
Memetic Comp. (2014) 6:31–47
DOI 10.1007/s12293-013-0128-0

REGULAR RESEARCH PAPER

Spider Monkey Optimization algorithm for numerical
optimization

Jagdish Chand Bansal · Harish Sharma ·
Shimpi Singh Jadon · Maurice Clerc

Received: 21 June 2012 / Accepted: 7 December 2013 / Published online: 1 January 2014
© Springer-Verlag Berlin Heidelberg 2013

Abstract Swarm intelligence is one of the most promising
area for the researchers in the field of numerical optimization.
Researchers have developed many algorithms by simulating
the swarming behavior of various creatures like ants, honey
bees, fish, birds and the findings are very motivating. In this
paper, a new approach for numerical optimization is proposed
by modeling the foraging behavior of spider monkeys. Spi-
der monkeys have been categorized as fission–fusion social
structure based animals. The animals which follow fission–
fusion social systems, split themselves from large to smaller
groups and vice-versa based on the scarcity or availability of
food. The proposed swarm intelligence approach is named
as Spider Monkey Optimization (SMO) algorithm and can
broadly be classified as an algorithm inspired by intelligent
foraging behavior of fission–fusion social structure based
animals.

Keywords Swarm intelligence based algorithm ·
Optimization · Fission–fusion social system ·
Spider monkey optimization

J. C. Bansal (B) · H. Sharma · S. S. Jadon · M. Clerc
ABV-Indian Institute of Information Technology and Management,
Gwalior, India
e-mail: jcbansal@gmail.com

J. C. Bansal
South Asian, University, New Delhi, India

H. Sharma
e-mail: harish.sharma0107@gmail.com

S. S. Jadon
e-mail: shimpisingh2k6@gmail.com

M. Clerc
Independent Consultant in Optimization, Groisy, France
e-mail: Maurice.Clerc@WriteMe.com

1 Introduction

The name swarm is used for an accumulation of creatures
such as ants, fish, birds, termites and honey bees which
behave collectively. The definition given by Bonabeau for
the swarm intelligence is “any attempt to design algorithms
or distributed problem-solving devices inspired by the col-
lective behaviour of social insect colonies and other animal
societies” [3].

Swarm Intelligence is a meta-heuristic approach in the
field of nature inspired techniques that is used to solve opti-
mization problems. It is based on the collective behavior of
social creatures. Social creatures utilize their ability of social
learning and adaptation to solve complex tasks. Researchers
have analyzed such behaviors and designed algorithms that
can be used to solve nonlinear, non-convex or combinator-
ial optimization problems in many science and engineering
domains. Previous research [7,17,28,39] have shown that
algorithms based on Swarm Intelligence have great poten-
tial to find a near optimal solution of real world optimiza-
tion problem. The algorithms that have been emerged in
recent years are Ant Colony Optimization (ACO) [7], Par-
ticle Swarm Optimization (PSO) [17], Bacterial Foraging
Optimization (BFO) [26], Artificial Bee Colony Optimiza-
tion (ABC) [14] etc.

In order to design a new swarm intelligence based algo-
rithm, it is necessary to understand whether a behavior is
swarm intelligent behavior or not. Karaboga et al. men-
tioned that Division of Labor and Self-Organization are the
necessary and sufficient conditions for obtaining intelligent
swarming behaviors.

1. Self-organization: is an important feature of a swarm
structure which results in global level response by means
of interactions among its low-level components without a

123

32 Memetic Comp. (2014) 6:31–47

central authority or external element enforcing it through
planning. Therefore, the globally coherent pattern appears
from the local interaction of the components that build up
the structure, thus the organization is achieved in parallel
as all the elements act at the same time and distributed
as no element is a central coordinator. Bonabeau et al.
have defined the following four important characteristics
on which self-organization is based [3]:

(i) Positive feedback: is an information extracted from
the output of a system and reapplied to the input to
promotes the creations of convenient structures. In
the field of swarm intelligence positive feedback pro-
vides diversity and accelerate the system to new stable
state.

(ii) Negative feedback: compensates the effect of positive
feedback and helps to stabilize the collective pattern.

(iii) Fluctuations: are the rate or magnitude of random
changes in the system. Randomness is often crucial
for efflorescent structures since it allows the findings
of new solutions. In foraging process, it helps to get-
ride of stagnation.

(iv) Multiple interactions: provide the way of learn-
ing from the individuals within a society and thus
enhance the combined intelligence of the swarm.

2. Division of labour: is a cooperative labour in specific, cir-
cumscribed tasks and like roles. In a group, there are var-
ious tasks, which are performed simultaneously by spe-
cialized individuals. Simultaneous task performance by
cooperating specialized individuals is believed to be more
efficient than the sequential task performance by unspe-
cialized individuals [5,13,24].

This paper proposes a new swarm intelligence algorithm
based on the foraging behavior of spider monkeys. The for-
aging behavior of spider monkeys shows that these mon-
keys fall in the category of fission–fusion social structure
(FFSS) based animals. Thus the proposed optimization algo-
rithm which is based on foraging behavior of spider monkeys
is explained better in terms of FFSS. Further, the proposed
strategy is tested on various benchmark and engineering opti-
mization test problems.

The rest of the paper is organized as follows: Sect. 2
describes the foraging behavior and social structure of spider
monkeys. In Sect. 3, first, the foraging behavior is critically
evaluated to be a swarm intelligent behavior over the neces-
sary and sufficient conditions of swarm intelligence and then
Spider Monkey Optimization algorithm is proposed. A detail
discussion about the proposed strategy is presented in Sect. 4.
In Sect. 5, performance of the proposed strategy is analyzed
and compared with four state-of-the-art algorithms, namely
DE, PSO, ABC and CMA-ES. Finally, in Sect. 6, paper is
concluded.

2 Foraging and social behavior of spider monkeys

Fission–fusion swarm is a social grouping pattern in which
individuals form temporary small parties (also called sub-
groups) whose members belong to a larger community (or
unit-group) of stable membership, there can be fluid move-
ment between subgroups and unit-groups such that group
composition and size changes frequently [37].

The fission–fusion social system of swarm can minimize
direct foraging competition among group members, so they
divide themselves into sub-groups in order to search food.
The members of these subgroups then communicate (through
barking and other physical activities) within and outside the
subgroup depending upon the availability of food. In this
society, social group sleep in one habitat together but for-
age in small sub-groups going off in different directions
during the day. This form of social formation occurs in
several species of primates like hamadryas, bonobo, chim-
panzees, gelada baboons and spider monkeys. These societies
change frequently in their size and composition, making up
a strong social group called the ‘parent group’. All the indi-
vidual members of a faunal community comprise of perma-
nent social networks and their capability to track changes in
the environment varies according to their individual animal
dynamics. In a fission–fusion society, the main parent group
can fission into smaller subgroups or individuals to adapt
to the environmental or social circumstances. For example,
members of a group are separated from the main group in
order to hunt or forage for food during the day, but at night
they return to join (fusion) the primary group to share food
and to take part in other activities [37].

The society of spider monkeys is one of the example of
fission–fusion social structure. In subsequent subsections, a
brief overview on swarming of spider monkeys is presented.

2.1 Social organization and behavior

The social organization of spider monkeys is related to
fission–fusion social system. Figure 1 provide some pictures
of spider monkeys [31]. They are social animals and live in
group of up to 50 individuals [34]. Spider monkeys break
up into small foraging groups that travel together and forage
throughout the day within a core area of the larger group’s
home range [34]. Spider monkeys find their foods in a very
different way: a female leads the group and is responsible
for finding food sources. In case if she doesn’t find sufficient
food for the group, she divides the group into smaller sub-
groups that forage separately [23]. The subgroups within the
band are temporary and may vary in formation frequently
throughout the day, but on average 3 members can be found
in any group at any time [23,38]. When two different bands
of spider monkeys come closer, the males in each band dis-
play aggressiveness and territorial behavior such as calling

123

Memetic Comp. (2014) 6:31–47 33

Fig. 1 Social Organization and Behavior a Spider-Monkey, b Spider Monkey Group, c Spider Monkey sub-group, d foods foraging [31]

and barking. These communications occur with much dis-
tance between the two subgroups and do not involve any
physical contacts, showing that groups respect distinct terri-
tory boundaries [38]. Members of a society might not ever
be noticed closer at one place, but their mutual tolerance of
each other when they come into contact reflects that they are
component of the larger group [38]. The main reason behind
emerging of fission–fusion social system is the competition
for food among the group members when there is a short-
age in food availability due to seasonal reasons [23]. When
a big group gets food at particular location, there is likely to
be less food per group member compared to a small group.
After some time, when food scarcity is at its peak, average
subgroup size is the smallest and during period of highest
food availability, subgroup size is the largest, indicating that
competition for scarce resources necessitates breaking into
smaller foraging groups [22,38]. One reason spider monkeys
break into smaller foraging groups but still remain part of a
larger social unit is the advantage to individual group mem-
bers in terms of increased mating chances and security from
predators.

