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Abstract

The Grey wolf optimizer (GWO) is a recent swarm intelligence-based algorithm.
The performance of GWO highly depends on the choice of the controlling parameters.
Finding the most suitable values of these parameters becomes a challenging task due to
the stochastic nature of the position update process. Mathematical analysis of the position
update mechanism can guide in finding the most appropriate range of these parameters.
This paper attempts to use von Neumann stability criteria to find the most suitable value of
these parameters. The objective of this study is also to check whether the original parameter
setting is in line with the recommendation of mathematical analysis. Recommendations are
further examined using numerical experiments over 23 classical benchmark functions. It is
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found that the parameters of GWO are within the stable range. It is also verified that GWO
performs poorly if the parameters are set beyond the stable range.

Subject Classification: 90C31, 90C30, 90C26.

Keywords: Swarm intelligence, Optimization, Grey wolf optimizer, Von Neumann stability criteria,
Stability analysis.

1. Introduction

In the last few years, swarm intelligence-based algorithms proved to
be effective tools to solve many real-world optimization problems. The
source of inspiration for such algorithms is the collective and self-
organized system that emerged among the social creatures in a swarm for
foraging or predator avoidance. Some of the popular swarm intelligence-
based algorithms are particle swarm optimization (PSO) [8], artificial bee
colony (ABC) [19], spider monkey optimization (SMO), [5], cuckoo search
optimization (CSO) [38], grey wolf optimizer (GWO) [26] and gravitational
search algorithm (GSA) [29]. GWO is a well-known algorithm in this class,
which is inspired by the leadership and social hierarchy behavior of the
wolves. GWO has been successfully applied to solve various optimization
problems, including but not limited to proportional integral derivative
(PID)[24], load frequency control (LFC) [16], scheduling problem [20],
feature selection [9], power dispatch problem [34], feature selection [12]
etc.

Researchers have also modified the original version of the GWO
algorithm in various ways to make it more efficient and accurate. In [32, 6],
to improve the exploitation and exploration phases, an improved version
of GWO (IGWO) is proposed. In [23], a modified variant of GWO algorithm,
the exploration-enhanced GWO (EEGWO) is proposed. In EEGWO, to
improve the search ability of wolves in terms of exploration and
exploitation, a novel position-updated process has been proposed with
the help of a random individual in the population. In addition, a nonlinear
control parameter strategy has been applied in various ways to improve
the exploration and exploitation phases of the GWO algorithm. In [30], a
weighted grey wolf optimizer (wdGWO) has been proposed, in which a
weighted average of leader wolves are computed instead of a simple
arithmetic average. In [28], an improved grey wolf optimizer (I-GWO) has
been proposed. In this paper, dimension learning-based hunting (DLH) is
incorporated in the GWO algorithm. The DLH search strategy has
increased the global search by multi-neighbor learning. The linear rank-
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based grey wolf optimizer (LGWO) [2] is a new variant of GWO. In LGWO,
different selection methods have been chosen to find the optimal of the
optimization problem. In [25], the stopping condition of GWO was tuned
in an adaptive manner based on fitness improvement over the course of
optimization to decrease its computational cost. In [10], a hybrid method
between the variational iteration method and GWO is applied for solving
nonlinear differential equations.

All the swarm intelligence-based algorithms have gone through
many modifications and applications to various real-world domains.
However the theoretical analysis of these algorithms is not that expensive.
Few attempts have been made in this direction. In [4, 3, 14], authors have
carried out the stability analysis of ABC. In this paper, von Neumann
stability criterion is used and the selection of the parameters has been
recommended. In [1], based on stability analysis, authors have used
differential equations in place of difference equations. This approach
helped to determine the range of parameters to confirm stability in
pheromone trails. In [11], the stability analysis of the gravitational search
algorithm (GSA) has been investigated using the Lyapunov stability
theorem and utilized for adapting parameters. In [13], the stability analysis
for differential evolution (DE) has been found using the von Neumann
stability criterion. In this paper, the stability analysis of the GWO algorithm
has been carried out using the von Neumann stability criteria for a two-
level finite difference scheme. Based on the von Neumann stability criteria,
the selection of parameters is suggested. The GWO algorithm with
suggested parameters is tested on 23 classical benchmark functions using
statistical and convergence analysis.

