategy is an
interesting and efficient help for population based opti-
mization methods while solving complex problems [37].
The population based optimization algorithm hybridized
with local improvement strategy is termed as Memetic
Algorithm (MA), initially by Moscato [32]. The tradi-
tional examples of population-based methods are Genetic
Algorithms, Genetic Programming and other Evolutionary

Algorithms, on the other hand Tabu Search and Simu-
lated Annealing are two prominent local search represen-
tatives. The global search is expected to detect the global
optimum while the obvious role of local search algorithm
must be to converge to the closest local optimum. Local
search strategies can be stochastic/deterministic, single/multi
agent based, steepest descent/greedy approach based pro-
cedures [34]. Therefore, in order to maintain the proper
balance between exploration and exploitation in an algo-
rithmic process, a local search strategy is highly required
to be incorporated within the basic population based algo-
rithm.

Nowadays, researchers are continuously working to
enhance the exploitation capability of the population based
algorithms by hybridizing the various local search strategies
within these [4,8,21,31,33,38,45,47,54]. Further, Memetic
Algorithms are also applied to solve complex optimiza-
tion problems like continuous optimization [36,38], flow
shop scheduling [21], machine learning [7,20,44], multiob-
jective optimization [18,28,50], combinatorial optimization
[21,42,51], bioinformatics [15,43], scheduling and routing
[6], etc.

In the past, few more efforts have been made to incor-
porate a local search within ABC. Thammano and Phu-ang
[52] proposed a hybrid ABC algorithm for solving the flex-
ible job shop scheduling problem in which they incorpo-
rated five different local search strategies at different phases
of the ABC algorithm to accomplish different purposes. To
initialize the individual solution, the harmony search algo-
rithm is considered. To search another solution in the neigh-
borhood of a particular solution, the iterated local search
technique, the scatter search technique, and the filter and
fan algorithm are used. Finally, the simulated annealing
algorithm is employed on a solution which is trapped in
a local optimum. Sharma et al. [46] incorporated a power
law-based local search strategy with DE. Fister et al. [14]
developed a memetic ABC (MABC) which is hybridized
with two local search heuristics: the Nelder–Mead algo-
rithm (NMA) for exploration purpose and the random walk
with direction exploitation (RWDE) for exploitation pur-
pose. Here stochastic adaptive rule as specified by Neri [9] is
applied for balancing the exploration and exploitation. Tarun
et al. [48] developed an algorithm called improved local
search in ABC using golden section search where golden
section method is employed in onlooker phase. Ong and
Keane [36] proposed various local search techniques dur-
ing a Memetic Algorithm search in the sprit of Lamarck-
ian learning. Further they also introduced different strategies
for MAs control which choose one local search amongst the
others at runtime for the exploitation of the existing solu-
tion. Nguyen et al. [35] presented a different probabilistic
memetic framework that models MAs as a process involving
the decision of embracing the separate actions of evolution

123

Memetic Comp. (2015) 7:215–230 217

or individual learning and analyzed the probability of each
process in locating the global optimum. Further, the frame-
work balances evolution and individual learning by govern-
ing the learning intensity of each individual according to
the theoretical upper bound derived while the search pro-
gresses.

A Hooke and Jeeves method [19] based local search is
incorporated in basic ABC algorithm by Kang et al. [23]
which is known as (HJABC) for numerical optimization. In
the HJABC, the calculation of fitness function (f i ti) of basic
ABC is also changed as in Eq. (1).

f i ti = 2 − SP + 2(SP − 1)(pi − 1)

N P − 1
, (1)

here N P is the total number of solutions, pi is the posi-
tion of the solution in the whole population after ranking,
SP ∈ [1.0, 2.0] is the selection pressure. Further, Mezura-
Montes and Velez-Koeppel [30] introduced a Elitist ABC
with two different local search strategies and which one out
of both strategies will work at a time, is regulated through
the count on function evaluations. Here, best solution in the
current swarm is improved by generating a set of 1000 new
food sources in its neighborhood. Kang et al. [22] proposed a
Rosenbrock ABC (RABC) where exploitation phase is intro-
duced in the ABC using Rosenbrock’s rotational direction
method.

3 Artificial Bee Colony (ABC) algorithm

The ABC algorithm is a population based Swarm Intelli-
gence algorithm which is inspired by food foraging behav-
ior of honey bees. In ABC, each solution is known as food
source of honey bees whose fitness is determined in terms
of the quality of the food source. Artificial Bee Colony is
made of three groups of some bees: employed bees, onlooker
bees and scout bees. The number of employed and onlooker
bees is equal. The employed bees search the food source in
the environment and store the information like the quality
and the distance of the food source from the hive. Onlooker
bees wait in the hive for employed bees and after collecting
information from them, they start searching in neighborhood
of those food sources which have better nectar. If any food
source is abandoned then scout bee finds new food source
randomly in the search space. While searching the solution
of any optimization problem, ABC algorithm first initializes
ABC parameters and swarm then it requires the repetitive
iterations of the three phases, namely employed bee phase,
onlooker bee phase and scout bee phase. The pseudo-code of
the ABC algorithm is shown in Algorithm 1 [25]. Working
procedure of each phase for ABC algorithm is explained in
the Sects. 3.1–3.4.

Algorithm 1 Artificial Bee Colony Algorithm
Initialize the parameters and swarm members;
while Termination criteria not satisfied do
Step 1: Employed bee phase for generating new food sources using
Equation 3;
Step 2: Onlooker bees phase for updating the food sources using
Equation 3 depending on their probabilities described in Equation
4;
Step 3: Scout bee phase for discovering the new food sources using
Equation 2 in place of abandoned food sources;
Step 4: Memorize the best food source found so far;

end while
Output the best solution found so far.

3.1 Initialization of the Swarm

The first step in ABC is to initialize the solutions (food
sources). If D is the number of variables in the optimiza-
tion problem then each food source xi (i = 1, 2, . . . , SN) is
a D-dimensional vector among the SN food sources and is
generated using a uniform distribution as:

xi j = xminj + rand[0, 1](xmax j − xminj) (2)

here xi represents the i th food source in the swarm, xminj

and xmax j are bounds of xi in j th dimension and rand[0, 1]
is a uniformly distributed random number in the range [0, 1].
After initialization phase ABC requires the cycle of the three
phases, namely employed bee phase, onlooker bee phase and
scout bee phase to be executed.

3.2 Employed bee phase

In this phase, i th food source’s position is updated using
following Equation:

vi j = xi j + φi j (xi j − xk j) (3)

here k ∈ {1, 2, . . . , SN } and j ∈ {1, 2, . . . , D} are randomly
chosen indices and k �= i .φi j is a randomnumber in the range
[−1,1]. After generating new position vi , the position with
better fitness between the newly generated vi and the original
xi , is selected.

3.3 Onlooker bees phase

In this phase, employed bees share the information associated
with its food source like quality (nectar) and position of the
food sourcewith the onlooker bees in the hive. Onlooker bees
evaluate the available information about the food source and
based on the food source’s fitness, the onlooker bees select
a food source with a probability probi . Here probi can be
calculated as function of fitness (there may be some other):

123

218 Memetic Comp. (2015) 7:215–230

probi (G) = 0.9 × f i tnessi
max f i t

+ 0.1, (4)

here f i tnessi is the fitness value of the i th solution (food
source) and max f i t is the maximum fitness amongst all the
food sources. Based on this probability, onlooker selects a
food source and modifies it using the same Eq. (3) as in
employed bee phase. Again by applying greedy selection, if
the fitness is higher than the previous one, the onlooker bee
stores the new food source in its memory and forgets the old
one.

3.4 Scout bees phase

If a bee’s food source is not updated for a fixed number of iter-
ations, then that food source is considered to be abandoned
and the corresponding bee becomes a scout bee. In this phase,
the abandoned food source is replaced by a randomly chosen
food source within the search space using the Eq. (2) as in
initialization phase. In ABC, the number of iterations after
which a particular food source becomes abandoned is known
as limit and is a crucial control parameter.