2.2 Communication

Spider monkeys share their intentions and observations using
postures and positions, such as postures of sexual receptivity
and of attack. During traveling, they interact with each other
over long distances using a particular call which sounds like
a horse’s whinny. Each individual has its own discernible
sound so that other members of the group can easily identify
who is calling. This long-distance communication permits
spider monkeys to get-together, stay away from enemies,
share food and gossip. In order to interact to other group
members, they generally use visual and vocal communica-
tion [30].

3 Spider Monkey Optimization algorithm

Social behavior of spider monkeys inspires authors to
develop an stochastic optimization technique that mimics
fission–fusion social structure (FFSS) based foraging behav-

ior of spider monkeys. Following are the key features of the
FFSS.

1. The fission–fusion social structure based animals are
social and live in groups of 40–50 individuals. The FFSS
of swarm may reduce the foraging competition among
group members by dividing them into sub-groups in order
to search food.

2. A female (global Leader) generally leads the group and is
responsible for searching food sources. If she is not able
to get enough food for the group, she divides the group
into smaller subgroups (size varies from 3 to 8 members)
that forage independently.

3. Sub-groups are also supposed to be lead by a female (local
leader) who becomes decision-maker for planning an effi-
cient foraging route each day.

4. The members of these subgroups then communicate
within and outside the subgroup depending upon the avail-
ability of food and to maintain territorial boundaries.

In the developed strategy, the foraging behavior of FFSS
based animals (e.g. spider monkeys) is divided into four
steps. First, the group starts food foraging and evaluates their
distance from the food. In the second step, based on the dis-
tance from the foods, group members update their positions
and again evaluate distance from the food sources. Further-
more, in the third step, the local leader updates its best posi-
tion within the group and if the position is not updated for
a specified number of times then all members of that group
start searching of the food in different directions. Next, in the
fourth step, the global leader, updates its ever best position
and in case of stagnation, it splits the group into smaller size
subgroups. All the four steps mentioned before, are contin-
uously executed until the desired output is achieved. There
are two important control parameters necessary to introduce
in the proposed strategy, one is ‘GlobalLeaderLimit’ and
another is ‘LocalLeaderLimit’ which helps local and global
leaders to take appropriate decisions.

The control parameter LocalLeaderLimit is used to avoid
stagnation i.e., if a local group leader does not update herself
in a specified number of times then that group is re-directed
to a different direction for foraging. Here, the term ‘specified
number of times’ is referred as LocalLeaderLimit. Another

123

34 Memetic Comp. (2014) 6:31–47

control parameter, GlobalLeaderLimit is used for the same
purpose for global leader. The global leader breaks the group
into smaller sub-groups if she does not update in a specified
number of times.

The proposed strategy follows self-organization and divi-
sion of labour properties for obtaining intelligent swarming
behaviors of animals. As animals updating their positions by
learning from local leader, global leader and self experience
in the first and second steps of algorithm, it shows positive
feedback mechanisms of self-organization. The third step, in
which the stagnated group members are re-directed to differ-
ent directions for food searching, is responsible for fluctua-
tions in the food foraging process. In the fourth step, when the
global leader is get stuck, it divides the groups into smaller
subgroups for foraging of foods. This phenomena presents
division of labour property. ‘Local leader limit’ and ‘Global
leader limit’ provides negative feedback to help local and
global leader’s for their decisions.

However, the proposed strategy is inspired from the for-
aging behavior of spider monkeys, it is different from the
natural foraging behavior of spider monkeys. In In the pro-
posed strategy, the post of leader (local or global) is not per-
manent but depends upon the ability of leader to search of
food. Further, the spider monkeys use different type of com-
munication tactics which are not simulated by the proposed
strategy. In this way, the proposed strategy is different from
the real foraging behavior of spider monkeys.

3.1 Main steps of Spider Monkey Optimization algorithm
(SMO)

Similar to the other population-based algorithms, SMO is
a trial and error based collaborative iterative process. The
SMO process consists of six phases: Local Leader phase,
Global Leader phase, Local Leader Learning phase, Global
Leader Learning phase, Local Leader Decision phase and
Global Leader Decision phase. The position update process
in Global Leader phase is inspired from the Gbest-guided
ABC [42] and modified version of ABC [16]. The details of
each step of SM O implementation are explained below:

3.1.1 Initialization of the population

Initially, SM O generates a uniformly distributed initial pop-
ulation of N spider monkeys where each monkey SMi (i =
1, 2, ..., N) is a D-dimensional vector. Here D is the number
of variables in the optimization problem and SMi represent
the i th Spider Monkey (SM) in the population. Each spi-
der monkey SM corresponds to the potential solution of the
problem under consideration. Each SMi is initialized as fol-
lows:

SMi j = SMminj + U (0, 1) × (SMmax j − SMminj) (1)

where SMminj and SMmax j are bounds of SMi in j th direc-
tion and U (0, 1) is a uniformly distributed random number
in the range [0, 1].

3.1.2 Local Leader Phase (LLP)

In the Local Leader phase, each Spider Monkey SM modifies
its current position based on the information of the local
leader experience as well as local group members experience.
The fitness value of so obtained new position is calculated.
If the fitness value of the new position is higher than that of
the old position, then the SM updates his position with the
new one. The position update equation for i th SM (which is
a member of kth local group) in this phase is

SMnewi j = SMi j + U (0, 1) × (L Lkj − SMi j)

+ U (−1, 1) × (SMr j − SMi j) (2)

where SMi j is the j th dimension of the i th SM, L Lkj rep-
resents the j th dimension of the kth local group leader posi-
tion. SMr j is the j th dimension of the r th SM which is
chosen randomly within kth group such that r �= i, U (0, 1)

is a uniformly distributed random number between 0 and
1. Algorithm 1 shows position update process in the Local
Leader phase. In Algorithm 1, MG is the maximum number
of groups in the swarm and pr is the perturbation rate which
controls the amount of perturbation in the current position.
The range of pr is [0.1, 0.9] (explained in Sect. 5.1).

Algorithm 1 Position update process in Local Leader Phase:
for each k ∈ {1, ..., MG} do

for each member SMi ∈ kth group do

for each j ∈ {1, ..., D} do

if U (0, 1) ≥ pr then

SMnewi j = SMi j +U (0, 1)×(L Lk j −SMi j)+U (−1, 1)×(SMr j −SMi j)

else

SMnewi j = SMi j

end if

end for

end for

end for

3.1.3 Global Leader Phase (GLP)

After completion of the Local Leader phase, the Global
Leader phase (GLP) starts. In GLP phase, all the SM’s update
their position using experience of Global Leader and local
group member’s experience. The position update equation
for this phase is as follows:

SMnewi j = SMi j + U (0, 1) × (GL j − SMi j)

+ U (−1, 1) × (SMr j − SMi j) (3)

123

Memetic Comp. (2014) 6:31–47 35

where GL j represents the j th dimension of the global
leader position and j ∈ {1, 2, ..., D} is the randomly chosen
index.

In this phase, the positions of spider monkeys (SMi) are
updated based on a probabilities probi which are calculated
using their fitness. In this way a better candidate will have
a higher chance to make itself better. The probability probi

may be calculated using following expression (there may be
some other but it must be a function of fitness):

probi = 0.9 × f i tnessi

max_ f i tness
+ 0.1, (4)

here f i tnessi is the fitness value of the i th SM and
max_ f i tness is the maximum fitness in the group. Further,
the fitness of the newly generated position of the SM’s is
calculated and compared with the old one and adopted the
better position.

Algorithm 2 Position update process in Global Leader Phase
(GLP) :

for k = 1 to MG do

count = 1;

GS = kth group size;

while count < GS do

for i = 1 to GS do

if U (0, 1) < probi then

count = count + 1.

Randomly select j ∈ {1...D}.
Randomly select SMr from kth group s.t. r �= i .

SMnewi j = SMi j +U (0, 1)×(GL j −SMi j)+U (−1, 1)×(SMr j −SMi j).

end if

end for

if i is equal to GS then

i = 1;

end if

end while

end for

3.1.4 Global Leader Learning (GLL) phase

In this phase, the position of the global leader is updated
by applying the greedy selection in the population i.e., the
position of the SM having best fitness in the population is
selected as the updated position of the global leader. Further,
it is checked that the position of global leader is updating or
not and if not then the Global LimitCount is incremented
by 1.

3.1.5 Local Leader Learning (LLL) phase

In this phase, the position of the local leader is updated by
applying the greedy selection in that group i.e., the position
of the SM having best fitness in that group is selected as

the updated position of the local leader. Next, the updated
position of the local leader is compared with the old one and
if the local leader is not updated then the Local LimitCount
is incremented by 1.

3.1.6 Local Leader Decision (LLD) phase

If any Local Leader position is not updated up to a prede-
termined threshold called Local Leader Limit , then all the
members of that group update their positions either by ran-
dom initialization or by using combined information from
Global Leader and Local Leader through Eq. (5), based on
the pr .