The remaining paper is organized as follows: section 2 describes the
brief concept of the original GWO. In section 3, the basic concept of the
von Neumann stability criterion and then GWO stability analysis is
performed using von Neumann stability criterion. Numerical results and
analysis are presented in section 4. Finally, section 5 concludes the work.

2. Grey Wolf Optimizer (GWO) algorithm

In this section, the inspiration and mathematical models of the GWO
algorithm are presented.
2.1 Inspiration

GWO is a well-known swarm intelligence-based optimization
algorithm [26]. The main inspiration behind the development of the GWO
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algorithm is the leadership and hunting strategy of the wolves. Grey
wolves always prefer to live in a group (pack) of size 5 — 12 wolves on
average. According to the hierarchy mechanism of GWO, the grey wolves
are divided into four categories.

The first category wolf is alpha («) which is a dominant wolf. The
main responsibility of the a wolf is to make better decisions for all the
issues in the pack. The second category wolf is the beta (£) wolf who
works as a subordinate to the o wolf and makes the decisions for the
entire pack when the a wolf is absence. The third category of wolves is
delta (0) wolves. These are the lowest ranking members of the pack with
permission to eat at last. The «, £, and ¢ are known as leader wolves.
The wolves which is not «, B or O are called omega (w) wolves. &
wolves obey orders from « and f wolves. They are the third rank wolves
but higher than @ wolves. § wolves usually take control of the pack when
£ and/or a wolves are busy to do so. Another important feature of the
group is group hunting. Muro et al. [27] have explained grey wolves’
hunting behavior in the following three steps: chasing, encircling, and
attacking the prey.

2.2 Mathematical model of GIWO

The mathematical model of the GWO is inspired by the hunting
strategy of grey wolves. The hunting strategy of grey wolves includes
chasing, encircling prey, and attacking the prey.

The social behavior is modeled by considering the best solution as «
wolf, the second best solutions as £, and the third best as § wolf,
respectively, while the rest of the solutions are termed as @ wolves.
During the search, @ wolves follow the &, f and § wolves.

Initially, grey wolves encircle the prey. The mathematical model of
encircling prey is given by the following equation:

X'=X'-AxD 1)
pP

where, X; is the position of the leader wolves at t" iteration in wolf
group. A and D are calculated as:

A=2xaxrand, —a (2)

where, a is decreases linearly from 2 to 0 over the iterations and rcmd1 is
random value in the range (0,1). Clearly, A lies in the range (-a,a) or we
can say A is a uniformly distributed random number between (-a,4). It
can be defined in Figure 2.
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a=2—2><( f J 3)
D=|CxX' -X'| (4)
where C=2xrand, (5)

In equation (3), t__ is the maximum iterations.

max

In the mathematical model of hunting strategy, the prey position is

approximated by the «, £ and & wolves as follows:

o - Xt ©
where,
X! = X' ~A xD, @
Xt =X\ -A,xD, (8)
X! =X' —A,xD, ©)

and, A, A, and A, can be calculated from equation (2). D,, D, and D,

are calculated as:

D, =|C xX' -X'| (10)
D, =|C,xX}, - X'| (11
D, =|C,xX! - X'| (12)

The parameters C,, C, and C, are lie randomly in the range (0, 2).

From the mathematical model of GWO, it is clear that the parameters
A and C are the most significant parameters. They are responsible for
exploration and exploitation during the search process. The flowchart of

the GWO algorithm is presented in Figure 1.
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3. Stability Analysis

Swarm Intelligence methods belong to the family of stochastic
optimization algorithms. In order to get a stable solution, the error due to
the algorithm should be bounded. Therefore, we should find appropriate
conditions so that the error remains bounded. These conditions depend
upon many parameters of the considered optimization algorithms. In the
GWO algorithm, parameters A and C play important roles during the
search process. Therefore, it is required to derive the conditions under
which the parameters A and C lie within the stable range. A stable range of
parameters is the one which is obtained by performing a stability analysis
of the algorithm. In this paper, the von Neumann stability criteria [36] is
used to find the stable range of the parameters A and C of the GWO
algorithm. In the following subsection, the von Neumann stability criteria
is given and applied to the GWO algorithm:

3.1 von Neumann stability criteria

The von Neumann stability criteria is used for stability analysis for
one or multidimensional finite difference schemes. This method is based
on the Fourier series solution when boundary conditions are assumed to
be periodic.