4 Accelerating Artificial Bee Colony algorithm with an
adaptive local search

In this section, the proposed Accelerating ABC Algorithm
with an adaptive local search (AABCLS) is introduced in
detail. To be specific, in order to better guide the bees during
the searching process, the existing ABC frame-work is mod-
ified. Here two modifications in ABC are proposed: first, the
position update equation for solutions is modified and sec-
ond, a new self adaptive local search strategy is incorporated
with ABC. An algorithm which establishes a proper balance
between exploration and exploitation capabilities, is consid-
ered as an efficient algorithm. In other words, an algorithm
is regarded as reliable and widely applicable if it can balance
exploration and exploitation during the search process. ABC
algorithm achieves a good solution at a significantly faster
rate, but it is weak in refining the already explored search
space. Moreover, basic ABC itself has some drawbacks, like
stop proceeding toward the global optimum even though the
population has not converged to a local optimum [25]. These
drawbacks make ABC a candidate to modify so that it can
search solution more efficiently. The motivation for the pro-
posed modifications in ABC can be described as follows:

1. Whymodification is required in position update equa-
tion? In ABC, at any instance, a solution is updated
through information flow from other solutions of the
swarm. This position updating process uses a linear com-
bination of current position of the potential solutionwhich

is going to be updated and position of a randomly selected
solution as step size with a random coefficient φi j ∈ [-
1, 1]. This process plays an important role to decide the
quality of the new solution. If the current solution is far
from randomly selected solution and absolute value of φi j

is also high then the change will be large enough to jump
the true optima. On the other hand, small change will
decrease the convergence rate of the whole ABC process.
Further, It is also suggested in literatures [25,56] that basic
ABC itself has some drawbacks, like stop proceeding
toward the global optimum even though the population
has not converged to a local optimum and it is observed
that the position update equation of ABC algorithm is
good at exploration but poor at exploitation.Karaboga and
Akay [25] also analyzed the various variants of ABC and
found that the ABC shows poor performance and remains
inefficient to balance the exploration and exploitation
capabilities of the search space. Therefore, the amount
of change in the solution (say, step size) should be taken
care of to balance the exploration and exploitation capa-
bilities of the ABC algorithm. But this balance can not be
done manually, as it consists of random coefficient φi j .

2. Why an adaptive local search is incorporated with
ABC?Asmentioned earlier, ifφi j and difference between
randomly selected solution and current solution is high
in position update equation of ABC then there will be
sufficient chance that modified solution jump the global
optima. In this situation, some local search strategy can
help the search procedure. During the iterations, local
search algorithm illustrates very strong exploitation capa-
bility [54]. Therefore, the exploitation capability of ABC
algorithm may be enhanced by incorporating a local
search strategy with ABC algorithm. In this way, the
exploration and exploitation capability of ABC algorithm
could be balanced as the global search capability of the
ABC algorithm explores the search space or tries to iden-
tify the most promising search space regions, while the
local search strategy will exploit the identified search
space.

Hence, in this paper, the basic ABC is modified in two
ways:

– In the position update equation of basic ABC (refer Eq.
3), individual candidate modifies its position by mov-
ing towards (or away from) a randomly selected solu-
tion. This randomly selected solution has equal chance
to be good or bad, so there is no guaranty that new
candidate position will be better than the last one. This
scheme improves the exploration at the cost of exploita-
tion. Hence, the solutions should not be allowed to follow
blindly a randomly selected solution. Instead of this, it

123

Memetic Comp. (2015) 7:215–230 219

may be a better strategy to compel less fit solutions to
follow the best ever found solution through which the
exploitation capability of ABC may be improved. Fur-
ther, comparatively high fit solutions may be encouraged
to use the information from best as well as a randomly
selected individual to avoid premature convergence and
stagnation. In this way, the higher fit solutions will be
updated through a weighted sum of best and randomly
selected solution and hencewill not converge too quickly.
In this strategy, to classify less and higher fit solutions,
a probability probi (refer Eq. 4), which is a function of
fitness, is applied.
In the proposedmodification, if the value of probi is<0.5
then the i th solution is considered less fit solution than
the other solutions in the swarm. So instead of searching
around a randomly selected solution, this class of solu-
tions (solutions for which probi < 0.5) moves towards
the best solution found so far in the swarm. For these
solutions, the random solution xk in the position update
equation of basic ABC is replaced by the best solution
(xbest) found so far and assigned a positive weight ψi j to
it in the interval (0,C) as explained in Eq. (5), where C
is a positive constant. For detailed description of C refer
to [56]. On the other hand, relatively fit solutions (solu-
tions for which probi ≥ 0.5) are not allowed to blindly
follow the direction of best solution in the swarm as it
may be a local optimum and solutions may prematurely
converge to it. Therefore, the position update equation of
these solutions also includes the learning component of
the basic ABC. The proposed position update equation is
explained as below:

vi j =

⎧
⎪⎨

⎪⎩

xi j + ψi j (xbest j − xi j), if probi < 0.5.

xi j + φi j (xi j − xk j)

+ψi j (xbest j − xi j), otherwise.

(5)

– In the second modification, a self adaptive local search
strategy is proposed and incorporated with the ABC.
The proposed local search strategy is inspired from log-
arithmic decreasing inertia weight scheme [17]. In the
proposed local search strategy, the required step size
(i.e.,φ(xcurrent − xrandom)) to update an individual is
reduced self adaptively to exploit the search area in the
proximity of the best solution. Thus, the proposed strat-
egy is named as self adaptive local search (SALS). In
SALS, the step size is reduced as a logarithmic func-
tion of iteration counter as shown in Eqs. (7) and (8). In
SALS, the random component (φi j) of basic ABC algo-
rithm is optimized to direct the best solution to update
its position. This process can be seen as an optimization
problem solver which minimizes the unimodal continu-
ous objective function f (φi j) in the direction provided

by the best solution xbest over the variables w1, w2 in
the interval [−1, 1] or simply it optimizes the following
mathematical optimization problem:

min f (φ) in [−1, 1]; (6)

SALS process starts with initial range (w1 = −1, w2 =
1) and generates twopoints in this interval by diminishing
the edges of the range through a greedy way using the
Eqs. (7) and (8). At a time, either of these Equations
is executed depends which f (w1) or f (w2) has better
fitness. If w1 provides better fitness then edge w2 of the
range shrinks towards w1 otherwise w1 shifts itself near
tow2. The detailed implementation of SALS can be seen
in Algorithm 2.

w1 = w1 + (w2 − w1) × log(1 + t/maxiter), (7)

w2 = w2 − (w2 − w1) × log(1 + t/maxiter), (8)

where t and maxiter are the current iteration counter
and maximum allowable iterations in the local search
algorithm respectively.

Algorithm 2 Self Adaptive Local Search (SALS) Strategy:
Input: optimization function Min f (x), the best solution xbest ;
Initialize termination parameters ε, maximum number of iteration
countermaxiter and variablesw1 = −1,w2 = 1 and i tercount = 1;
while (|w1 − w2| > ε and i tercount ≤ maxiter) do
Generate two new solutions xnew1 and xnew2 from xbest by using
w1 and w2, respectively using Algorithm 3;
Calculate f (xnew1) and f (xnew2);
if f (xnew1) < f (xnew2) then

w2 = w2 − (w2 − w1) × log(1 + i tercount/maxiter);
if f (xnew1) < f (xbest) then
xbest = xnew1;

end if
else

w1 = w1 + (w2 − w1) × log(1 + i tercount/maxiter);
if f (xnew2) < f (xbest) then
xbest = xnew2;

end if
end if
Set i tercount = i tercount + 1;

end while

Algorithm 2 terminates when either iteration counter
exceeds the maximum iterations allowable in local search
or absolute difference between w1 and w2 falls below a user
defined parameter ε. In Algorithm 3, D is the dimension of
the problem,U (0, 1) is a uniformly distributed random num-
ber in the range (0, 1), pr is a perturbation rate and is used to
control the amount of disturbance in the best solution xbest
and xk is a randomly selected solution from the population.
For details, see the parameter settings in Sect. 5.1.

123

220 Memetic Comp. (2015) 7:215–230

Algorithm 3 New solution generation:
Input: w and best solution xbest ;
for j = 1 to D do
if U (0, 1) < pr then
xnew j = xbest j + w(xbest j − xk j);

else
xnew j = xbest j ;

end if
end for
Return xnew

−1 −0.5 0 0.5 1
0

2

4

6

8

10

12

14

Range of (w
1
, w

2
)

L
o

ca
l S

ea
rc

h
 It

er
at

io
n

s

w
1

w
2

Fig. 1 Changes in the range [w1, w2] during SALS in two dimension
search space for f26, refer Table 1

As the modifications are proposed to improve the conver-
gence speed of ABC, while maintaining the diversity in the
swarm. Therefore, the proposed strategy is named as “Accel-
erating ABC with an adaptive Local Search” (AABCLS).

It is clear fromAlgorithm 2 that only the best individual of
the current swarm updates itself in its neighborhood. Further
analyses of the proposed local search may be done through
Figs. 1, 2 and 3. Figure 1 presents the variation of the range
[w1, w2] during the local search process. It is clear from
this figure that the given range is iteratively reducing based
on the movement of the best individual. Figure 2 shows the
variations in the step size of the best individual during the
local search. Figure 3 shows the movement of best individual
during the local search in two dimension search space for
Goldstein–Price function (f26), (refer Table 1).