SMnewi j = SMi j + U (0, 1) × (GL j − SMi j)

+ U (0, 1) × (SMi j − L Lkj); (5)

It is clear from the Eq. (5) that the updated dimension of
this SM is attracted towards global leader and repel from the
local leader. The pseudo code of LLD phase for kth group is
shown in Algorithm 3. In this algorithm Local LimitCountk
is the trial counter for the local best solution of kth
group.

Algorithm 3 Local Leader Decision Phase:
for k = {1...MG} do

if Local LimitCountk > Local Leader Limit then

Local LimitCountk = 0.

GS = kth group size;

for i ∈ {1...GS} do

for each j ∈ {1...D} do

if U (0, 1) ≥ pr then

SMnewi j = SMminj + U (0, 1) × (SMmax j − SMminj)

else

SMnewi j = SMi j +U (0, 1)× (GL j − SMi j)+U (0, 1)× (SMi j − L Lk j)

end if

end for

end for

end if

end for

3.1.7 Global Leader Decision (GLD) phase

In this phase, the position of global leader is monitored and if
it is not updated up to a predetermined number of iterations
called Global Leader Limit , then the global leader divides
the population into smaller groups. Firstly, the population is
divided into two groups and then three groups and so on till
the maximum number of groups (MG) are formed as shown
in the Figs. 2, 3, 4, 5. Each time in GLD phase, LLL process is
initiated to elect the local leader in the newly formed groups.
The case in which maximum number of groups are formed
and even then the position of global leader is not updated

123

36 Memetic Comp. (2014) 6:31–47

then the global leader combines all the groups to form a
single group. Thus the proposed algorithm is inspired from
fusion–fission structure of SMs. The working of this phase
is shown in Algorithm 4. The complete pseudo-code of the
proposed strategy is given in Algorithm 5:

Algorithm 4 Global Leader Decision Phase:
if Global LimitCount > Global Leader Limit then

Global LimitCount = 0
if Number of groups < MG then

Divide the population into groups.
else

Combine all the groups to make a single group.
end if
Update Local Leaders position.

end if

Algorithm 5 Spider Monkey Optimization (SMO) Algo-
rithm:

1. Initialize Population, Local Leader Limit , Global Leader Limit ,
pr .
2. Calculate fitness (i.e., the distance of individuals from food
sources).
3. Select global leader and local leaders by applying greedy selection
(see section 3.1.4, 3.1.5).
while (Termination criteria is not satisfied) do

(i) For finding the objective (Food Source), generate the new posi-
tions for all the group members by using self experience, local leader
experience and group members experience.[Refer Algorithm 1].
(ii) Apply the greedy selection process between existing position
and newly generated position, based on fitness and select the better
one;
(iii) Calculate the probability probi for all the group members using
equation (4).
(iv) Produce new positions for the all the group members, selected
by probi , by using self experience, global leader experience and
group members experiences. [Refer Algorithm 2].
(v) Update the position of local and global leaders, by applying the
greedy selection process on all the groups (see section 3.1.4, 3.1.5).
(vi) If any Local group leader is not updating her position after
a specified number of times (LocalLeaderLimit) then re-direct all
members of that particular group for foraging by algorithm (3)
(vii) If Global Leader is not updating her position for a specified
number of times (GlobalLeaderLimit) then she divides the group
into smaller groups by algorithm (4).

end while

3.2 Control parameters in SM O

It is clear from the above discussion that there are four control
parameters in SM O algorithm: the value of Local Leader
Limit, Global Leader Limit , the maximum group MG and
perturbation rate pr . Some settings of control parameters are
suggested as follows:

– MG = N/10, i.e., it is chosen such that minimum num-
ber of SM’s in a group should be 10

– Global Leader Limit ∈ [N/2, 2 × N],

Fig. 2 SMO topology: single group

Fig. 3 SMO topology: swarm is divided into two group

– Local Leader Limit should be D × N ,
– pr ∈ [0.1, 0.9],

here, N is the swarm size.

4 Discussion

Exploration and exploitation are the two important character-
istics of the population (or swarm) based optimization algo-
rithms [9,17,35,25]. In optimization algorithms, the explo-

123

Memetic Comp. (2014) 6:31–47 37

Fig. 4 SMO topology: swarm is divided into three group

Fig. 5 SMO topology: minimum size group

ration represents the ability to discover the global optimum
by investigating the various unknown regions in the solu-
tion search space. While, the exploitation represents the abil-
ity to find better solutions by implementing the knowledge
of the previous good solutions. In behavior, the exploration
and exploitation contradict with each other, however both
abilities should be well balanced to achieve better optimiza-
tion performance [40]. It is expected from a good search
process that it should explore the new solutions, while main-

taining satisfactory performance by exploiting existing solu-
tions [12].

The inherent drawback with most of the population based
stochastic algorithms is premature convergence. ABC, DE
and PSO are not exceptions [2,15,20]. Dervis Karaboga and
Bahriye Akay [15] compared the different variants of ABC
and found that ABC shows poor performance and remains
inefficient in exploring the search space. The solution search
equation of ABC is significantly influenced by a random
quantity which helps in exploration at the cost of exploita-
tion of the search space [42]. Further, Mezura-Montes et al.
[20] analyzed DE and its variants for global optimization
and found that DE has deficiency of premature convergence
and stagnation. Also some studies proved that DE sometimes
stops proceeding toward the global optima even though the
population has not converged to local optima or any other
point [18]. Price et al. [28] also drawn the same conclusions
regarding DE. However the standard PSO has the capability
to get a good solution at a significantly faster rate but, when
it is compared to other optimization techniques, it is weak to
refine the optimum solution, mainly due to less diversity in
later search [2]. On the different side, problem-based tuning
of parameters is required in PSO, to get an optimum solution
accurately and efficiently [33]. Therefore, it is clear that if a
population based algorithm is capable of balancing between
exploration and exploitation of the search space, then the
algorithm is regarded as an efficient algorithm. From this
point of view ABC, PSO and DE are not efficient algorithms.
The problems of premature convergence and stagnation is a
matter of serious consideration for designing a comparatively
efficient nature inspired algorithms (NIAs). By keeping in
mind the existing drawbacks of NIAs, SMO is designed in
this paper.

In the proposed algorithm, the first phase named ‘Local
Leader phase’ is used to explore the search region as in this
phase all the members of the groups update their positions
with high perturbation in the dimensions. The perturbation is
high for initial iterations and gradually reducing in later iter-
ations. The second phase ‘Global Leader phase’ promotes
the exploitation as in this phase, better candidates get more
chance to update and in position update process, only single
randomly selected dimension is updated. The third and fourth
phase namely ‘Local Leader Learning phase’ and ‘Global
Leader Learning phase’, are used to check that the search
process is not stagnated. In these two phases, it is checked
that the local best and global best solutions are updating or
not in a predefined number of trials. If not then the solu-
tion is considered stagnated. The fifth phase ‘Local Leader
Decision phase’ is used to avoid the stagnation or prema-
ture convergence of local solutions. In this phase, if the local
best solution is not updated in a predefined number of trials
(LocalLeaderLimit) then all the members of that group are
re-initialized. In this phase, all the dimensions of the individ-

123

38 Memetic Comp. (2014) 6:31–47

uals are initialized either randomly or by using global best
solution and local best solution. Further, the Global Leader
Decision phase is used to avoid stagnation of the global best
solution. In this phase if the global best solution is not updated
within a predefined number of trials (GlobalLeaderLimit)
then the group is divided into smaller subgroups. The benefit
of this structured group strategy is that initially there is a sin-
gle group so every newly generated food source is attracted
towards the best food source (in this case the global best will
be the local best also), thereby converging faster to the solu-
tion. But as a results of such exploitative tendency, in many
cases, the population may skip the global minima and can get
stuck into local minima. Therefore, to avoid this situation, if
global minima is not updating itself for a predefined num-
ber of times then the group is divided into subgroups. Now
every new solution will be attracted towards the respective
subgroup’s local best food source, hence contributes in the
exploration of the search space. When the maximum number
of subgroups have been formed and even though the global
optima is not updating its position then all the subgroups are
combined to form a single group and process repeats itself.
Therefore, this phase helps to balance the exploration and
exploitation capability of the algorithm while maintaining
the convergence speed. From above discussion, it is clear that
SMO tries to balance the diversity in the population/swarm
and hence can be considered as a new candidate in the field
of population based algorithms like ABC [15], PSO [17], DE
[35] etc. In ABC, DE and PSO, the position update equation
is based on the difference vector and so is the case with SMO.
Therefore, it may be considered in the category of ABC, PSO
and DE algorithms.