Consider the following partial differential equation with linear spatial
differential operator C!(v):

ov ' _
©4+C0)=0 (13)

wherevisadependentvariable. The finite difference scheme corresponding
to equation (13) can be written in the following form [36]:
Z R O = qZ’]S (2 (14)

Where, w1, ., n, n, eZ'; 7' denotes the set of non-negative
numbers. j and n are mesh points in the time and space domain,
respectively. In this method, each term (v7) of equation (14) is replaced by
the m" fourier coefficient of a harmoruc decomposition of v}, ie., by
w"(m)e™™”, where w"(m) represents m" fourier coefficient at time level
tand 1=+

Fourier coefficient of harmonic decomposition of v} at n™ and
(n+1)" are given by the following formula:

s (m) = G(m)w" (m) (15)
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where G(m) denotes the amplification factor. The finite difference scheme
(14) is stable if and only if |G(m)|<1 Vm. The scheme is unstable if
|G(m)|>1 for some m. If |G(m)|=1 Vm finite difference scheme (14) is
nondissipative or marginally stable.

In the literature, there are many methods for the stability analysis:
Z-transformation [22, 21, 31], Lyapunova€™s stability theorem [35, 17],
eigenvalue method [7, 15], Crank-Nicolson scheme [18] and von Neumann
stability criteria [36]. These methods have also been used to check the
stability analysis of the metaheuristic algorithms, namely differential
evolution (DE), artificial bee colony (ABC), particle swarm optimization
(PSO), gravitational search algorithm (GSA), Bacterial foraging
optimization (BFO), etc. In the GWO algorithm, the update equation can
easily be converted to a finite difference scheme which can further be
analyzed for stability by von Neumann stability criteria.

The next subsection explains the stability analysis of the GWO
algorithm.

3.2 Stability Analysis of GWO algorithm

The exploration and exploitation are two important phases for the
swarm intelligence-based algorithms. In the GWO algorithm, the first half
of the iterations are used for exploration and the second half of the
iterations are used for exploitation. The parameters A and C are very
helpful in both phases of exploration and exploitation.

In the GWO algorithm, the encircling behavior of prey is given by the
following equation:

X = X; —-AxD

where, X; is the position of the leader wolves at " jteration, and the
parameter A, and the distance vector D are given in equations (2) and (4).
From equation (4),

(CxX' -X"), (CxX'-X">0
D=|(CxX' - X")|= v v
’ —(Cx X; —-X"), otherwise
Case 1: When (Cx X; -XH>0,
X(f+1) =X; —AX(CXX; _Xt)
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X =(1- AxC)x X! + Ax X'

In the whole process, we take B, =(1-AxC).
The above equation can be written in the i and j space as follows:

(t+1) _ t t
X' =BX, +AxX (16)
where, X" and X is the position of the i" grey wolf of the j"
dimension at (t+1)" and #" iterations, respectively. Without loss of
generality, equation (16) is written as follows:

XY =B x X! + AxX! (17)

where i denotes the index of grey wolf and without loss of generality, p can
be written as p=i+b, bisarandom integer in the range [1,SN], SN is the
number of grey wolves.