The AABCLS is composed of four phases: employed bee
phase, onlooker bee phase, scout bee phase and self adaptive
local search phase. The scout bee phase is same as it was in
basic ABC. The employed bee phase and onlooker bee phase
are also same as in basic ABC except the position update
equation. The position update equations of these phases have
been replaced with the proposed position update Eq. (5). The
last phase, namely self adaptive local searchphase is executed
after the completion of scout bee phase. The pseudo-code of
the proposed AABCLS algorithm is shown in Algorithm 4.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Local Search Iterations

S
te

p
 S

iz
e

o
f

B
es

t
In

d
iv

id
u

al
d

u
ri

n
g

 L
o

ca
l S

ea
rc

h

Fig. 2 Variation in step size of best individual during SALS in two
dimension search space for f26, refer Table 1

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

x
1

x 2

Starting Point

End Point

Fig. 3 Best solution movement during SALS in two dimension search
space for f26, refer Table 1

Algorithm 4 Accelerating ABC using adaptive local search
(AABCLS):
Initialize the population and control parameters;
while Termination criteria is not satisfied do
Step 1: Employed bee phase to generate new food sources for each
bee using proposed position update equation (5).
Step 2: Onlooker bees phase to update the food sources using Equa-
tion (5) based on their profitability.
Step 3: Scout bee phase to determine the new food sources for
exhausted food sources.
Step 4: Apply self adaptive local search strategy phase to exploit
the best solution found so far using Algorithm 2

end while
Return the best solution.

5 Experimental results and discussion

In this section, 30 benchmark functions which are used
to investigate the algorithms’ searching performance are
described. The set of all the benchmark functions used,
includes uni-model, multi-model, separable and non sepa-
rable problems. Next, the detail of the simulation settings for
all involvedABC’s recent popular variants Best-So-Far ABC

123

Memetic Comp. (2015) 7:215–230 221

(BSFABC) [3], Gbest-guided ABC (GABC) [56], Opposi-
tion Based Lévy Flight ABC (OBLFABC) [45] andModified
ABC (MABC) [1] are provided. Finally, the experimental
results after analyzing and comparing the performance of the
proposed algorithm AABCLS with ABC algorithm and its
recent variants through distinct statistical tests are presented.

Table 1 includes 30 mathematical optimization problems
(f1 to f30) of different characteristics and complexities.
These all problems are continuous in nature. Test prob-
lems f1 − f21 and f26 − f30 have been taken from [2]
and test problems f22 − f25 have been taken from [49]
with the associated offset values. Authors decided to use
this set of problems because it is versatile enough in nature
which includes almost all type of problems like unimodel—
multimodel, separable—nonseparable, scalable—non scal-
able and biased—unbiased optimization problems and if any
algorithm can solve these problems of different character-
istics then that algorithm may be considered as an efficient
algorithm.

5.1 Experimental setting

The results obtained from the proposed AABCLS are stored
in the form of success rate (SR), average number of function
evaluations (AFE), standard deviation (SD) of the fitness and
mean error (ME). Here SR represents the number of times,
algorithm achieved the function optimawith acceptable error

in 100 runs i.e, if an algorithm is applied 100 times to solve
a problem then SR of the algorithm is the number of times
it finds the optimum solution or a solution with acceptable
error defined in Table 1 for that problem and AFE is the
average number of function evaluations called in 100 runs
by the algorithm to reach at the termination criteria. Results
for these test problems (Table 1) are also obtained from the
basic ABC and its recent variants of ABC namely, BSFABC,
GABC, OBLFABC and MABC for the comparison purpose.
The following parameter setting is adoptedwhile implement-
ing our proposed and other considered algorithms to solve
the problems:

– The number of simulations/run =100,
– Colony size N P = 50 [11,13] and Number of food
sources SN = N P/2,

– All random numbers are generated using uniform proba-
bility distribution,

– φi j = rand[−1, 1] and limit=Dimension×Number of
food sources=D × SN [1,26],

– C = 1.5 [56],

– The terminating criteria: Either acceptable error (Table 1)
meets ormaximumnumber of function evaluations (which
is set to be 200000) is reached,

– The proposed local search in ABC runs either 10 times
(based on empirical experiment) for each iteration or |w1−
w2| ≤ ε (here ε is set to 0.001) whichever comes earlier
in algorithm.

– The parameter pr in Algorithm 3 is set to 0.4 based on
its sensitive analysis in range [0.1, 1] as explained in the
Fig. 4. Figure 4 shows a graph between pr and the sum of
the successful runs for all the considered problems. It is
clear that pr = 0.4 provides the highest success rate.

– Parameter settings for the other considered algorithms
ABC, GABC, BSFABC, OBLFABC and MABC are
adopted from their original articles.

5.2 Results analysis of experiments

Table 2 presents the numerical results for benchmark prob-
lems of Table 1 with the experimental settings shown in
Sect. 5.1. Table 2 shows the results of the proposed and other
considered algorithms in terms of ME, SD, AFE and SR.
Here SR represents the number of times, algorithm achieved
the function optima with acceptable error in 100 runs and
AFE is the average number of function evaluations called in
100 runs by the algorithm to reach at the termination criteria.
Mathematically AFE is defined as:

AFE =
∑100

i=1 Number of function evaluations to meet the termination criteria for run i

100

It can be observed from Table 2 that AABCLS outper-
forms the considered algorithms most of the times in terms
of accuracy, reliability and efficiency. Some other statisti-
cal tests like box-plots, the Mann–Whitney U rank sum test,
acceleration rate (AR) [41], and performance indices [5] have
also been done in order to analyze the algorithms outputmore
intensively.

5.3 Statistical analysis

Algorithms ABC, GABC, BSFABC, OBLFABC, MABC
and AABCLS are compared based on SR, AFE, and ME.
First SR of all these algorithms is compared and if it is
not possible to distinguish the performance of algorithms
based on SR then comparison is made on the basis of AFE.
ME is used for comparison if the comparison is not pos-
sible on the basis of SR and AFE both. From the results
shown in Table 2, it is clear that AABCLS costs less on
27 test functions (f1 − f3, f5 − f11, f13 − f28, f30) among
all the considered algorithms. As these functions include
unimodel, multimodel, separable, non separable, lower and

123

222 Memetic Comp. (2015) 7:215–230

Ta
bl
e
1

Te
st
pr
ob
le
m
s

Fu
n.

Te
st
pr
ob
le
m

O
bj
ec
tiv

e
fu
nc
tio

n
Se
ar
ch

ra
ng
e

O
pt
im

um
va
lu
e

D
C

A
cc
ep
ta
bl
e
er
ro
r

f 1
Sp

he
re

f 1
(x

)
=

∑
D i=

1
x2 i

[−
5.
12

to
5.
12
]

f(
0)

=
0

30
U
,S

1.
0E

−0
5

f 2
D
e
Jo
ng

f4
f 2

(x
)
=

∑
D i=

1
i.
(x

i)
4

[−
5.
12

to
5.
12
]

f(
0)

=
0

30
U
,S

1.
0E

−0
5

f 3
G
ri
ew

an
k

f 3
(x

)
=

1
+

1
40

00

∑
D i=

1
x2 i

−
∏

D i=
1
co
s(

x i √ i
)

[−
60
0
to

60
0]

f(
0)

=
0

30
M
,N

S
1.
0E

−0
5

f 4
R
os
en
br
oc
k

f 4
(x

)
=

∑
D

−1
i=

1
(1
00

(x
i+

1
−

x i
2
)2

+
(x

i
−

1)
2
)

[−
30

to
30
]

f(
1)

=
0

30
U
,N

S
1.
0E

−0
2

f 5
A
ck
le
y

f 5
(x

)
=

−2
0

+
e

+
ex

p(
−0

.2 D

√
∑

D i=
1
x i

3
)

[−
1
to

1]
f(
0)

=
0

30
M
,N

S
1.
0E

−0
5

−e
x
p(

1 D

∑
D i=

1
co
s
(2

π
x i

)x
i)

f 6
A
lp
in
e

f 6
(x

)
=

∑
D i=

1
|x i

si
n
x i

+
0.
1x

i|
[−

10
to

10
]

f(
0)

=
0

30
M
,S

1.
0E

−0
5

f 7
M
ic
ha
le
w
ic
z

f 7
(x

)
=

−
∑

D i=
1
si
n
x i

(s
in

(
i.
x i

2

π
)2
0
)

[0,
π

]
f m

in
=-

9.
66
01
5

10
M
,S

1.
0E

−0
5

f 8
Sa
lo
m
on

pr
ob
le
m

f 8
(x

)
=

1
−

co
s(
2π

√
∑

D i=
1
x2 i

)
+

0.
1(

√
∑

D i=
1
x2 i

)
[−

10
0
to

10
0]

f(
0)

=
0

30
M
,S

1.
0E

−0
1

f 9
A
xi
s
pa
ra
lle

l
hy
pe
r-
el
lip

so
id

f 9
(x

)
=

∑
D i=

1
ix

2 i
[−

5.
12

to
5.
12
]

f(
0)

=
0

30
U
,S

1.
0E

−0
5

f 1
0

Su
m

of
di
ff
er
en
t

po
w
er
s

f 1
0
(x

)
=

∑
D i=

1
|x i

|i+
1

[−
1
to

1]
f(
0)

=
0

30
U
,S

1.
0E

−0
5

f 1
1

St
ep

fu
nc
tio

n
f 1
1
(x

)
=

∑
D i=

1
(�x

i
+

0.
5�

)2
[−

10
0
to

10
0]

f(
-0

.5
≤

x
≤

0.
5)