5 Experimental results

In order to analyze the performance of SMO algorithm,
26 different global optimization problems (f1 to f26) are
selected (listed in Table 1). These are continuous, un-biased
optimization problems and have different degrees of com-
plexity and multimodality. Test problems f1 − f19 and
f24 − f26 are taken from [1] and test problems f20 − f23

are taken from [36] with the associated offset values. This
set is large enough to include different kinds of problems
such as unimodal, multimodal, separable and non separable.
A unimodal function f (x) has a single extremum (minimum
or maximum in the range specified for x . On the other hand
if a function has more than one peaks in the search space i.e.,
local extremum, this function is called multimodal. Multi-
modal functions are used to test the ability of algorithms
getting rid of local minima. If the exploration process of an
algorithm is poor then it will not be able to search the whole
search space efficiently and will stuck to some local optima.
Functions having flat surfaces are also difficult for algorithms
since, the flatness of the function does not give any informa-

tion to the algorithm to direct the search process towards the
minima.

5.1 Experimental setting

Swarm size, perturbation rate (pr), L L L , GL L and maxi-
mum number of groups (MG) are the parameters that affect
the performance of the SM O , significantly. To fine tune
(finding most suitable values) these parameters, sensitivity
analyses with different values of these parameters have been
carried out. Swarm size is varied from 40 to 160 with step
size 20, pr is varied from 0.1 to 0.9 with step size 0.1, MG
is varied from 1 to 6 with step size 1, L L L is varied from
100 to 2500 with step size 200 and GL L is varied from 10 to
220 with step size 30. At a time only one parameter is varied
while all other parameters are kept fixed. This fine tuning is
done with the following assumptions:

– pr is varied from 0.1 to 0.9 while MG, L L L , GL L and
Swarm size are fixed to be 5, 1500, 50, and 50, respec-
tively.

– MG is varied from 1 to 6 while L L L , GL L and Swarm
size are fixed to be 1500, 50, and 50, respectively. pr is
linearly increasing from 0.1 to 0.4 through iterations.

– GL L is varied from 10 to 220 while L L L , MG and
Swarm size are fixed to be 1500, 5, and 50, respectively.
pr is linearly increasing from 0.1 to 0.4 through itera-
tions.

– L L L is varied from 100 to 2500 while MG, GL L and
Swarm size are fixed to be 5, 50, and 50, respectively. pr
is linearly increasing from 0.1 to 0.4 through iterations.

– Swarm size is varied from 40 to 160 while L L L , GL L
and MG are fixed to be 1500, 50, and 5, respectively. pr
is linearly increasing from 0.1 to 0.4 through iterations.

For the purpose of sensitivity analysis, 6 test problems are
considered and each problem is simulated 30 times. Effects
of these parameters are shown in Fig. 6a–f respectively. It
is clear from Fig. 6a that SMO is very sensitive towards
pr . SMO performs better on some problems with small val-
ues of pr while on some, it performs better with large val-
ues of pr . Therefore, the value of pr is adopted linearly
increasing over iterations to consider the dynamic nature
of parameter pr . It should be noted that this setting of
pr is not general. For a particular problem a different set-
ting of pr may provide better results. Further, by analyz-
ing Fig. 6b, it can be stated that the value of MG = 5
gives comparatively better results for the given set of test
problems. Sensitivity of Global Leader Limit (GL L) and
Local Leader Limit (L L L) can be analyzed by Fig. 6c, d. It
is observed that the value of GL L = 50 and L L L = 1500
gives better results on the considered benchmark optimiza-
tion problems. Further, swarm size is analyzed in Fig. 6e, f. It
is clear from Fig. 6e that SMO is quite sensitive with respect

123

Memetic Comp. (2014) 6:31–47 39

Ta
bl

e
1

B
en

ch
m

ar
k

fu
nc

tio
ns

us
ed

in
ex

pe
ri

m
en

ts

Te
st

Pr
ob

le
m

O
bj

ec
tiv

e
fu

nc
tio

n
Se

ar
ch

R
an

ge
O

pt
im

um
V

al
ue

D
C

A
E

Sc
hw

ef
el

fu
nc

tio
n

1.
2

f 1
(x

)
=

∑
D i=

1
(∑

i j=
1

x
j)

2
[−

10
0,

10
0]

0
30

U
N

1.
0

E
−

03

St
ep

fu
nc

tio
n

f 2
(x

)
=

∑
D i=

1
(�x

i
+

0.
5�

)2
[−

10
0,

10
0]

0
30

U
S

1.
0

E
−

03

Sc
hw

ef
el

fu
nc

tio
n

f 3
(x

)
=

−
∑

D i=
1
(x

is
in

√ |x i
|)

[−
50

0,
50

0]
−4

18
.9

82
9×

D
30

M
S

1.
0

E
−

03

R
as

tr
ig

in
f 4

(x
)
=

10
D

+
∑

D i=
1
[x2 i

−
10

co
s(

2π
x i

)]
[−

5.
12

,5
.1

2]
0

30
M

S
1.

0
E

−
03

L
ev

y
fu

nc
tio

n
1

f 5
(x

)
=

π D
[10

si
n2

(π
y 1

)
+

∑
D

−1
i=

1
(y

i
−

1)
2
(1

+
10

si
n2

(π
y i

+1
))

+
(y

D
−

1)
2
]+

∑
D i=

1
u
(x

i,
10

,
10

0,
4)

,
w

he
re

y i
=

1
+

1 4
(x

i
+

1)
an

d
u
(x

i,
a,

k,
m

)
=

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

k(
x i

−
a)

m
,

x i
>

a;
0,

-a
≤

x i
≤

a;
k(

−x
i
−

a)
m
,

x i
<

a.

[−
50

,5
0]

0
30

M
N

1.
0

E
−

03

L
ev

y
fu

nc
tio

n
2

f 6
(x

)
=

0.
1(

si
n2

(3
π

x 1
)
+

∑
D

−1
i=

1
[(x

i
−

1)
2
(1

+
si

n2
(3

π
x i

+1
))

]+
(x

D
−

1)
2

(1
+

si
n2

(2
π

x D
))

+
∑

D i=
1

u
(x

i,
5,

10
0,

4)
[−

50
,5

0]
0

30
M

N
1.

0
E

−
03

Sh
ek

el
Fo

xh
ol

es
Fu

nc
tio

n
f 7

(x
)
=

[1 50
0

+
∑

25 j=
1

1
j+

∑
2 i=

1
(x

i−
A

ij
)6

]−1
[−

65
.5

36
,6

5.
53

6]
0.

99
8

2
M

N
1.

0
E

−
03

K
ow

al
ik

fu
nc

tio
n

f 8
(x

)
=

∑
11 i=

1

[

a i
−

x 1
(b

2 i
+b

ix
2
)

b2 i
+b

ix
3
+x

4

]
2

[−
5,

5]
0.

00
03

07
5

4
M

N
1.

0
E

−
03

Si
x-

hu
m

p
ca

m
el

ba
ck

f 9
(x

)
=

(4
−

2.
1x

2 1
+

x4 1
/
3)

x2 1
+

x 1
x 2

+
(−

4
+

4x
2 2
)x

2 2
[−

5,
5]

−1
.0

31
6

2
M

N
1.

0
E

−
03

B
ra

ni
n

R
C

O
S

fu
nc

tio
n

f 1
0
(x

)
=

(x
2
−

5.
1

4π
2

x2 1
+

5 π
x 1

−
6)

2
+

10
(1

−
1 8π

)
co

s
x 1

+
10

x 1
∈[

−5
,
10

],
x 2

∈[
0,

15
]

0.
39

78
87

2
M

N
1.

0
E

−
03

G
ol

ds
tie

n
&

Pr
ic

e
fu

nc
tio

n
f 1

1
(x

)
=

[1
+(

x 1
+x

2
+1

)2
(1

9
−1

4x
1
+1

3x
2 1
−1

4x
2
+6

x 1
x 2

+3
x2 2

)]
∗[

30
+

(2
x 1

−
3x

2
)2

(1
8

−
32

x 1
+

12
x2 1

−
48

x 2
−

36
x 1

x 2
+

27
x2 2

)]
[−

2,
2]

3
2

M
N

1.
0

E
−

03

H
ar

tm
an

n
fu

nc
tio

n
3

f 1
2
(x

)
=

−
∑

4 i=
1
α

ie
x

p[−
∑

3 j=
1

A
ij

(x
j
−

P i
j)

2
]

[0
,1

]
−3

.8
62

78
3

M
N

1.
0

E
−

03

H
ar

tm
an

n
fu

nc
tio

n
6

f 1
3
(x

)
=

−
∑

4 i=
1
α

ie
x

p[−
∑

6 j=
1

B
ij

(x
j
−

Q
ij

)2
]

[0
,1

]
−3

.3
22

37
6

M
N

1.
0

E
−

03

Sh
ek

el
fu

nc
tio

n
5

f 1
4
(x

)
=

−
∑

5 j=
1
[∑

4 i=
1
(x

i
−

C
ij

)2
+

β
j]−

1
[0

,1
0]

−1
0.

15
32

4
M

N
1.