Then,

X0 =B x X!+ Ax X! (18)

Consider that the exact (optimal) solution of the optimization problem
is X=X(i,t) at time f and uniform mesh grid point i, and X, =X(i,t,) is
the approximate solution of the problem. After that equation (18) can be
written in terms of node points as:

X —B x X!+ Ax X! (19)

According to the von Neumann stability criteria, in the equation (19),
each term (X!') is replaced by the Fourier coefficient i.e., w"(m)e'™".
After putting the value of each term in equation (19), the value of the

amplification factor G(m) can be calculated [Appendix A] and given as:

|G(m)| = \/(A +B? —4x Axsin? (ngl (20)

As discussed in subsection (3.1) the condition of stability is:

|G(m)|<1

or \/(A+Bl)2—4xA><sin2(nglsl
squaring both sides,

: 6
(A+B,) —4x Axsin’( ?]B, <1
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(A+B1)2—1S4xAxsin2[§]Bl (21)

Where A is uniformly distributed random value between —2 and 2
ie., Aerand(-2,2) and C is also a uniformly distributed random value in
[0, 2] i.e, Cerand(0,2). The stability condition will be different for
different sets of range of values of the parameters A and C. Here, the
following cases need to be discussed.

Case 1(A): when A =rand(0,2) and C=rand(0,2) then B, may be positive
or negative which leads the following subcases:

Subcase (a): when B, is positive.

[(A+Bl)z—l:‘ <sin? {g]

4xAxBy

(A+B)*-1 o z(g)

[ 4xAxB, }Sl < sin’| 5 )<1
(A-B, ) -1<0

(A-B)) <1 (22)

By using condition B, >0 and obtained inequality (22), it can be
concluded that the parameters A and C are random numbers in the range
(0,1)i.e., A, Ce rand(0,1).

Subcase (b): when B, is negative.

[(A+Bl)z—1:l > sin? [g]

4xAxBy
(A+By)*-1 e z(g)
[ 4><A]><B] } =0 < sin’[ ;)20
(A+ Bl)2 -1<0
(A+B))* <1 (23)

By using condition B <0 and above inequality (23), it can be
concluded that the value of A and C are random numbers in the interval
(1,2)i.e., A, Ce rand(1,2).
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Case 1(B): when A=rand(-2,0) and C=rand(0,2) then B, is always
positive. From equation (21),

2_
amrs o (220

(A+B)*~1<0
(A+B ) <1 (24)

By using condition B, >0 and obtained inequality (24), it can be
concluded that A takes random value between -2 and O i.e., A € rand(-2,0)
and C erand(0,2)

Case 2: when, (Cx X; -X"H<0,
Again, from equation (1),
X“*”=(1+A><C)><X;—A><Xt (25)
In the whole process, we take B, =(1+AxC).

As an earlier calculation, the amplification factor is calculated

[Appendix A] for equation (25) same as equation (19).
G(k)=B,xe”’ - A (26)

By similar analysis and calculation as done earlier,
1-(A-B,) 2 4x AxB, xsmz(gj

Again, A is random value in (-2,2) ie.,, Aerand(-2,2) and C is a
random value between 0 and 2 i.e., C € rand(0, 2).

Case 2(A): when A =rand(0,2) and C =rand(0,2) then B, is positive.
{71_(‘4_32 )2} > sin’ (gj
4xAxB, 2
[1—(14—32)2}0 o sin? (9)>0
4xAxB, - : 2)"
1-(A-B,)* >0
(A-B,)*<1 (27)



1412 S.SINGH ET AL.

By using condition B, >0 and obtained inequality (27), it can be
concluded that A is random value between 0 and 2 i.e., A € rand(0,2) and
C takes random value between 0 and 2 i.e., C € rand(0,2).

Case 2(B): when A =rand(-2,0) and C =rand(0,2) the B, may be positive

or negative.

Subcase (a): when B, is positive.

1-(A-B,)* | . sin? (gj
4xAxB, |~ 2

[1—(/4—32)2} <1 o gin? (g) <1
4xAxBy |~ ) 2)7
1-(A+B,)’* >0

(A+B,)* <1 (28)

In this case, by using condition B, >0 and obtained inequality (28), it
can be concluded that A is random value between -1 and 0 i.e.,

Aerand(-1,0) and C takes a random value between 0 and 1 ie.,
C e rand(0,1).

Subcase (b): when B, is negative.

[HA‘BZ )2,} >0 -+ sin® [gj >0
4xAxB, | 2)
1-(A-B, >0

(A—Bz)2 <1 (29)

By using condition B, <0 and obtained inequality (29), it can be
concluded that A is random value between -2 and 1 i.e.,, Aerand(-2,1)
and C takes random value between 1 and 2 i.e., C e rand(1,2).