=
0

30
U
,S

1.
0E

−0
5

f 1
2

In
ve
rt
ed

co
si
ne

w
av
e

f 1
2
(x

)
=

−
∑

D
−1

i=
1

(

ex
p

(
−(

x2 i
+x

2 i+
1
+0

.5
x i
x i

+1
)

8

)

×
I)

[−
5
to

5]
f(
0)

=
−D

+
1

10
M
,N

S
1.
0E

−0
5

w
he
re
,I

=
co
s
(
4√

x2 i
+

x2 i+
1
+

0.
5x

ix
i+

1

)

f 1
3

N
eu
m
ai
er

3
pr
ob

le
m

(N
F3

)
f 1
3
(x

)
=

∑
D i=

1
(x

i
−

1)
2
−

∑
D i=

2
x i
x i

−1
[−

D
2
D

2
]

f m
in

=
−(

D
(
D

+4
)(
D

−1
))

6
10

U
,N

S
1.
0E

−0
1

f 1
4

R
ot
at
ed

hy
pe
r-
el
lip

so
id

f 1
4
(x

)
=

∑
D i=

1
∑

i j=
1
x2
j

[−
65
.5
36

to
65
.5
36
]

f(
0)

=
0

30
U
,S

1.
0E

−0
5

f 1
5

L
ev
y
m
on
ta
lv
o
1

f 1
5
(x

)
=

π D
(1
0s
in

2
(π

y 1
)
+

∑
D

−1
i=

1
(y

i
−

1)
2
×

(1
+

10
si
n2

(π
y i

+1
))

+
(y

D
−

1)
2
),
w
he
re

y i
=

1
+

1 4
(x

i
+

1)

[−
10

to
10
]

f(
−1

)
=

0
30

M
,N

S
1.
0E

−0
5

f 1
6

L
ev
y
m
on
ta
lv
o
2

f 1
6
(x

)
=

0.
1(
si
n2

(3
π
x 1

)
+

∑
D

−1
i=

1
(x

i
−

1)
2
×

(1
+

si
n2

(3
π
x i

+1
))

+
(x

D
−

1)
2
(1

+
si
n2

(2
π
x D

))

[−
5
to

5]
f(
1)

=
0

30
M
,N

S
1.
0E

−0
5

f 1
7

E
lli
ps
oi
da
l

f 1
7
(x

)
=

∑
D i=

1
(x

i
−
i)
2

[−
D
to

D
]

f(
1,
2,

3,
..

.,
D

)
=

0
30

U
,S

1.
0E

−0
5

f 1
8

B
ea
le

f 1
8
(x

)
=

[1.
5

−
x 1

(1
−

x 2
)]2

+
[2.

25
−

x 1
(1

−
x2 2

)]2
+

[2.
62
5

−
x 1

(1
−

x3 2
)]2

[−
4.
5
to

4.
5]

f(
3,
0.
5)

=
0

2
U
,N

S
1.
0E

−0
5

f 1
9

C
ol
vi
lle

f 1
9
(x

)
=

10
0[x

2
−x

2 1
]2 +

(1
−x

1
)2

+9
0(
x 4

−x
2 3
)2

+(
1
−

x 3
)2

+1
0.
1[(

x 2
−1

)2
+(

x 4
−1

)2
]+

19
.8

(x
2
−1

)(
x 4

−1
)

[−
10

to
10
]

f(
1)

=
0

4
M
,N

S
1.
0E

−0
5

f 2
0

B
ra
ni
ns
’s
fu
nc
tio

n
f 2
0
(x

)
=

a(
x 2

−
bx

2 1
+
cx

1
−
d
)2

+
e(
1

−
f)

co
s
x 1

+
e

−5
≤

x 1
≤

10
,
0

≤
x 2

≤
15

f(
−π

,
12

.2
75

)
=

0.
39
79

2
U
,N

S
1.
0E

−0
5

123

Memetic Comp. (2015) 7:215–230 223

Ta
bl
e
1

co
nt
in
ue
d

Fu
n.

Te
st
pr
ob
le
m

O
bj
ec
tiv

e
fu
nc
tio

n
Se
ar
ch

ra
ng
e

O
pt
im

um
va
lu
e

D
C

A
cc
ep
ta
bl
e
er
ro
r

f 2
1

K
ow

al
ik

f 2
1
(x

)
=

∑
11 i=

1
[a i

−
x 1

(b
2 i
+b

ix
2
)

b2 i
+b

ix
3
+x

4
]2

[−
5
to

5]
f(
0.
19
28
33

,

0.
19
08
36

,
0.
12
31
17
,

0.
13
57
66

)
=

0.
00
03
07
48
6

4
M
,N

S
1.
0E

−0
5

f 2
2

Sh
if
te
d
R
os
en
br
oc
k

f 2
2
(x

)
=

∑
D

−1
i=

1
(1
00

(z
2 i
−
z i

+1
)2

+
(z

i
−

1)
2
)
+

f b
ia
s,
z

=
x

−
o

+
1,

x
=

[x 1
,
x 2

,
..

.
x D

],
o

=
[o 1

,
o 2

,
..

.o
D
]

[−
10
0
to

10
0]

f(
o)

=
f b
ia
s

=
39
0

10
U
,N

S
1.
0E

−0
1

f 2
3

Sh
if
te
d
sp
he
re

f 2
3
(x

)
=

∑
D i=

1
z2 i

+
f b
ia
s,
z

=
x

−
o

,x
=

[x 1
,
x 2

,
..

.
x D

],
o

=
[o 1

,
o 2

,
..

.o
D
]

[−
10
0
to

10
0]

f(
o)

=
f b
ia
s

=
−4

50
10

M
,S

1.
0E

−0
5

f 2
4

Sh
if
te
d
G
ri
ew

an
k

f 2
4
(x

)
=

∑
D i=

1
z2 i

40
00

−
∏

D i=
1
co
s(

z i √ i
)
+
1

+
f b
ia
s,

z
=

(x
−

o)
,x

=
[x 1

,
x 2

,
..

.
x D

],
o

=
[o 1

,
o 2

,
..

.o
D
]

[−
60
0
to

60
0]

f(
o)

=
f b
ia
s

=
−1

80
10

M
,N

S
1.
0E

−0
5

f 2
5

Sh
if
te
d
A
ck
le
y

f 2
5
(x

)
=

−2
0
ex
p(

−0
.2

√
1 D

∑
D i=

1
z2 i

)
−

ex
p(

1 D

∑
D i=

1
co
s(
2π

z i
))

+2
0+

e+
f b
ia
s,

z
=

(x
−
o)
,x

=
(x

1
,
x 2

,
..

..
..

..
.
x D

),
o

=
(o

1
,
o 2

,
..

..
..

..
.o

D
)

[−
32

to
32
]

f(
o)

=
f b
ia
s

=
−1

40
10

M
,S

1.
0E

−0
5

f 2
6

G
ol
ds
te
in
–P

ri
ce

f 2
6
(x

)
=

(1
+

(x
1
+

x 2
+

1)
2
×

(1
9

−
14

x 1
+

3x
2 1

−
14

x 2
+

6x
1
x 2

+
3x

2 2
))

×
(3
0

+
(2
x 1

−
3x

2
)2

×
(1
8

−
32

x 1
+

12
x2 1

+
48

x 2
−

36
x 1
x 2

+
27

x2 2
))

[−
2
to

2]
f(
0,

−1
)
=

3
2

U
,N

S
1.
0E

−1
4

f 2
7

Si
x-
hu
m
p
ca
m
el

ba
ck

f 2
7
(x

)
=

(4
−
2.
1x

2 1
+

x4 1
/
3)
x2 1

+
x 1
x 2

+
(−

4
+

4x
2 2
)x

2 2

[−
5
to

5]
f(

−0
.0
89
8,

0.
71
26
)=

−1
.0
31
6

2
M
,N

S
1.
0E

−0
5

f 2
8

M
ey
er

an
d
R
ot
h

f 2
8
(x

)
=

∑
5 i=

1
(

x 1
x 3
t i

1+
x 1
t i
+x

2
v
i
−

y i
)2

[−
10

to
10
]

f(
3.
13

,

15
.1
6,
0.
78
)=

0.
4

×
10

−4
3

U
,N

S
1.
0E

−0
3

f 2
9

Si
nu
so
id
al

f 2
9
(x

)
=

−[
A

∏
D i=

1
si
n(
x i

−
z)

+
∏

D i=
1
si
n(
B
(x

i
−

z)
)],

A
=

2.
5,

B
=

5,
z

=
30

[0
–1
80
]

f(
90

+
z)

=
−(

A
+

1)
10

M
,N

S
1.
00
E
−0

2

f 3
0

M
ov
ed

ax
is
pa
ra
lle

l
hy
pe
r-
el
lip

so
id

f 3
0
(x

)
=

∑
D i=

1
5i

×
x2 i

[−
5.
12

to
5.
12
]

f(
x)

=
0;

x(
i)

=
5

×
i,
i
=

1
:D

30
M
,S

1.
0E

−1
5

D
di
m
en
si
on
s,
C
ch
ar
ac
te
ri
st
ic
,U

un
im

od
al
,M

m
ul
tim

od
al
,S

se
pa
ra
bl
e,
N

no
n-
se
pa
ra
bl
e,
A
E
ac
ce
pt
ab
le
er
ro
r
(c
on
t.)