0
E

−
03

Sh
ek

el
fu

nc
tio

n
7

f 1
5
(x

)
=

−
∑

7 j=
1
[∑

4 i=
1
(x

i
−

C
ij

)2
+

β
j]−

1
[0

,1
0]

−1
0.

40
29

4
M

N
1.

0
E

−
03

Sh
ek

el
fu

nc
tio

n
10

f 1
6
(x

)
=

−
∑

10 j=
1
[∑

4 i=
1
(x

i
−

C
ij

)2
+

β
j]−

1
[0

,1
0]

−1
0.

53
64

4
M

N
1.

0
E

−
03

C
ig

ar
f 1

7
(x

)
=

x 0
2
+

10
00

00
∑

D i=
1

x i
2

[−
10

,1
0]

0
30

U
S

1.
0

E
−

05

A
xi

s
pa

ra
lle

lh
yp

er
-e

lli
ps

oi
d

f 1
8
(x

)
=

∑
D i=

1
ix

2 i
[−

5.
12

,5
.1

2]
0

30
U

S
1.

0
E

−
05

B
ea

le
f 1

9
(x

)
=

[1.
5

−
x 1

(1
−

x 2
)]2

+
[2.

25
−

x 1
(1

−
x2 2

)]2
+

[2.
62

5
−

x 1
(1

−
x3 2

)]2
[−

4.
5,

4.
5]

0
2

U
N

1.
0

E
−

05

Sh
if

te
d

Sp
he

re
f 2

0
(x

)
=

∑
D i=

1
z2 i

+
f b

ia
s,

z
=

x
−

o,
x

=
[x 1

,
x 2

,
..
..

x D
],o

=
[o 1

,
o 2

,
..
.o

D
]

[−
10

0,
10

0]
−4

50
10

U
S

1.
0

E
−

05

Sh
if

te
d

Sc
hw

ef
el

f 2
1
(x

)
=

∑
D i=

1
(∑

i j=
1

z
j)

2
+

f b
ia

s,
z

=
x

−
o,

x
=

[x 1
,

x 2
,
..
..

x D
],o

=
[o 1

,
o 2

,
..
.o

D
]

[−
10

0,
10

0]
−4

50
10

U
N

1.
0

E
−

05

123

40 Memetic Comp. (2014) 6:31–47

Ta
bl

e
1

co
nt

in
ue

d

Te
st

Pr
ob

le
m

O
bj

ec
tiv

e
fu

nc
tio

n
Se

ar
ch

R
an

ge
O

pt
im

um
V

al
ue

D
C

A
E

Sh
if

te
d

G
ri

ew
an

k
f 2

2
(x

)
=

∑
D i=

1
z2 i

40
00

−
∏

D i=
1

co
s(

z i √ i
)
+

1
+

f b
ia

s,
z

=
(x

−
o)

,
x

=
[x 1

,
x 2

,
..
..

x D
],o

=
[o 1

,
o 2

,
..
.o

D
]

[−
60

0,
60

0]
−1

80
10

M
N

1.
0

E
−

05

Sh
if

te
d

A
ck

le
y

f 2
3
(x

)
=

−2
0

ex
p(

−0
.2

√
1 D

∑
D i=

1
z2 i

)
−

ex
p(

1 D

∑
D i=

1
co

s(
2π

z i
))

+2
0
+e

+
f b

ia
s,

z
=

(x
−

o)
,

x
=

(x
1
,

x 2
,
..
..
..
..

x D
),

o
=

[o 1
,
o 2

,
..
..
..
..

o
D
]

[−
32

,3
2]

−1
40

10
M

S
1.

0
E

−
05

E
as

om
’s

fu
nc

tio
n

f 2
4
(x

)
=

−
co

s
x 1

co
s

x 2
e(

(−
(x

1
−π

)2
−(

x 2
−π

)2
))

[−
10

,1
0]

−1
2

U
N

1.
0

E
−

13

D
ek

ke
rs

an
d

A
ar

ts
f 2

5
(x

)
=

10
5
x2 1

+
x2 2

−
(x

2 1
+

x2 2
)2

+
10

−5
(x

2 1
+

x2 2
)4

[−
20

,2
0]

−2
47

77
2

M
N

5.
0

E
−

01

Sh
ub

er
t

f 2
6
(x

)
=

−
∑

5 i=
1

ic
os

((
i
+

1)
x 1

+
1)

∑
5 i=

1
ic

os
((

i
+

1)
x 2

+
1)

[−
10

,1
0]

−1
86

.7
30

9
2

M
N

1.
0

E
−

05

D
D

im
en

si
on

s,
C

C
ha

ra
ct

er
is

tic
,U

U
ni

m
od

al
,M

M
ul

tim
od

al
,S

Se
pa

ra
bl

e,
N

N
on

-S
ep

ar
ab

le
,A

E
A

cc
ep

ta
bl

e
E

rr
or

to the swarm size. The optimum value of swarm size around
40 can be observed from the Fig. 6e, f.

To prove the efficiency of SMO algorithm, it is compared
with four state-of-art algorithms, namely PSO [4] (based
on Standard PSO 2006 but with linearly decreasing iner-
tia weight, modified velocity update equation and a differ-
ent parameters setting), ABC [14], DE (DE/rand/bin/1)

[35] and Covariance Matrix Adaptation Evolution Strategies
(CMA-ES) [11]. For the comparison, same stopping criteria,
number of simulations and maximum number of function
evaluations are used for all the considered algorithms. The
values of parameters for the considered algorithms are as
follows:

SMO parameters setting:

– The Swarm size N = 50,
– MG = 5,
– Global Leader Limit = 50,
– Local Leader Limit = 1500,
– pr ∈ [0.1, 0.4], linearly increasing over iterations,

prG+1 = prG + (0.4 − 0.1)/M I R; pr1 = 0.1. (6)

where, G is the iteration counter, M I R is the maximum
number of iterations.

– The stopping criteria is either maximum number of func-
tion evaluations (which is set to be 2.0×105) is reached or
the corresponding acceptable error (mentioned in Table 1)
have been achieved,

– The number of simulations (or run) =100.

ABC parameters setting:

– Colony size SN = 100,
– Number of food sources SN/2,
– limit = 1500 [14],

DE parameters setting:

– The crossover probability C R = 0.9 [8],
– The scale factor which controls the implication of the dif-

ferential variation F = 0.5 [27],
– Population size N P = 50.

PSO parameters setting:

– Inertia Weight (w), decreases linearly from 1 to 0.1,
– Acceleration coefficients (c1 = 2, c2 = 2),
– Swarm size S = 50.

CMA-ES parameters setting [10]:
All parameter settings for CMA-ES is kept same as in [10].
The results of CMA-ES are obtained by the source code
provided at its developer’s webpage, http://www.bionik.tu-
berlin.de/user/niko/index.html.

123

http://www.bionik.tu-berlin.de/user/niko/index.html
http://www.bionik.tu-berlin.de/user/niko/index.html

Memetic Comp. (2014) 6:31–47 41

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Effect of parameters on success rate for functions f9, f12, f14,

f18, f25 and f26 a when pr is varied, b when MG is varied, c when
Global Leader Limit is varied, d when Local Leader Limit is varied,

e Swarm Size v/s Successful Runs, f Swarm Size v/s Average number
of function evaluations

5.2 Results analysis of experiments

Numerical results for benchmark problems of Table 1 with
the experimental settings given in Sect. 5.1 are given in
Table 2. In Table 2, standard deviation (SD), mean error
(ME), average number of function evaluations (AFE), and
success rate (SR) are reported for test problems f1 to f26.

The AFE is the average of the function evaluations that are
required to reach at the termination criteria in 100 runs. In
other words,