The above discussed cases and the respective stable conditions (or

stable range of parameters, A and C) are outlined in Table 1.



A GWO WITH VON NEUMANN STABILITY CRITERIA

Table 1

1413

The values of parameters A and C using von Neumann stability criteria

Cases Considered Relation between Conclusion
Parameter value Aand C
A erand(0,2)
1. (C><X;—X’)>0 and B, >0 Aerand(0,1)
C e rand(0,2)
(A-B)* <1 C e rand(0,1)
B, <0 Aerand(1,2)
(A+B)* <1 C erand(1,2)
A erand(-2,0)
and B, >0 A erand(-2,0)
C erand(0,2)
(A+B)* <1 C e rand(0,2)
A e rand(0,2)
2. (CxX;—X')SO and B,>0 A e rand(0,2)
C e rand(0,2)
(A-B,) <1 C e rand(0,2)
A erand(-2,0)
and B,>0 A erand(-1,0)
C erand(0,2)
(A+B,)* <1 C erand(0,1)
B,<0 A erand(-2,1)
(A-B,)* <1 C erand(1,2)

This table has discussed two cases, e.g., case 1 and case 2. In these

cases, von Neumann stability criteria have been applied. After applying

stability criteria, many cases have arisen, which are discussed in subsection

3.2. Using von Neumann stability criteria, we determine the best values

for the parameters A and C. From the above discussion, it can be concluded

that the values of parameters A and C lie in the range that was proposed

for these parameters in [26].

The next section explains the numerical results of the stability analysis
of GWO (StabeGWO). It shows that the values of the parameters are in the
stable range and the stability analysis of GWO (StabeGWO) has the same

behavior as GWO.
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4. Numerical results

In this section, the validation of the GWO with parameters which
satisfy the stability conditions, call it- StableGWO (StableGWO) algorithm
is performed by numerical experiments on 23 classical benchmark
functions which are commonly used by many researchers [26, 39, 33, 37].
These functions can be divided into three types of functions namely,
unimodal, multimodal, and multimodal functions with fixed dimensional.
Since the unimodal functions contain only one optima called global
optima, they can be utilized to evaluate the local search ability of the
algorithm and the multimodal functions contain more than one optimal
solution, so that these can be used to evaluate global exploration ability. In
order to ensure the comparability of the simulation experiments, the
experimental parameters which are used in the StableGWO are set as:

Number of wolves (SN) = 30,
Maximum iteration (t ) =500,
The number of independent runs = 30.

4.1 Analysis of the results

In this subsection, the performance evaluation of the StableGWO is
performed through various metrics such as mean, minimum, maximum,
median, and standard deviation (STD). The results of StableGWO are
compared to the results obtained with GWO and GWOI1. For a fair
comparison, the experimental setting is the same for GWO and GWOI.
GWO indicates the range of A in (-2,2) and the range of C in (0,2) and
GWOL1 indicates the range of A in (-3,3) and the range of C in (0,2). The
obtained results are reported in Table 2. In Table 2, for F1-F7 functions,
StableGWO is significantly better than GWO1 and performs the same as
the GWO algorithm. For F8-F13 functions, StableGWO is better than GWO
and GWOI1 in terms of mean value, and for F9 and F11 functions,
StableGWO, GWO, and GWO1 obtained optimal value. In F10, StableGWO
is performed better in F12 and F13. For F14-F23 functions, the GWO1
algorithm performed better than StableGWO and GWO. In F16, F17, F20,
and F21, StableGWO is better and in F21-F23, StableGWO, GWO, and
GWO1 obtained optimal value.