123

224 Memetic Comp. (2015) 7:215–230

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1600

1800

2000

2200

2400

2600

2800

3000

PrS
u

m
 o

f
su

cc
es

sf
u

l R
u

n
s

o
f

th
e

co
n

si
d

er
ed

fu

n
ct

io
n

s
o

u
t

o
f

10
0

R
u

n
s

Fig. 4 Effect of parameter pr on success rate

higher dimensional functions, it can be stated that AAB-
CLS balances the exploration and exploitation capabilities
efficiently. ABC, GABC, BSFABC and OBLFABC outper-
forms AABCLS over test function f4, in which the global
minimum is inside a long, narrow, parabolic shaped flat val-
ley. The cost of OBLFABC is lower for four test functions
(f4, f12 and f29) than the AABCLS, ABC, BSFABC and
MABC which are multimodel functions. When AABCLS is
compared with each of the considered algorithms individu-
ally, it is better than ABC, BSFABC and GABC over 29 test
functions and it is better than MABC over all test functions
of mixed characteristics. It means that when the results of all
functions are evaluated together, the AABCLS algorithm is
the cost effective algorithm for most of the functions. Now if
AABCLS algorithm is compared based on mean error only
then one can see from Table 2 that AABCLS is achieving
less error on 21 out of 30 functions than all the other consid-
ered algorithms. ABC and BSFABC are good on 9 functions,
OBLFABC is good on 7 functions and GABC is good on 5
functions while MABC is better on single function f15 than
the proposed AABCLS algorithmwith respect to mean error.

Since boxplot [55] can efficiently represent the empirical
distribution of results, the boxplots for AFE and ME for all
algorithms AABCLS, ABC, GABC, BSFABC, OBLFABC
andMABC have been represented in Fig. 5. Figure 5a shows
that AABCLS is cost effective in terms of function evalu-
ations as interquartile range and median of AFE are very
low for AABCLS. Boxplot Fig. 5b shows that AABCLS
and GABC are competitive in terms of ME as interquartile
range for both the algorithms are very low and less than the
other considered algorithms. Though, it is clear from box
plots that AABCLS is cost effective than ABC, BSFABC,
GABC, OBLFABC and MABC i.e., AABCLS’s result dif-
fers from the other, now to check, whether there exists any
significant difference between algorithm’s output or this dif-
ference is due to some randomness, another statistical test
is required. It can be observed from boxplots of Fig. 5 that

Table 2 Comparison of the results of test problems (cont.)