AF E

=
∑100

i=1 # of function evaluations to meet the termination criteria for run i

100

123

42 Memetic Comp. (2014) 6:31–47

Table 2 Experimental results

Test
Function

Algorithm SD ME AF E SR

f1 DE 1.42E−04 8.68E−04 27378 100

PSO 6.72E−05 9.34E−04 45914.5 100

ABC 2.02E−04 7.57E−04 35901 100

CMA-ES 2.90E−04 7.10E−04 21248 100

SMO 8.38E−05 8.88E−04 15128.19 100

f2 DE 3.54E−01 1.00E−01 25858 95

PSO 2.36E−04 2.53E−04 38273.5 100

ABC 5.92E−04 6.35E−04 20244 100

CMA-ES 1.77E+00 1.44E+00 72184 36

SMO 1.20E−05 2.34E−04 12018.41 100

f3 DE 6.12E+02 2.24E+03 200000 0

PSO 6.70E+02 2.80E+03 200000 0

ABC 1.18E+01 1.19E+00 170335 76

CMA-ES 8.96E+02 7.64E+03 200000 0

SMO 1.11E+02 7.67E+01 180525.04 65

f4 DE 4.93E+00 1.54E+01 200000 0

PSO 1.35E+01 3.80E+01 200000 0

ABC 3.14E−04 4.72E−04 87039 100

CMA-ES 1.36E+01 5.18E+01 200000 0

SMO 2.33E−04 3.39E−04 83158.66 100

f5 DE 1.45E−02 2.90E−03 24490.5 98

PSO 1.44E−02 2.98E−03 52777.5 98

ABC 2.19E−04 7.48E−04 29301 100

CMA-ES 3.40E−02 7.20E−04 23254 88

SMO 1.61E−04 6.52E−04 16176 100

f6 DE 1.78E−03 1.15E−03 26753 97

PSO 2.58E−03 1.62E−03 51446 93

ABC 1.96E−04 7.89E−04 32604 100

CMA-ES 4.50E−03 1.70E−03 13756 86

SMO 1.43E−04 1.07E−04 23728.83 100

f7 DE 7.15E − 05 2.39E−04 2632.5 100

PSO 3.09E−04 3.06E−04 3778 100

ABC 2.79E−04 1.93E−04 1306 100

CMA-ES 6.87E+00 1.04E+01 200000 0

SMO 2.68E−04 2.02E−04 919.71 100

f8 DE 2.14E−04 8.32E−04 8170 97

PSO 1.33E−04 8.39E−04 1957 100

ABC 1.34E−04 8.43E−04 7525.37 100

CMA-ES 4.20E−03 1.50E−03 13434 88

SMO 1.38E−04 8.51E−04 2214.37 100

f9 DE 1.01E−04 4.44E−04 1686.5 100

PSO 3.05E−04 4.80E−04 1318 100

ABC 3.11E−04 5.08E−04 899 100

CMA-ES 5.20E−11 6.03E−04 619 100

SMO 2.99E−04 4.02E−04 529.65 100

f10 DE 1.32E−04 4.89E−04 2081 100

PSO 2.82E−04 4.81E−04 1445.5 100

Table 2 continued

Test
Function

Algorithm SD ME AF E SR

ABC 2.79E−04 4.77E−04 1480 100

CMA-ES 1.40E−07 3.98E−04 594 100

SMO 2.91E−04 4.25E−04 673.2 100

f11 DE 1.20E−04 4.78E−04 1608 100

PSO 2.70E−04 4.83E−04 1900.5 100

ABC 3.08E−04 4.88E−04 2925.11 100

CMA-ES 2.51E−01 1.43E−02 2052 78

SMO 2.96E−04 4.85E−04 866.25 100

f12 DE 1.04E−04 5.01E−04 1334 100

PSO 2.46E−04 5.77E−04 1080.5 100

ABC 2.64E−04 5.48E−04 1415 100

CMA-ES 4.80E−08 9.25E−04 996 100

SMO 2.66E−04 5.15E−04 598.95 100

f13 DE 5.22E−02 8.84E−02 149112 26

PSO 5.63E−02 4.29E−02 76074 64

ABC 2.33E−04 6.81E−04 4652 100

CMA-ES 5.80E−02 3.80E−03 22330 48

SMO 1.18E−02 1.86E−03 27278.86 99

f14 DE 1.05E+00 1.50E−01 7962 98

PSO 1.36E+00 2.75E−01 16708.5 96

ABC 2.56E−04 5.74E−04 6656 100

CMA-ES 2.58E−02 3.18E−02 42561 40

SMO 2.58E−04 6.40E−04 17592.18 100

f15 DE 1.65E−04 5.63E−04 3659.5 100

PSO 2.35E−04 6.89E−04 5435 100

ABC 2.93E−04 5.90E−04 8222.32 100

CMA-ES 1.74E−01 1.25E−02 35632 48

SMO 2.57E−04 6.62E−04 9519.46 100

f16 DE 6.67E−01 6.76E−02 5620 99

PSO 2.56E−04 6.57E−04 5463.5 100

ABC 2.82E−04 5.75E−04 9584.35 100

CMA-ES 2.54E−02 2.15E−03 11234 52

SMO 2.48E−04 6.53E−04 7605.82 100

f17 DE 1.34E−06 8.63E−06 40678 100

PSO 5.46E−07 9.38E−06 69416.5 100

ABC 1.82E−06 8.25E−06 63993 100

CMA-ES 6.61E−06 2.51E−05 10318 100

SMO 9.45E−07 8.94E−06 22477.95 100

f18 DE 1.31E−06 8.60E−06 26463.5 100

PSO 6.13E−07 9.37E−06 44129.5 100

ABC 2.00E−06 8.18E−06 41861 100

CMA-ES 1.06E−06 7.03E−06 16463 100

SMO 7.62E−07 8.96E−06 14679.72 100

f19 DE 1.13E−06 4.72E−06 1849 100

PSO 2.67E−06 4.22E−06 2762 100

ABC 2.42E−06 7.81E−06 31948.76 100

CMA-ES 1.01E−06 1.17E−06 1247.16 100

123

Memetic Comp. (2014) 6:31–47 43

Table 2 continued

Test
Function

Algorithm SD ME AF E SR

SMO 2.58E−06 4.81E−06 1569.15 100

f20 DE 2.03E−06 7.46E−06 10805.5 100

PSO 1.47E−06 8.07E−06 15854.5 100

ABC 2.16E−06 7.35E−06 17112 100

CMA-ES 8.12E−06 6.38E−06 13805.5 100

SMO 1.86E−06 7.65E−06 5898.42 100

f21 DE 3.39E+03 1.21E+05 200000 0

PSO 1.01E+03 7.84E+02 200000 0

ABC 3.96E+03 1.31E+04 200000 0

CMA-ES 1.00E+03 1.84E+02 200000 0

SMO 1.18E+03 1.84E+04 200000 0

f22 DE 1.20E−02 1.34E−02 165684 22

PSO 2.77E−02 4.28E−02 198768.5 2

ABC 2.86E−03 1.09E−03 101707.2 86

CMA-ES 5.63E−04 1.03E−04 95707.2 96

SMO 6.03E−03 2.68E−03 130922.94 77

f23 DE 1.21E−06 8.85E−06 15959 100

PSO 8.69E−07 9.10E−06 24687.5 100

ABC 1.71E−06 8.09E−06 32415 100

CMA-ES 2.35E−06 5.37E−06 17365 100

SMO 1.13E−06 8.66E−06 9069.39 100

f24 DE 7.36E−15 4.50E−14 5210 100

PSO 2.87E−14 5.13E−14 9778 100

ABC 5.64E−07 5.71E−08 128925.18 52

CMA-ES 8.17E−14 7.83E−14 9612 100

SMO 2.69E−14 4.71E−14 11789.91 100

f25 DE 1.12E−03 4.90E−01 2725.5 100

PSO 5.64E−03 4.91E−01 4979 100

ABC 5.25E−03 4.90E−01 2567 100

CMA-ES 6.07E−03 7.91E−01 1725.5 100

SMO 4.98E−03 4.89E−01 1258.29 100

f26 DE 2.16E−06 4.78E−06 9663 100

PSO 4.01E−04 1.01E−04 72252.5 83

ABC 5.95E−06 5.32E−06 8248.56 100

CMA-ES 6.27E−06 7.32E−06 14262 100

SMO 5.58E−06 4.97E−06 4379.76 100

Table 2 shows that most of the time SMO outperforms
in terms of reliability, efficiency and accuracy. Some more
intensive statistical analyses based on boxplots, the Mann–
Whitney U rank sum test, performance indices [6], and accel-
eration rate (AR) [29] have been carried out for the results of
DE, PSO, ABC, CMA-ES and SMO.

5.3 Statistical analysis

DE, PSO, ABC, CMA-ES and SMO are compared based on
SR, AFE, and ME. First SR of all these algorithms is com-

pared and if it is not possible to distinguish the performance
of algorithms based on SR then comparison is made on the
basis of AFE. ME is used for comparison if the comparison is
not possible on the basis of SR and AFE both. From the results
shown in Table 2, it is clear that SMO costs less on 14 function
(f1, f2, f4, f5, f6, f7, f9, f11, f12, f18, f20, f23, f25, f26)
among all the considered algorithms. As these functions
include unimodel, multimodel, separable, non separable,
lower and higher dimension functions, it can be stated that
SMO balances the exploration and exploitation capabilities
efficiently. ABC outperforms SMO over five test functions
(f3, f13, f14, f15, f21, f22) and four are multimodel func-
tions. It shows that ABC perform better on multimodel
functions as the solution search equation of ABC is sig-
nificantly influenced by a random quantity which helps in
exploration at the cost of exploitation of the search space
[32]. CMA-ES outperforms over SMO on six test functions
(f10, f17, f19, f21, f22, f24) among these four test functions
are unimodel functions. Generally speaking, the cost of
CMA-ES is lower than those of SMO, ABC, DE and PSO
for the unimodal functions. This is because CMA-ES is a
local method devised for optimal exploitation of local infor-
mation [21]. DE outperform over only two test functions
(f15, f24) in which f15 is unimodel and f24 is multimodel.
Further, PSO performs better than SMO over five test func-
tion (f8, f15, f16, f21, f24) which all are non separable func-
tions as well as four are multimodel functions. Overall, SMO
is better than DE over 24 test functions, PSO over 21 test
functions, ABC over 20 test functions, and CMA-ES over
20 test functions of mixed characteristics, when compared
separately. It means that when the results of all functions are
evaluated together, the SMO algorithm is the cost effective
algorithm for most of the functions.