To demonstrate the significant difference between the StableGWO,
GWO, and GWOL1 algorithms, a Wilcoxon-rank sum test at a 5% level of
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significance has been carried out. The p-value and corresponding
conclusion have also been represented in Table 3. In Table 3, “+” denotes
significantly better, “~” refers significantly worse, and “=” indicates
similar. NaN (not a Numerical) indicates that the test is not applicable to
similar solution vectors. The StableGWO algorithm is the same as the
GWO algorithm for F1-F23 except for F11. In function F11, StableGWO
does not perform better. StableGWO is performed better in comparison to
the GWOL1 algorithm in functions F1-F4, F10, F16, F17, F20, F21, and F22.
Furthermore, the convergence behavior of some selected benchmark
functions F1, F3, F6, F7, F9, F11, F14, F17, F20 and F23 are shown in Figure
3. In such figures, on horizontal axis denotes the number of iterations, and
on vertical axis indicates the best score (@ score) in the intermediate

iterations for a single run. In these figures, the convergence rate of
StableGWO same as the GWO algorithm.

Table 2

Comparison of Results obtained by StableGWO, GWO, and GWO1 on 23
classical benchmark functions

Function | Algorithm Mean Minimum | Maximum | Median STD
StableGWO |1.34E-31 6.74E-34 5.62E-31 8.76E-32 1.62E-31
F1 GWO 3.00E-31 3.28E-33 1.70E-30 1.56E-31 4.16E-31

GWO1 6.35E-25 7.46E-27 4.65E-24 1.93E-25 1.07E-24
StableGWO [3.38E-19 1.74E-20 1.35E-18 2.45E-19 3.08E-19
F2 GWO 2.72E-19 3.26E-20 1.00E-18 1.70E-19 2.53E-19
GWO1 9.81E-16 6.97E-17 6.93E-15 5.95E-16 1.23E-15
StableGWO |3.36E-06 2.60E-10 3.55E-05 3.72E-07 7.68E-06
F3 GWO 1.63E-05 3.69E-10 0.000204541 |2.79E-07 5.13E-05
GWO1 0.001599545 [5.26E-07 0.028659993 (0.000132327 |0.005335064
StableGWO |2.71E-06 1.43E-07 3.37E-05 7.70E-07 7.12E-06
F4 GWO 2.01E-06 9.14E-08 1.03E-05 1.12E-06 2.52E-06
GWO1 0.000150888 |4.67E-06 0.000891406 |6.42E-05 0.000201049
StableGWO |27.12355125 {25.93090586 (29.49135076 (27.11885485 |0.913807199

F5 GWO 27.34395156 |26.05559344 |28.77939111 |27.17847622 |0.869403974
GWO1 27.11730427 |25.9458105 |28.75701076 |27.13230818 |0.769944863
StableGWO |0.918660352 [0.000165775 |1.775965121 (0.882292536 |0.473006744