TP Algorithm ME SD AFE SR

f1 AABCLS 7.97E−06 9.85E−07 11,403 100

ABC 8.17E−06 2.02E−06 20,534 100

BSFABC 7.49E−06 2.15E−06 30,159 100

GABC 8.27E−06 1.81E−06 24,348 100

OBLFABC 8.51E−06 1.69E−06 17,487 100

MABC 8.95E−06 9.48E−07 22,954 100

f2 AABCLS 5.51E−06 1.36E−06 5875 100

ABC 4.90E−06 3.11E−06 10,175 100

BSFABC 5.31E−06 3.12E−06 23,626 100

GABC 5.51E−06 2.72E−06 8825 100

OBLFABC 7.44E−06 2.66E−06 11,113 100

MABC 8.63E−06 1.27E−06 21,835 100

f3 AABCLS 5.55E−06 1.03E−06 32,183 100

ABC 2.28E−04 1.26E−03 46,189 97

BSFABC 5.96E−06 2.79E−06 43,426 100

GABC 6.33E−06 2.99E−06 33,817 99

OBLFABC 2.05E−04 1.42E−03 43,085 98

MABC 9.24E−06 5.42E−07 43,003 100

f4 AABCLS 4.57E+00 3.43E+01 187,214 12

ABC 1.60E+00 3.08E+00 183,018 22

BSFABC 1.97E+00 3.31E+00 179,903 23

GABC 4.66E+00 1.15E+01 176,318 24

OBLFABC 1.17E+00 9.98E+00 121,289 76

MABC 3.60E+01 2.41E+01 190,001 10

f5 AABCLS 8.54E−06 5.05E−07 31,915 100

ABC 8.28E−06 1.56E−06 49,216 100

BSFABC 8.11E−06 1.67E−06 42,936 100

GABC 8.56E−06 1.37E−06 47,580 100

OBLFABC 8.99E−06 1.06E−06 37,696 100

MABC 9.51E−06 4.31E−07 43,009 100

f6 AABCLS 7.05E−06 1.49E−06 44,755 100

ABC 8.21E−06 2.27E−06 97,527 100

BSFABC 7.43E−06 3.82E−06 116,412 98

GABC 8.23E−06 2.09E−06 58,458 99

OBLFABC 1.17E−05 3.23E−05 80,614 96

MABC 1.01E−03 7.61E−04 178,806 14

f7 AABCLS 4.98E−06 3.79E−06 16,077 100

ABC 3.66E−05 3.74E−06 127,214 70

BSFABC 3.63E−06 3.76E−06 46,437 90

GABC 4.53E−06 3.56E−06 32,200 92

OBLFABC 5.18E−06 3.54E−06 21,120 100

MABC 6.70E−06 3.28E−06 46,368 89

f8 AABCLS 9.22E−01 3.04E−02 23,230 100

ABC 9.77E−01 6.61E−01 187,957 56

BSFABC 9.60E−01 7.68E−01 159,019 62

GABC 9.40E−01 3.39E−02 122,315 96

OBLFABC 9.36E−01 3.43E−02 82,241 93

MABC 9.33E−01 3.82E−02 28,327 99

123

Memetic Comp. (2015) 7:215–230 225

Table 2 continued

TP Algorithm ME SD AFE SR

f9 AABCLS 6.17E−06 6.53E−07 13,270 100

ABC 7.90E−06 1.99E−06 42,765 91

BSFABC 6.90E−06 2.38E−06 36,045 94

GABC 8.22E−06 1.58E−06 15,918 100

OBLFABC 8.75E−06 1.67E−06 18,924 100

MABC 9.22E−06 6.91E−07 25,772 96

f10 AABCLS 6.25E−06 1.68E−06 3504 100

ABC 5.49E−06 2.90E−06 16,818 100

BSFABC 6.08E−06 2.64E−06 14,996 100

GABC 5.97E−06 2.85E−06 14,786 100

OBLFABC 6.05E−06 3.08E−06 7649 100

MABC 7.57E−06 1.90E−06 9589 100

f11 AABCLS 0.00E+00 0.00E+00 8186 100

ABC 4.80E−06 1.89E−06 41,501 94

BSFABC 1.11E−06 1.77E−06 37,072 99

GABC 1.21E−06 1.68E−06 19,034 98

OBLFABC 0.00E+00 0.00E+00 11,360 100

MABC 1.22E−06 1.08E−06 15,844 98

f12 AABCLS 7.26E−06 1.88E−06 34,012 100

ABC 2.39E−02 1.34E−01 87,099 88

BSFABC 6.20E−02 1.88E−01 98,972 89

GABC 7.29E−06 2.38E−05 65,061 99

OBLFABC 8.24E−06 1.91E−06 23,760 100

MABC 8.08E−06 1.64E−06 66,422 100

f13 AABCLS 9.06E−02 1.16E−02 13,081 100

ABC 9.15E+00 6.63E+00 196,658 5

BSFABC 4.42E+00 5.86E+00 193,009 7

GABC 1.40E+00 1.85E+00 185,140 23

OBLFABC 8.94E−02 1.31E−02 19,108 100

MABC 1.01E+00 2.08E+00 145,806 32

f14 AABCLS 5.97E−06 3.06E−07 14,995 100

ABC 7.75E−06 2.20E−06 47,958 93

BSFABC 6.90E−06 2.51E−06 48,981 89

GABC 8.24E−06 1.68E−06 19,599 93

OBLFABC 8.74E−06 1.68E−06 22,469 100

MABC 9.23E−06 6.90E−07 33,065 91

f15 AABCLS 9.11E−06 7.40E−07 10,707 100

ABC 6.98E−06 2.24E−06 26,605 100

BSFABC 6.99E−06 2.23E−06 19,608 100

GABC 8.08E−06 1.85E−06 13,118 100

OBLFABC 8.44E−06 1.85E−06 15,171 100

MABC 9.06E−06 7.90E−07 22,738 100

f16 AABCLS 9.11E−06 7.56E−07 11,889 100

ABC 7.15E−06 2.46E−06 28,936 100

BSFABC 6.96E−06 2.31E−06 21,837 100

GABC 7.63E−06 2.13E−06 24,401 100

OBLFABC 8.24E−06 1.92E−06 17,116 100

MABC 9.16E−06 7.37E−07 21,028 100

Table 2 continued

TP Algorithm ME SD AFE SR

f17 AABCLS 7.16E−06 8.75E−07 14,345 100

ABC 7.92E−06 2.29E−06 44,094 98

BSFABC 7.30E−06 2.29E−06 41,464 100

GABC 7.93E−06 2.14E−06 16,637 100

OBLFABC 8.86E−06 1.62E−06 19,368 100

MABC 9.18E−06 6.17E−07 26,831 100

f18 AABCLS 4.74E−06 3.16E−06 1665 100

ABC 8.75E−06 1.37E−06 28,268 94

BSFABC 1.63E−05 3.72E−05 28,477 100

GABC 5.39E−06 2.83E−06 14,114 100

OBLFABC 7.58E−06 2.95E−06 5888 100

MABC 5.24E−06 2.88E−06 10,176 100

f19 AABCLS 8.55E−03 1.85E−03 16,411 100

ABC 1.48E−01 9.72E−01 200,000 0

BSFABC 2.35E−02 2.53E−02 156,114 32

GABC 1.66E−02 1.41E−02 160,936 31

OBLFABC 1.32E−02 9.35E−03 106,158 76

MABC 1.36E−02 1.06E−02 142,163 36

f20 AABCLS 5.27E−06 6.31E−06 693 100

ABC 5.17E−06 6.84E−06 2049 100

BSFABC 5.77E−06 6.79E−06 19,731 92

GABC 5.90E−06 6.77E−06 21,104 89

OBLFABC 6.16E−06 6.94E−06 1021 100

MABC 6.58E−06 7.49E−06 18,653 93

f21 AABCLS 8.28E−05 1.63E−05 37,599 100

ABC 1.71E−04 7.68E−05 180,050 20

BSFABC 1.30E−04 6.04E−05 147,033 52

GABC 8.39E−05 1.95E−05 90,996 87

OBLFABC 9.82E−05 2.30E−05 63,607 99

MABC 1.98E−04 7.60E−05 176,081 24

f22 AABCLS 9.18E−02 2.20E−02 97,472 98

ABC 1.22E+00 4.98E+00 178,336 19

BSFABC 2.07E+00 3.33E+00 171,110 21

GABC 4.63E−01 1.54E+00 104,323 58

OBLFABC 9.84E−02 7.26E−02 72,577 86

MABC 9.60E−01 1.50E+00 160,528 32

f23 AABCLS 5.95E−06 1.48E−06 4621 100

ABC 7.21E−06 2.34E−06 9232 100

BSFABC 6.65E−06 2.63E−06 14,233 100

GABC 7.52E−06 2.05E−06 8488 100

OBLFABC 7.60E−06 2.28E−06 6648 100

MABC 8.19E−06 1.53E−06 8661 100

f24 AABCLS 5.47E−06 3.04E−06 20,317 100

ABC 1.27E−04 3.06E−03 88,275 83

BSFABC 4.54E−03 5.84E−03 99,854 80

GABC 5.61E−06 2.86E−06 36,712 100

OBLFABC 2.22E−03 4.29E−03 90,433 77

MABC 5.51E−04 1.99E−03 81,135 92

123

226 Memetic Comp. (2015) 7:215–230

Table 2 continued

TP Algorithm ME SD AFE SR

f25 AABCLS 8.67E−06 6.33E−07 9966 100

ABC 7.66E−06 1.91E−06 17,627 100

BSFABC 7.88E−06 1.68E−06 31,261 100

GABC 8.14E−06 1.37E−06 15,326 100

OBLFABC 8.58E−06 1.53E−06 11,783 100

MABC 8.87E−06 9.26E−07 14,437 100

f26 AABCLS 1.70E−14 1.78E−14 3485 100

ABC 2.16E−06 1.05E−05 120,927 54

BSFABC 3.89E−07 4.78E−08 82,091 59

GABC 4.73E−07 1.88E−08 96,611 53

OBLFABC 1.66E−14 2.14E−14 4169 100

MABC 5.12E−07 4.87E−08 109,023 51

f27 AABCLS 1.15E−05 1.17E−05 474 100

ABC 1.20E−05 1.07E−05 978 100

BSFABC 1.72E−04 1.52E−05 99,419 49

GABC 1.21E−04 1.14E−05 120,426 40

OBLFABC 1.39E−05 1.39E−05 626 100

MABC 1.57E−04 1.46E−05 92,860 54

f28 AABCLS 1.95E−03 2.77E−06 3727 100

ABC 1.95E−03 2.61E−06 26,936 100

BSFABC 1.95E−03 3.02E−06 15,034 100

GABC 1.95E−03 2.84E−06 5645 100

OBLFABC 1.95E−03 2.56E−06 6725 100

MABC 1.95E−03 2.79E−06 9115 100

f29 AABCLS 7.35E−03 1.20E−03 24,405 100

ABC 7.70E−03 1.94E−03 53,169 100

BSFABC 7.45E−03 1.90E−03 60,906 100

GABC 7.55E−03 2.22E−03 46,118 100

OBLFABC 8.49E−03 1.48E−03 23,057 100

MABC 6.17E−01 1.01E−01 200,000 0

f30 AABCLS 7.24E−16 6.03E−17 39,289 100

ABC 9.40E−16 6.42E−17 72,891 98

BSFABC 7.35E−16 2.36E−16 71,216 100

GABC 9.30E−16 8.16E−17 39,719 100

OBLFABC 9.35E−16 7.65E−17 59,040 100

MABC 9.26E−16 6.71E−17 59,746 100

average number of function evaluations used by the consid-
ered algorithms and mean error achieved by the algorithms
to solve the different problems are not normally distributed,
so a non-parametric statistical test is required to compare
the performance of the algorithms. The Mann-Whitney U
rank sum [29], a non-parametric test, is well established
test for comparison among non-Gaussian data. In this paper,
this test is performed on average number of function eval-
uations and ME at 5% level of significance (α = 0.05)

between AABCLS–ABC, AABCLS–BSFABC, AABCLS–
GABC, AABCLS–OBLFABC and AABCLS–MABC.

Tables 3 and 4 show the results of the Mann-Whitney U
rank sum test for the average number of function evalua-
tions and ME of 100 simulations. First the significant dif-
ference is observed by Mann–Whitney U rank sum test i.e.,
whether the two data sets are significantly different or not.
If significant difference is not seen (i.e., the null hypothesis
is accepted) then sign ‘=’ appears and when significant dif-
ference is observed i.e., the null hypothesis is rejected then
compare the AFE. The signs ‘+’ and ‘−’ are used for the
case where AABCLS takes less or more average number of
function evaluations than the other algorithms, respectively.
Similarly, for mean error, if significant difference is observed
then compare the ME and the signs ‘+’ and ‘−’ are used for
the case where AABCLS achieves less or more mean error.
Therefore in Tables 3 and 4, ‘+’ shows that AABCLS is
significantly better and ‘−’ shows that AABCLS is signifi-
cantlyworse.AsTables 3 and 4 include 138 ‘+’ signs forAFE
case and 107 ‘+’ signs for ME case out of 150 comparisons.
Therefore, it can be concluded that the results of AABCLS
is significantly cost effective than ABC, BSFABC, GABC,
OBLFABC and MABC over considered test problems.

Further, the convergence speeds of the considered algo-
rithms are compared bymeasuring theAFEs.A smallerAFEs
means higher convergence speed. In order to minimize the
effect of the stochastic nature of the algorithms, the reported
function evaluations for each test problem is averaged over
100 runs. In order to compare convergence speeds, the accel-
eration rate (AR) is used which is defined as follows, based
on the AFEs for the two algorithms ALGO and AABCLS:

AR = AFEALGO

AFEAABCLS
, (9)

where, ALGO∈ {ABC, BSFABC, GABC, OBLFABC and
MABC} and AR > 1 means AABCLS is faster. In order to
investigate the AR of the proposed algorithm as compare to
the considered algorithms, results of Table 2 are analyzed and
the value of AR is calculated using Eq. (9). Table 5 shows a
comparison between AABCLS–ABC, AABCLS–BSFABC,
AABCLS–GABC, AABCLS–OBLFABC, and AABCLS–
MABC in terms of AR. It is clear from the Table 5 that
convergence speed of AABCLS is better than considered
algorithms for most of the functions.