For the purpose of comparison in terms of consolidated
performance, boxplot analyses have been carried out for all
the considered algorithms. The empirical distribution of data
is efficiently represented graphically by the boxplot analysis
tool [41]. The boxplots of average number of function eval-
uations for DE, PSO, ABC, CMA-ES and SMO are shown
in Fig. 7. It is clear from Fig. 7a that SMO is cost effective
in terms of function evaluations as interquartile range and
median of average number of function evaluations are low
for SMO. When the considered algorithms are compared on
the basis of standard deviation and success rate, it can be
observed from Fig. 7b, c that ABC and SMO have equal
performance, while they perform better than DE, PSO and
CMA-ES.

Though, it is clear from box plots that SMO is cost effec-
tive than DE, PSO, ABC, and CMA-ES i.e., SMO’s result
differs from the other, now to check, whether there exists
any significant difference between algorithm’s output or this
difference is due to some randomness, we require another
statistical test. It can be observed from boxplots Fig. 7a that

123

44 Memetic Comp. (2014) 6:31–47

(a) (b)

(c)

Fig. 7 Boxplots graph for a average number of function evaluation, b standard deviation, and c success rate

average number of function evaluations used by the con-
sidered algorithms to solve the different problems are not
normally distributed, so a non-parametric statistical test is
required to compare the performance of the algorithms. The
Mann–Whitney U rank sum [19], a non-parametric test, is
well established test for comparison among non-Gaussian
data. In this paper, this test is performed at 5% level of sig-
nificance (α = 0.05) between SMO–DE, SMO–PSO, SMO–
ABC, and SMO–CMA-ES.

Table 3 shows the results of the Mann–Whitney U rank
sum test for the average function evaluations of 100 simula-
tions. First we observe the significant difference by Mann–
Whitney U rank sum test i.e., whether the two data sets
are significantly different or not. If significant difference is
not seen (i.e., the null hypothesis is accepted) then sign ‘=’
appears and when significant difference is observed i.e., the
null hypothesis is rejected then compare the average number
of function evaluations. And we use signs ‘+’ and ‘−’ for
the case where SMO takes less or more average number of
function evaluations than the other algorithms, respectively.
Therefore in Table 3, ‘+’ shows that SMO is significantly
better and ‘−’ shows that SMO is worse. As Table 3 includes
79 ‘+’ signs out of 104 comparisons. Therefore, it can be
concluded that the results of SMO is significantly cost effec-

tive than DE, PSO, ABC and CMA-ES over considered test
problems.

Further, to compare the considered algorithms, by giv-
ing weighted importance to SR, AFE and SD, performance
indices (P I s) are calculated [6]. The values of P I for the DE,
PSO, ABC and CMA-ES are calculated by using following
equations:

P I = 1

Np

Np∑

i=1

(k1α
i
1 + k2α

i
2 + k3α

i
3)

Where αi
1 = Sri

T ri ;αi
2 =

{
M f i

A f i , if Sri > 0.

0, if Sri = 0.
; and αi

3 = Moi

Aoi

i = 1, 2, ..., Np

– Sri = Successful simulations/runs of i th problem.
– T ri = Total simulations of i th problem.
– M f i = Minimum of average number of function eval-

uations used for obtaining the required solution of i th
problem.

– A f i = Average number of function evaluations used for
obtaining the required solution of i th problem.

– Moi = Minimum of standard deviation obtained for the
i th problem.

123

Memetic Comp. (2014) 6:31–47 45

Table 3 Comparison based on mean function evaluations and the Mann–Whitney U rank sum test at a α = 0.05 significance level (‘+’ indicates
SMO is significantly better, ‘−’ indicates SMO is significantly worst and ‘=’ indicates that there is no significant difference), TP: Test Problem

TP Mann–Whitney U rank sum test with SMO TP Mann–Whitney U rank sum test with SMO

DE PSO ABC CMA-ES DE PSO ABC CMA-ES

f1 + + + + f14 − − − +

f2 + + + + f15 − − − +

f3 + + − + f16 − − + +

f4 + + + + f17 + + + −
f5 + + + + f18 + + + +

f6 + + + − f19 + + + −
f7 + + + + f20 + + + +

f8 + − + + f21 = = = =

f9 + + + + f22 + + − −
f10 + + + − f23 + + + +

f11 + + + + f24 − − + −
f12 + + + + f25 + + + +

f13 + + − − f26 + + + +

(a) (b)

(c)

Fig. 8 Performance index for test problems; a for case (1), b for case (2) and c for case (3)

123

46 Memetic Comp. (2014) 6:31–47

Table 4 Acceleration rate (AR) of SMO as compared to the DE, PSO,
ABC and CMA-ES

TP DE PSO ABC CMA-ES

f1 1.809734013 3.035029306 2.373119322 1.404530218

f2 2.151532524 3.184572668 1.684415825 6.006118946

f3 1.10787955 1.10787955 0.943553315 1.10787955

f4 2.405041159 2.405041159 1.046661887 2.405041159

f5 1.514002226 3.262704006 1.81138724 1.43756182

f6 1.127447076 2.168079926 1.374024762 0.579716741

f7 2.862315295 4.107816594 1.42001283 217.4598515

f8 3.689536979 0.883772811 3.398424834 6.066736815

f9 3.184178231 2.488435759 1.697347305 1.168696309

f10 3.091206179 2.147207368 2.19845514 0.882352941

f11 1.856277056 2.193939394 3.376750361 2.368831169

f12 2.227230988 1.803990316 2.362467652 1.662910093

f13 5.466210831 2.788752902 0.170534986 0.818582595

f14 0.452587456 0.94976859 0.378349926 2.419313581

f15 0.384423066 0.570935746 0.863738069 3.74306946

f16 0.738907836 0.718331488 1.260133687 1.477026803

f17 1.809684602 3.088204218 2.846923318 0.459027625

f18 1.80272512 3.006154068 2.851621148 1.121479156

f19 1.178344964 1.760188637 20.36055189 0.794799732

f20 1.831931263 2.687923207 2.901115892 2.340542043

f21 1 1 1 1

f22 1.265507786 1.518209872 0.776847816 0.731019331

f23 1.75965528 2.722068408 3.574110276 1.914682244

f24 0.441903288 0.829353235 10.93521325 0.815273399

f25 2.166034857 3.956957458 2.040070254 1.371305502

f26 2.206285276 16.49690851 1.883336073 3.256342813

TP test problems

– Aoi = Standard deviation obtained by an algorithm for
the i th problem.

– Np = Total number of optimization problems evaluated.

The weights assigned to SR, AFE and SD are represented
by k1, k2 and k3 respectively, where k1 + k2 + k3 = 1 and
0 ≤ k1, k2, k3 ≤ 1. To calculate the P I s, equal weights
are assigned to two variables while weight of the remaining
variable vary from 0 to 1 as given in [6]. Following are the
resultant cases:

1. k1 = W, k2 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

2. k2 = W, k1 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

3. k3 = W, k1 = k2 = 1−W
2 , 0 ≤ W ≤ 1

The graphs corresponding to each of the cases (1), (2)
and (3) for the considered algorithms are shown in Fig. 8a–c
respectively. In these figures the weights k1, k2 and k3 are
represented by horizontal axis while the P I is represented
by the vertical axis.

In case (1), AFE and SD are given equal weights. P I s
of the considered algorithms are superimposed in Fig. 8a for
comparison of the performance. It is observed that P I of
SMO is higher than the considered algorithms. In case (2),
equal weights are assigned to SR and AFE and in case (3),
equal weights are assigned to SR and AFE. It is clear from
Fig. 8b, c that the algorithms perform same as in case (1).

Further, we compare the convergence speed of the con-
sidered algorithms by measuring the AFEs. A smaller AFEs
means higher convergence speed. In order to minimize the
effect of the stochastic nature of the algorithms, the reported
function evaluations for each test problem is averaged over
100 runs. In order to compare convergence speeds, we use
the acceleration rate (AR) which is defined as follows, based
on the AFEs for the two algorithms ALGO and SMO:

AR = AFEALGO

AFESMO
, (7)

where, ALGO∈ {DE, PSO, ABC, CMA-ES} and AR > 1
means SMO is faster. In order to investigate the AR of the pro-
posed algorithm as compared to the considered algorithms,
results of Table 2 are analyzed and the value of AR is calcu-
lated using equation (7). Table 4 shows a comparison between
SMO and DE, SMO and PSO, SMO and ABC, and SMO and
CMA-ES in terms of AR. It is clear from the Table 4 that con-
vergence speed of SMO is better than considered algorithms
for most of the functions.