Fo GWO 0.782782433 |8.64E-05 1.510812255 |0.757370174 |0.380594874

GWO1 0.737866424 [0.000385655 [1.519159871 [0.730523999 |0.424489966
Contd...
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StableGWO {0.003033099 {0.00082825 (0.008128232 (0.002585117 |0.001673333
F7 GWO 0.002616563 |0.000905647 |0.00534812 |0.002456694 |0.000977994
GWO1 0.003724349 {0.000620238 |0.009728167 |0.003402236 {0.002029109
StableGWO [-6408.746544 |-8054.43197 |-3193.147726 |-6418.948487 |937.8221955
F8 GWO -6356.388823 |-7712.524775 |-3595.24404 |-6563.333436 |1004.806
GWO1 -6056.957638 |-8516.459683 |-3690.781754 |-6481.564073 |1666.878842
StableGWO (8.521519434 |0 31.00115006 |5.755922473 |(8.891314718
F9 GWO 10.04039697 |0 35.69714859 |7.287431798 |8.431554069
GWO1 749885094 |0 18.92573346 |7.159423884 |5.879173404
StableGWO |[3.37E-14 2.93E-14 4.35E-14 3.29E-14 4.14E-15
F10 GWO 3.42E-14 2.93E-14 4.35E-14 3.29E-14 4.12E-15
GWO1 2725827406 |6.48E-14 20.51133004 (2.19E-13 7.068374576
StableGWO |0.007355793 |0 0.037026274 |0 0.011577079
F11 GWO 0.002351183 |0 0.018693359 |0 0.005482864
GWO1 0.003864345 |0 0.023478213 |0 0.008178915
StableGWO [0.056904662 |0.01569415 |0.131798181 [0.050120182 |0.029025729
F12 GWO 0.062379459 (0.018753801 |0.155444685 |0.04815991  |0.034540774
GWO1 0.04992272  |0.018141645 [0.099393363 (0.046172614 |0.019708632
StableGWO |0.801301665 [0.30322729 |1.24749455 |0.796442876 |0.223130771
F13 GWO 0.817685241 |0.28835001 |1.234320261 |0.827182874 |0.24454802
GWO1 0.699691468 |0.223648188 |1.123658046 |0.689298899 [0.231672149
StableGWO [5.425549884 |0.998003838 |12.67050581 [2.982105157 |4.9017482
F14 GWO 4291433922 10.998003838 |12.67050581 (2.982105157 |4.361775889
GWO1 2.437478495 (0.998003838 |10.76318067 |0.998003838 |2.944720718
StableGWO |0.003142417 {0.000307488 (0.020363341 (0.000321173 |0.006878567
F15 GWO 0.003137654 |0.000307544 10.020363348 |0.000368376 |0.006878574
GWO1 0.001820985 |0.000307688 |0.020363342 |0.000384232 |0.005047424
StableGWO |-1.031628444 |-1.031628453 |-1.031628406 |-1.031628446 |1.02E-08
F16 GWO -1.031628446 |-1.031628453 |-1.031628412 |-1.03162845 |1.03E-08
GWO1 -1.031628421 |-1.031628453 |-1.031628304 |-1.031628432 |3.61E-08
StableGWO |0.397887579 [0.39788738 [0.397888098 (0.397887521 |2.04E-07
F17 GWO 0.397887642 |0.397887373 0.397888331 |0.397887577 |2.70E-07
GWO1 0.397888226 {0.397887372 (0.397891813 {0.397887974 {9.69E-07
StableGWO [5.700028459 |3.000003696 |84.00001411 {3.000017712 |14.78850634
F18 GWO 5.700020677 |3.000000041 |84.00002639 |3.00001265 |14.78851013
GWO1 3.000021995 {3.000000003 {3.000178944 |3.000006756 |3.75E-05
StableGWO |-0.300478907 {-0.300478907 |-0.300478907 (-0.300478907 |2.26E-16
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F19 GWO -0.300478907 (-0.300478907 |-0.300478907 |-0.300478907 |2.26E-16
GWO1 -0.300478907 {-0.300478907 {-0.300478907 |-0.300478907 |2.26E-16
StableGWO |-3.263294493 |-3.321993744 |-3.018892349 (-3.321978468 |0.08520441

F20 GWO -3.233464878 |-3.321992027 |-3.018250864 |-3.321946772 0.104296686
GWO1 -3.151803248 {-3.321989166 (-1.840911133 |-3.179983574 |0.26194494
StableGWO |-8.970772402 |-10.15310337 |-5.055194793 |-10.15257032 |2.179079979

F21 GWO -8.551745587 |-10.15313216 |-2.682767049 |-10.15242419 |2.522414307
GWO1 -8.547761634 |-10.15308093 |-2.682759378 |-10.15078677 |2.526367658
StableGWO |-10.04927558 |-10.40281835 |-5.087656775 |-10.40235323 |1.34321338

F22 GWO -10.22666271 |-10.40293709 |-5.128678173 |-10.40255385 |0.962855627
GWO1 -9.693986204 {-10.40234468 (-5.087621363 |-10.40110949 [1.833579939
StableGWO |-9.275134907 {-10.53626742 |-2.421683783 |-10.53571509 |2.903117491

F23 GWO -9.797287082 |-10.53620533 |-1.859420858 |-10.53559152 |2.300645742
GWO1 -9.815718129 (-10.53634714 (-5.12844822 |-10.53503997 |1.865381438

Table 3

Results of Wilcoxon signed-rank sum Test for 23 classical benchmark functions

Function Algorithm GWO GWO1

F1 p-value NaN 1.73E-06
conclusion ~ +

F2 p-value NaN 1.73E-06
conclusion ~ +

F3 p-value NaN 3.52E-06
conclusion ~ +

F4 p-value NaN 2.60E-06
conclusion ~ +

F5 p-value NaN NaN
conclusion ~ ~

Fé p-value NaN NaN
conclusion ~ ~

F7 p-value NaN NaN
conclusion ~ ~

F8 p-value NaN NaN
conclusion ~ ~

Contd...