Further, to compare the considered algorithms by giv-
ing weighted importance to SR, AFE and ME, performance
indices (P I s) are calculated [5]. The values of P I for the
AABCLS, ABC, BSFABC, GABC, OBLFABC and MABC
are calculated using following Equations:

P I = 1

Np

Np∑

i=1

(k1α
i
1 + k2α

i
2 + k3α

i
3)

123

Memetic Comp. (2015) 7:215–230 227

AABCLS ABC BSFABC GABC OBLFABC MABC

0

0.5

1

1.5

2
x 10

5

A
ve

ra
g

e
n

u
m

b
er

 o
f

fu
n

ct
io

n
 e

va
lu

at
io

n
s

(a) AFE
AABCLS ABC BSFABC GABC OBLFABC MABC

10
−20

10
−15

10
−10

10
−5

10
0

10
5

M
ea

n
 e

rr
o

r

(b) ME

Fig. 5 Boxplots graph for average number of function evaluations and mean error

Table 3 Comparison based on average number of function evaluations and the Mann–Whitney U rank sum test at a α = 0.05 significance level

TP Mann–Whitney U rank sum test with AABCLS TP Mann–Whitney U rank sum test with AABCLS

ABC BSFABC GABC OBLFABC MABC ABC BSFABC GABC OBLFABC MABC

f1 + + + + + f16 + + + + +

f2 + + + + + f17 + + + + +

f3 + + = + + f18 + + + + +

f4 − − − − + f19 + + + + +

f5 + + + + + f20 + + + = +

f6 + + + + + f21 + + + + +

f7 + + + + + f22 + + + − +

f8 + + + + + f23 + + + + +

f9 + + + + + f24 + + + + +

f10 + + + + + f25 + + + + +

f11 + + + + + f26 + + + = +

f12 + + + − + f27 + + + = +

f13 + + + + + f28 + + + + +

f14 + + + + + f29 + + + − +

f15 + + + + + f30 + + = + +

TP test problem, ‘+’ indicates AABCLS is significantly better, ‘−’ indicates AABCLS is worse and ‘=’ indicates that there is no significant
difference)

Where αi
1 = Sri

T ri
; αi

2 =
{

M f i

A f i
, if Sri > 0.

0, if Sri = 0.
; and αi

3 =
Moi

Aoi
i = 1, 2, ..., Np

– Sri = Successful simulations/runs of i th problem.
– Tri = Total simulations of i th problem.
– M f i =MinimumofAFE used for obtaining the required

solution of i th problem.
– A f i = AFE used for obtaining the required solution of
i th problem.

– Moi = Minimum of ME obtained for the i th problem.
– Aoi = ME obtained by an algorithm for the i th problem.
– Np = Total number of optimization problems evaluated.

The weights assigned to SR, AFE and ME are represented
by k1, k2 and k3 respectively, where k1 + k2 + k3 = 1 and
0 ≤ k1, k2, k3 ≤ 1. To calculate the P I s, equal weights
are assigned to two variables while weight of the remaining
variable vary from 0 to 1 as given in [10]. Following are the
resultant cases:

1. k1 = W, k2 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

2. k2 = W, k1 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

3. k3 = W, k1 = k2 = 1−W
2 , 0 ≤ W ≤ 1

The graphs corresponding to each of the cases (1), (2)
and (3) for the considered algorithms are shown in Fig. 6a–c
respectively. In these figures the weights k1, k2 and k3 are

123

228 Memetic Comp. (2015) 7:215–230

Table 4 Comparison based on mean error and the Mann–Whitney U rank sum test at a α = 0.05 significance level

TP Mann–Whitney U rank sum test with AABCLS TP Mann–Whitney U rank sum test with AABCLS

ABC BSFABC GABC OBLFABC MABC ABC BSFABC GABC OBLFABC MABC

f1 + − + + + f16 − − − − =

f2 − − = + + f17 + + + + +

f3 + + + + + f18 + + + + +

f4 − − = − + f19 + + + + +

f5 = − = + + f20 = + + + +

f6 + + + + + f21 + + + + +

f7 + − − + + f22 + + + + +

f8 + + + + + f23 + + + + +

f9 + + + + + f24 + + + + +

f10 − = − = + f25 − − − = +

f11 + + + = + f26 + + + = +

f12 + + = + + f27 = + + + +

f13 + + + = + f28 = = = = =

f14 + + + + + f29 + + + + +

f15 − − − − = f30 + = + + +

TP test problem, ‘+’ indicates AABCLS is significantly better, ‘−’ indicates AABCLS is worse and ‘=’ indicates that there is no significant
difference)

Table 5 Acceleration rate (AR) of AABCLS as compared to the ABC,
BSFABC, GABC, OBLFABC and MABC, TP: test problems

TP ABC BSFABC GABC OBLFABC MABC

f1 1.801 2.645 2.135 1.534 2.013

f2 1.732 4.021 1.502 1.891 3.717

f3 1.435 1.349 1.051 1.339 1.336

f4 0.978 0.961 0.942 0.648 1.015

f5 1.542 1.345 1.491 1.181 1.348

f6 2.179 2.601 1.306 1.801 3.995

f7 7.913 2.888 2.003 1.314 2.884

f8 8.091 6.845 5.265 3.540 1.219

f9 3.223 2.716 1.200 1.426 1.942

f10 4.800 4.280 4.220 2.183 2.737

f11 5.070 4.529 2.325 1.388 1.936

f12 2.561 2.910 1.913 0.699 1.953

f13 15.034 14.755 14.154 1.461 11.147

f14 3.198 3.267 1.307 1.498 2.205

f15 2.485 1.831 1.225 1.417 2.124

f16 2.434 1.837 2.052 1.440 1.769

f17 3.074 2.890 1.160 1.350 1.870

f18 16.974 17.100 8.475 3.535 6.110

f19 12.187 9.513 9.807 6.469 8.663

f20 2.868 27.621 29.544 1.429 26.112

f21 4.789 3.911 2.420 1.692 4.683

f22 1.830 1.755 1.070 0.745 1.647

f23 1.998 3.080 1.837 1.439 1.874

f24 4.345 4.915 1.807 4.451 3.994

Table 5 continued

TP ABC BSFABC GABC OBLFABC MABC

f25 1.769 3.137 1.538 1.182 1.449

f26 34.700 23.556 27.723 1.196 31.284

f27 2.061 209.577 253.860 1.319 195.750

f28 7.227 4.034 1.515 1.804 2.446

f29 2.179 2.496 1.890 0.945 8.195

f30 1.855 1.813 1.011 1.503 1.521

represented by horizontal axis while the P I is represented
by the vertical axis.

In case (1), AFE and ME are given equal weights. P I s
of the considered algorithms are superimposed in Fig. 6a for
comparison of the performance. It is observed that P I of
AABCLS is higher than the considered algorithms. In case
(2), equal weights are assigned to SR andME and in case (3),
equal weights are assigned to SR and AFE. It is clear from
Fig. 6b and c that the algorithms perform same as in case (1).

6 Conclusion

ABC is a simple algorithm having very less parameters
with drawbacks like premature convergence and poor in
exploitation. In order to develop an ABC algorithm with
better exploitation and exploration capabilities, this article
proposed a modified position update equation for ABC in
which individuals update their respective positions in guid-
ance of global best individual on the basis of fitness. Fur-

123

Memetic Comp. (2015) 7:215–230 229

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

weight (k
1
)

P
er

fo
rm

an
ce

 In
d

ex

AABCLS
ABC
BSFABC
GABC
OBLFABC
MABC

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

weight (k
2
)

P
er

fo
rm

an
ce

 In
d

ex

AABCLS
ABC
BSFABC
GABC
OBLFABC
MABC

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

weight (k
3
)

P
er

fo
rm

an
ce

 In
d

ex

AABCLS
ABC
BSFABC
GABC
OBLFABC
MABC

(c)

Fig. 6 Performance index for test problems; a for case (1), b for case (2) and c for case (3)

ther, a self adaptive local search strategy which is based
on greedy logarithmic decreasing step size, is proposed and
incorporated with ABC to enhance the exploitation capabil-
ity. The proposed algorithm has been extensively compared
with other recent variants of ABC namely, BSFABC, GABC,
OBLFABC, and MABC. Based on various computational
and statistical analyses, it is found that AABCLS achieves
better success rate in less number of function evaluations
with less ME on most of the problems considered. Through
the extensive experiments, it can be stated that the proposed
algorithm is a competitive algorithm to solve the continuous
optimization problems. In future, work will be extended to
solve constrained and real world problems.

References

1. Akay B, Karaboga D (2010) A modified artificial bee colony algo-
rithm for real-parameter optimization. Inf Sci. doi:10.1016/j.ins.
2010.07.015

2. Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical
evaluation of several stochastic algorithms on selected continuous
global optimization test problems. J Glob Optim 31(4):635–672

3. Banharnsakun A, Achalakul T, Sirinaovakul B (2011) The best-so-
far selection in artificial bee colony algorithm. Appl Soft Comput
11(2):2888–2901

4. Chand Bansal Jagdish, Harish Sharma, Atulya Nagar (2013)
Memetic search in artificial bee colony algorithm. Soft Comput
17(10):1911–1928

5. Bansal JC, Sharma H (2012) Cognitive learning in differential evo-
lution and its application to model order reduction problem for
single-input single-output systems. Memet Comput 4(3):209–229

6. Brest J, Zumer V, Maucec MS (2006) Self-adaptive differential
evolution algorithm in constrained real-parameter optimization. In:
IEEE congress on evolutionary computation, 2006. CEC 2006, pp
215–222, IEEE

7. Caponio A, Cascella GL, Neri F, Salvatore N, Sumner M (2007)
A fast adaptive memetic algorithm for online and offline control
design of pmsm drives. Syst Man Cybern Part B: Cybern IEEE
Trans 37(1):28–41

8. Caponio A, Neri F, Tirronen V (2009) Super-fit control adaptation
inmemetic differential evolution frameworks. Soft Comput-Fusion
Found Methodol Appl 13(8):811–831