6 Conclusion

In this paper, a new swarm intelligence algorithm for opti-
mization is proposed. The inspiration is from the social
behavior of spider monkeys. The proposed algorithm is
proved to be very flexible in the category of swarm intel-
ligence based algorithms. With the help of numerical experi-
ments over test problems, it has been shown that, for most of
the problems the reliability (due to success rate), efficiency
(due to average number of function evaluations) and accuracy
(due to mean objective function value) of SMO is competitive
or similar to those of DE, PSO, ABC and CMA-ES. Hence, it
may be concluded that SMO is going to be a competing can-
didate in the field of swarm intelligence based optimization
algorithms.

Acknowledgments The authors acknowledge the anonymous review-
ers for their valuable comments and suggestions.

References

1. Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical
evaluation of several stochastic algorithms on selected continuous
global optimization test problems. J. Global Optim. 31(4):635–672

123

Memetic Comp. (2014) 6:31–47 47

2. Angeline P (1998) Evolutionary optimization versus particle
swarm optimization: philosophy and performance differences. In:
Evolutionary programming VII. Springer, Berlin, pp 601–610

3. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence:
from natural to artificial systems. Oxford University Press, New
York

4. Clerc M (2012) A method to improve standard PSO. http://clerc.
maurice.free.fr/pso/Design_efficient_PSO.pdf. Retrieved on Jan
2012

5. De Castro LN, Von Zuben FJ (1999) Artificial immune systems:
Part I-basic theory and applications. Universidade Estadual de
Campinas, Dezembro de, Tech. Rep

6. Thakur M. Deep K (2007) A new crossover operator for real coded
genetic algorithms. Appl Math Comput 188(1):895911

7. Dorigo M, Stützle T (2004) Ant colony optimization. The MIT
Press, Cambridge

8. Gamperle R, Muller SD, Koumoutsakos A (2002) A parameter
study for differential evolution. Adv Intell Syst Fuzzy Syst Evol
Comput 10:293–298

9. Goldberg DE (1989) Genetic algorithms in search, optimization,
and machine learning. Addison-Wesley Professional, Upper Saddle
River

10. Hansen N (2006) The cma evolution strategy: a comparing review.
In: Towards a new evolutionary computation. Springer, Heidelberg,
pp 75–102

11. Hansen N, Ostermeier A (1996) Adapting arbitrary normal muta-
tion distributions in evolution strategies: the covariance matrix
adaptation. In: Proceedings of IEEE international conference on
evolutionary computation, pp 312–317. IEEE

12. Hofmann K, Whiteson S, de Rijke M (2011) Balancing exploration
and exploitation in learning to rank online. Adv Inform Retr 5:251–
263

13. Jeanne RL (1986) The evolution of the organization of work in
social insects. Monitore Zoologico Italiano 20(2):119–133

14. Karaboga D (2005) An idea based on honey bee swarm for numer-
ical optimization. Techn. Rep. TR06. Erciyes University Press,
Erciyes

15. Karaboga D, Akay B (2009) A comparative study of artificial bee
colony algorithm. Appl Math Comput 214(1):108–132

16. Karaboga D, Akay B (2011) A modified artificial bee colony (ABC)
algorithm for constrained optimization problems. Appl Soft Com-
put 11(3):3021–3031

17. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Pro-
ceedings of the IEEE international conference on neural networks,
1995, vol 4, pp 1942–1948. IEEE

18. Lampinen J, Zelinka I (2000) On stagnation of the differential evo-
lution algorithm. In: Proceedings of MENDEL, Citeseer, pp 76–83

19. Mann HB, Whitney DR (1947) On a test of whether one of two
random variables is stochastically larger than the other. Annals
Math Stat 18(1):50–60

20. Mezura-Montes E, Velázquez-Reyes J, Coello CA (2006) A com-
parative study of differential evolution variants for global opti-
mization. In: Proceedings of the 8th annual conference on Genetic
and evolutionary computation. ACM Press, New York, pp 485–
492

21. Milano M, Koumoutsakos P, Schmidhuber J (2004) Self-organizing
nets for optimization. IEEE Trans Neural Netw 15(3):758–765

22. Milton K (1993) Diet and social organization of a free-ranging spi-
der monkey population: the development of species-typical behav-
ior in the absence of adults. In: Juvenile primates: life history,
development, and behavior. Oxford University Press, Oxford, pp
173–181

23. Norconk MA, Kinzey WG (1994) Challenge of neotropical fru-
givory: travel patterns of spider monkeys and bearded sakis. Am J
Primatol 34(2):171–183

24. Oster GF, Wilson EO (1979) Caste and ecology in the social insects.
Princeton Univ ersity Press, Princeton

25. Passino KM (2002) Biomimicry of bacterial foraging for distrib-
uted optimization and control. IEEE Control Syst Mag 22(3):52–67

26. Passino KM (2010) Bacterial foraging optimization. Int J Swarm
Intell Res (IJSIR) 1(1):1–16

27. Price KV (1996) Differential evolution: a fast and simple numer-
ical optimizer. In: Fuzzy information processing society, 1996.
NAFIPS. 1996 Biennial conference of the North American, pp
524–527. IEEE

28. Price KV, Storn RM, Lampinen JA (2005) Differential evolution:
a practical approach to global optimization. Springer, Berlin

29. Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-
based differential evolution. IEEE Trans Evol Comput 12(1):64–79

30. Ramos-Fernandez G (2001) Patterns of association, feeding com-
petition and vocal communication in spider monkeys, Ateles geof-
froyi. Dissertations, University of Pennsylvania. http://repository.
upenn.edu/dissertations/AAI3003685. 1 Jan 2001

31. Sartore J (2011) Spider monkey images. http://animals.national
geographic.com/animals/mammals/spider-monkey. Retrived on
21 Decmber 2011

32. Sharma H, Bansal JC, Arya KV (2012) Opposition based lévy
flight artificial bee colony. Memet Comput 5(3):213–227

33. Shi Y, Eberhart R (1998) Parameter selection in particle swarm
optimization. In: Evolutionary programming VII. Springer, Hei-
delberg, pp 591–600

34. Simmen B, Sabatier D (1996) Diets of some french guianan
primates: food composition and food choices. Int J Primatol
17(5):661–693

35. Storn R, Price K (1997) Differential evolution-a simple and effi-
cient adaptive scheme for global optimization over continuous
spaces. J Global Optim 11:341–359

36. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A,
Tiwari S (2005) Problem definitions and evaluation criteria for the
CEC 2005 special session on real-parameter optimization. Kan-
GAL Report

37. Symington MMF (1990) Fission–fusion social organization inate-
les andpan. Int J Primatol 11(1):47–61

38. van Roosmalen MGM (1985) Instituto Nacional de Pesquisas da
Amazônia. Habitat preferences, diet, feeding strategy and social
organization of the black spider monkey (ateles paniscus paniscus
linnaeus 1758) in surinam. Wageningen : Roosmalen

39. Vesterstrom J, Thomsen R (2004) A comparative study of differen-
tial evolution, particle swarm optimization, and evolutionary algo-
rithms on numerical benchmark problems. In: Congress on evolu-
tionary computation, 2004. CEC2004., vol 2, pp 1980–1987. IEEE

40. Weise T, Chiong R, Tang K (2012) Evolutionary optimization: pit-
falls and booby traps. J Comput Sci Technol 27(5):907–936

41. Williamson DF, Parker RA, Kendrick JS (1989) The box plot: a sim-
ple visual method to interpret data. Annals Intern Med 110(11):916

42. Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algo-
rithm for numerical function optimization. Appl Math Computat
217(7):3166–3173

123

http://clerc.maurice.free.fr/pso/Design_efficient_PSO.pdf
http://clerc.maurice.free.fr/pso/Design_efficient_PSO.pdf
http://repository.upenn.edu/dissertations/AAI3003685
http://repository.upenn.edu/dissertations/AAI3003685
http://animals.nationalgeographic.com/animals/mammals/spider-monkey
http://animals.nationalgeographic.com/animals/mammals/spider-monkey

	Spider Monkey Optimization algorithm for numerical optimization
	Abstract
	1 Introduction
	2 Foraging and social behavior of spider monkeys
	2.1 Social organization and behavior
	2.2 Communication

	3 Spider Monkey Optimization algorithm
	3.1 Main steps of Spider Monkey Optimization algorithm (SMO)
	3.1.1 Initialization of the population
	3.1.2 Local Leader Phase (LLP)
	3.1.3 Global Leader Phase (GLP)
	3.1.4 Global Leader Learning (GLL) phase
	3.1.5 Local Leader Learning (LLL) phase
	3.1.6 Local Leader Decision (LLD) phase
	3.1.7 Global Leader Decision (GLD) phase

	3.2 Control parameters in SMO

	4 Discussion
	5 Experimental results
	5.1 Experimental setting
	5.2 Results analysis of experiments
	5.3 Statistical analysis

	6 Conclusion
	Acknowledgments
	References