1418 S.SINGH ET AL.
F9 p-value NaN NaN
conclusion ~ ~
F10 p-value NaN 1.73E-06
conclusion ~ +
F11 p-value 3.53E-02 NaN
conclusion - ~
F12 p-value NaN NaN
conclusion ~ ~
F13 p-value NaN NaN
conclusion ~ ~
F14 p-value NaN 2.18E-02
conclusion ~ -
F15 p-value NaN NaN
conclusion ~ ~
F16 p-value NaN 1.48E-03
conclusion ~ +
F17 p-value NaN 7.51E-05
conclusion ~ +
F18 p-value NaN 1.32E-02
conclusion ~ -
F19 p-value NaN NaN
conclusion ~ ~
F20 p-value NaN 1.25E-04
conclusion ~ +
F21 p-value NaN 7.27E-03
conclusion ~ +
F22 p-value NaN 5.29E-04
conclusion ~ +
F23 p-value NaN NaN

conclusion
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From the numerical results, statistical analyses, and convergence rate,
it can be concluded that the StableGWO performs similarly to the Standard
GWO algorithm on these benchmark problems. So from this analysis, it
can also be concluded that StableGWO (or Standard GWO) is a reliable
algorithm and its parameters are in stable range. Since it is now found that
Standard GWO and StableGWO both perform the same on the test
problems or in other words StableGWO performance does not deteriorate
as compared to GWO. Thus for real-world problems, StableGWO is
recommended as compared to GWO with any other parameter settings,
because if unstable GWO is applied to solve real-world problems, an
unbounded error may occur.

5. Conclusion and future work

For nature-inspired algorithms, finding a stable range of user
parameters is a crucial and difficult task. This paper presents the stability
analysis of GWO using von Neumann stability criteria and the conditions
on parameters A and C are obtained. It is found that the range of the
parameters for StableGWO is different than that of the GWO. The GWO
with parameters in the stable range (StableGWO) has been tested and
compared with standard GWO on 23 classical benchmark problems. The
performance of GWO and StableGWO over test problems is found to be
the same. This concludes that StableGWO with a stable range of parameters
will not provide inferior results than GWO while providing the guarantee
of stable solutions and therefore the bounded error. Thus for real-world
problems, StableGWO is recommended over GWO.

Because of the ease of implementation of the von Neumann stability
criterion, it can be used to find the stability condition for a variety of other
swarm intelligence-based optimization algorithms and it can also further
be extended for the convergence analysis of the GWO algorithm.

Conflict of interest: The authors declare no conflict of interest.

Data Availability: No data were used to support the findings of the
study.

Appendix A

According to the discussion in the subsection (3.2), to calculate the
amplification factor, each term X of the equation (19) replace by
w" (m)xe™ . After substituting the value of X', equation (19) is modified
in this way:
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mlAi) m(l+b)Ai mlAi)

w" (m)xe'"™ =B xw" (m)xe +Axw"(m)xe"

wn+l(m) — (Bl x e:m(ib)Ai + A) x wn (m)

By comparing from equation (15),

G(m)=B,xe” + A (30)

where, 6 =m(+b)Ai
Similarly, the amplification factor can be calculated for equation (25).
For equation (30), the amplification factor is calculated as:

G(m)=B, xe”’ + A
G(m)=B, x(cosf+1sinf)+ A

G(m)= (B, xcos@+ A)+1sinfx B,

By taking the modulus on both sides, we get,

|G(m)| = (B, xcos 0+ A)* +sin” 6 x B

|G(m)| = \JB? + A* +2x AxB, xcos6

|G(m)| = /B2 + A? +2x AxB, x(1-2sin* 6/ 2)

|G(m)|=\/B]2 +A? +2xAB, —4x Axsin® [Q)B]
2

|G(m)|=\/(A+Bl)2 —4><A><sin2(ngl
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