9. Cotta C, Neri F (2012) Memetic algorithms in continuous opti-
mization. Handbook of memetic algorithms, pp 121–134

10. Deep K, Thakur M (2007) A new crossover operator for real coded
genetic algorithms. Appl Math Comput 188(1):895–911

11. Diwold K, Aderhold A, Scheidler A, Middendorf M (2011) Per-
formance evaluation of artificial bee colony optimization and new
selection schemes. Memet Comput 3(3):149–162

12. DorigoM, Di Caro G (1999) Ant colony optimization: a newmeta-
heuristic. InEvolutionary computation, 1999.CEC99. In: Proceed-
ings of the 1999 congress on, vol 2, IEEE

13. El-Abd M (2011) Performance assessment of foraging algorithms
vs. evolutionary algorithms. Inf Sci 182(1):243–263

14. Fister I, Fister Jr I, Brest J, Žumer V (2012) Memetic artificial
bee colony algorithm for large-scale global optimization. Arxiv
preprint arXiv:1206.1074

123

http://dx.doi.org/10.1016/j.ins.2010.07.015
http://dx.doi.org/10.1016/j.ins.2010.07.015
http://arxiv.org/abs/1206.1074

230 Memetic Comp. (2015) 7:215–230

15. Gallo C, Carballido J, Ponzoni I (2009) Bihea: a hybrid evolu-
tionary approach for microarray biclustering. In: Guimarães KS,
Panchenko A, Przytycka TM (eds) Advances in bioinformatics and
computational biology. Springer, Berlin, Heidelberg, pp 36–47

16. Gao W, Liu S (2011) A modified artificial bee colony algorithm.
Comput Oper Res 39(3):687–697

17. GaoY,AnX, Liu J (2008)A particle swarm optimization algorithm
with logarithm decreasing inertia weight and chaos mutation. In:
Computational intelligence and security, 2008. CIS’08. Interna-
tional conference on, vol 1, pp 61–65, IEEE

18. Goh CK, Ong YS, Tan KC (2009) Multi-objective memetic algo-
rithms, vol 171. Springer Verlag, Berlin

19. Hooke R, Jeeves TA (1961) “Direct search” solution of numerical
and statistical problems. J ACM (JACM) 8(2):212–229

20. Ishibuchi H, Yamamoto T (2004) Fuzzy rule selection by multi-
objective genetic local search algorithms and rule evaluation mea-
sures in data mining. Fuzzy Sets Syst 141(1):59–88

21. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic
search and local search in memetic algorithms for multiobjec-
tive permutation flowshop scheduling. IEEE Trans Evol Comput
7(2):204–223

22. Kang F, Li J, Ma Z (2011) Rosenbrock artificial bee colony algo-
rithm for accurate global optimization of numerical functions. Inf
Sci 181(16):3508–3531

23. Kang F, Li J, Ma Z, Li H (2011) Artificial bee colony algorithm
with local search for numerical optimization. J Softw 6(3):490–497

24. Karaboga D (2005) An idea based on honey bee swarm for numeri-
cal optimization. Technical report TR06. Erciyes University Press,
Erciyes

25. Karaboga D, Akay B (2009) A comparative study of artificial bee
colony algorithm. Appl Math Comput 214(1):108–132

26. Dervis Karaboga, Bahriye Akay (2011) A modified artificial bee
colony (abc) algorithm for constrained optimization problems.
Appl Soft Comput 11(3):3021–3031

27. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
Neural networks, 1995. In: Proceedings, IEEE international con-
ference on, vol 4, pp 1942–1948, IEEE

28. Knowles J, Corne D, Deb K (2008) Multiobjective problem solv-
ing from nature: from concepts to applications (Natural computing
series). Springer, Berlin

29. Mann HB, Whitney DR (1947) On a test of whether one of two
random variables is stochastically larger than the other. Ann Math
Stat 18(1):50–60

30. Mezura-Montes E, Velez-Koeppel RE (2010) Elitist artificial
bee colony for constrained real-parameter optimization. In: 2010
Congress on evolutionary computation (CEC’2010). IEEE Service
Center, Barcelona, Spain, pp 2068–2075

31. Mininno E, Neri F (2010) A memetic differential evolution
approach in noisy optimization. Memet Comput 2(2):111–135

32. Moscato P (1989) On evolution, search, optimization, genetic algo-
rithms and martial arts: towards memetic algorithms. Caltech con-
current computation program, C3P. Report 826:1989

33. Neri F, Tirronen V (2009) Scale factor local search in differential
evolution. Memet Comput Springer 1(2):153–171

34. Neri F, Cotta C, Moscato P (eds) (2012) Handbook of memetic
algorithms. Springer, Studies in computational intelligence,
vol 379

35. Nguyen QH, Ong YS, Lim MH (2009) A probabilistic memetic
framework. IEEE Trans Evol Comput 13(3):604–623

36. Ong YS, Keane AJ (2004) Meta-Lamarckian learning in memetic
algorithms. IEEE Trans Evol Comput 8(2):99–110

37. Ong YS, Lim M, Chen X (2010) Memetic computation-past,
present and future [research frontier]. Comput Intell Mag IEEE
5(2):24–31

38. Ong YS, Nair PB, Keane AJ (2003) Evolutionary optimization
of computationally expensive problems via surrogate modeling.
AIAA J 41(4):687–696

39. Passino KM (2002) Biomimicry of bacterial foraging for distrib-
uted optimization and control. Control SystMag IEEE22(3):52–67

40. Price KV, Storn RM, Lampinen JA (2005) Differential evolution: a
practical approach to global optimization. Springer Verlag, Berlin

41. Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-
based differential evolution. Evol Comput IEEETrans 12(1):64–79

42. Repoussis PP, Tarantilis CD, Ioannou G (2009) Arc-guided evolu-
tionary algorithm for the vehicle routing problem with time win-
dows. Evol Comput IEEE Trans 13(3):624–647

43. Richer JM, Goëffon A, Hao JK (2009) A memetic algorithm for
phylogenetic reconstruction with maximum parsimony. Evolution-
ary computation,machine learning and datamining in bioinformat-
ics, pp 164–175

44. Ruiz-Torrubiano R, Suárez A (2010) Hybrid approaches and
dimensionality reduction for portfolio selection with cardinality
constraints. Comput Intell Mag IEEE 5(2):92–107

45. SharmaHarish,Bansal JagdishChand,AryaKV(2013)Opposition
based lévy flight artificial bee colony. Memet Comput 5(3):213–
227

46. SharmaHarish,Bansal JagdishChand,AryaKV (2013) Power law-
based local search in differential evolution. Int J Comput Intell Stud
2(2):90–112

47. SharmaH, Jadon SS, Bansal JC, Arya KV (2013) Lèvy flight based
local search in differential evolution. In: Swarm, evolutionary, and
memetic computing, pp 248–259. Springer

48. Sharma TK, Pant M, Singh VP (2012) Improved local search in
artificial bee colony using golden section search. arXiv preprint
arXiv:1210.6128

49. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A,
Tiwari S (2005) Problem definitions and evaluation criteria for the
CEC 2005 special session on real-parameter optimization. In: CEC
2005

50. TanKC,KhorEF, LeeTH (2006)Multiobjective evolutionary algo-
rithms and applications: algorithms and applications. Springer Sci-
ence & Business Media

51. Tang K, Mei Y, Yao X (2009) Memetic algorithm with extended
neighborhood search for capacitated arc routing problems. IEEE
Trans Evol Comput 13(5):1151–1166

52. Arit Thammano, Ajchara Phu-ang (2013) A hybrid artificial bee
colony algorithmwith local search for flexible job-shop scheduling
problem. Procedia Comput Sci 20:96–101

53. Vesterstrom J, Thomsen R (2004) A comparative study of differen-
tial evolution, particle swarm optimization, and evolutionary algo-
rithms on numerical benchmark problems. In: Evolutionary com-
putation, 2004. CEC2004. Congress on, vol 2, pp 1980–1987, IEEE

54. Wang H, Wang D, Yang S (2009) A memetic algorithm with adap-
tive hill climbing strategy for dynamic optimization problems. Soft
Comput-Fusion Found Methodol Appl 13(8):763–780

55. Williamson DF, Parker RA, Kendrick JS (1989) The box plot: a
simple visualmethod to interpret data.Ann InternMed110(11):916

56. Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algo-
rithm for numerical function optimization. Appl Math Comput
217(7):3166–3173

123

http://arxiv.org/abs/1210.6128

	Accelerating Artificial Bee Colony algorithm with adaptive local search
	Abstract
	1 Introduction
	2 Brief review on local search strategies
	3 Artificial Bee Colony (ABC) algorithm
	3.1 Initialization of the Swarm
	3.2 Employed bee phase
	3.3 Onlooker bees phase
	3.4 Scout bees phase

	4 Accelerating Artificial Bee Colony algorithm with an adaptive local search
	5 Experimental results and discussion
	5.1 Experimental setting
	5.2 Results analysis of experiments
	5.3 Statistical analysis

	6 Conclusion
	References

