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Abstract
The Grey wolf optimizer (GWO) is a recent swarm intelligence-based algorithm. 

The performance of GWO highly depends on the choice of the controlling parameters. 
Finding the most suitable values of these parameters becomes a challenging task due to 
the stochastic nature of the position update process. Mathematical analysis of the position 
update mechanism can guide in finding the most appropriate range of these parameters. 
This paper attempts to use von Neumann stability criteria to find the most suitable value of 
these parameters. The objective of this study is also to check whether the original parameter 
setting is in line with the recommendation of mathematical analysis. Recommendations are 
further examined using numerical experiments over 23 classical benchmark functions. It is 
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found that the parameters of GWO are within the stable range. It is also verified that GWO 
performs poorly if the parameters are set beyond the stable range. 
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Keywords: Swarm intelligence, Optimization, Grey wolf optimizer, Von Neumann stability criteria, 
Stability analysis. 

1.  Introduction

In the last few years, swarm intelligence-based algorithms proved to 
be effective tools to solve many real-world optimization problems. The 
source of inspiration for such algorithms is the collective and self-
organized system that emerged among the social creatures in a swarm for 
foraging or predator avoidance. Some of the popular swarm intelligence-
based algorithms are particle swarm optimization (PSO) [8], artificial bee 
colony (ABC) [19], spider monkey optimization (SMO), [5], cuckoo search 
optimization (CSO) [38], grey wolf optimizer (GWO) [26] and gravitational 
search algorithm (GSA) [29]. GWO is a well-known algorithm in this class, 
which is inspired by the leadership and social hierarchy behavior of the 
wolves. GWO has been successfully applied to solve various optimization 
problems, including but not limited to proportional integral derivative 
(PID)[24], load frequency control (LFC) [16], scheduling problem [20], 
feature selection [9], power dispatch problem [34], feature selection [12] 
etc.

Researchers have also modified the original version of the GWO 
algorithm in various ways to make it more efficient and accurate. In [32, 6], 
to improve the exploitation and exploration phases, an improved version 
of GWO (IGWO) is proposed. In [23], a modified variant of GWO algorithm, 
the exploration-enhanced GWO (EEGWO) is proposed. In EEGWO, to 
improve the search ability of wolves in terms of exploration and 
exploitation, a novel position-updated process has been proposed with 
the help of a random individual in the population. In addition, a nonlinear 
control parameter strategy has been applied in various ways to improve 
the exploration and exploitation phases of the GWO algorithm. In [30], a 
weighted grey wolf optimizer (wdGWO) has been proposed, in which a 
weighted average of leader wolves are computed instead of a simple 
arithmetic average. In [28], an improved grey wolf optimizer (I-GWO) has 
been proposed. In this paper, dimension learning-based hunting (DLH) is 
incorporated in the GWO algorithm. The DLH search strategy has 
increased the global search by multi-neighbor learning. The linear rank-
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based grey wolf optimizer (LGWO) [2] is a new variant of GWO. In LGWO, 
different selection methods have been chosen to find the optimal of the 
optimization problem. In [25], the stopping condition of GWO was tuned 
in an adaptive manner based on fitness improvement over the course of 
optimization to decrease its computational cost. In [10], a hybrid method 
between the variational iteration method and GWO is applied for solving 
nonlinear differential equations.

All the swarm intelligence-based algorithms have gone through 
many modifications and applications to various real-world domains. 
However the theoretical analysis of these algorithms is not that expensive. 
Few attempts have been made in this direction. In [4, 3, 14], authors have 
carried out the stability analysis of ABC. In this paper, von Neumann 
stability criterion is used and the selection of the parameters has been 
recommended. In [1], based on stability analysis, authors have used 
differential equations in place of difference equations. This approach 
helped to determine the range of parameters to confirm stability in 
pheromone trails. In [11], the stability analysis of the gravitational search 
algorithm (GSA) has been investigated using the Lyapunov stability 
theorem and utilized for adapting parameters. In [13], the stability analysis 
for differential evolution (DE) has been found using the von Neumann 
stability criterion. In this paper, the stability analysis of the GWO algorithm 
has been carried out using the von Neumann stability criteria for a two-
level finite difference scheme. Based on the von Neumann stability criteria, 
the selection of parameters is suggested. The GWO algorithm with 
suggested parameters is tested on 23 classical benchmark functions using 
statistical and convergence analysis.

The remaining paper is organized as follows: section 2 describes the 
brief concept of the original GWO. In section 3, the basic concept of the 
von Neumann stability criterion and then GWO stability analysis is 
performed using von Neumann stability criterion. Numerical results and 
analysis are presented in section 4. Finally, section 5 concludes the work.

2.  Grey Wolf Optimizer (GWO) algorithm

In this section, the inspiration and mathematical models of the GWO 
algorithm are presented. 

2.1 Inspiration

GWO is a well-known swarm intelligence-based optimization 
algorithm [26]. The main inspiration behind the development of the GWO 
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algorithm is the leadership and hunting strategy of the wolves. Grey 
wolves always prefer to live in a group (pack) of size 5 – 12 wolves on 
average. According to the hierarchy mechanism of GWO, the grey wolves 
are divided into four categories.

The first category wolf is alpha ( )α  which is a dominant wolf. The 
main responsibility of the α  wolf is to make better decisions for all the 
issues in the pack. The second category wolf is the beta ( )β  wolf who 
works as a subordinate to the α  wolf and makes the decisions for the 
entire pack when the α  wolf is absence. The third category of wolves is 
delta ( )δ  wolves. These are the lowest ranking members of the pack with 
permission to eat at last. The ,α  ,β  and δ  are known as leader wolves. 
The wolves which is not ,α  β  or δ  are called omega ( )ω  wolves. δ  
wolves obey orders from α  and β  wolves. They are the third rank wolves 
but higher than ω  wolves. δ  wolves usually take control of the pack when 
β  and/or α  wolves are busy to do so. Another important feature of the 
group is group hunting. Muro et al. [27] have explained grey wolves’ 
hunting behavior in the following three steps: chasing, encircling, and 
attacking the prey.

2.2 Mathematical model of GWO

The mathematical model of the GWO is inspired by the hunting 
strategy of grey wolves. The hunting strategy of grey wolves includes 
chasing, encircling prey, and attacking the prey.

The social behavior is modeled by considering the best solution as α  
wolf, the second best solutions as ,β  and the third best as δ  wolf, 
respectively, while the rest of the solutions are termed as ω  wolves. 
During the search, ω  wolves follow the ,α  β  and δ  wolves. 

Initially, grey wolves encircle the prey. The mathematical model of 
encircling prey is given by the following equation: 

= (1)t t
pX X A D− ×

where, t
pX  is the position of the leader wolves at tht  iteration in wolf 

group. A and D are calculated as: 

1= 2 (2)A a rand a× × −

where, a is decreases linearly from 2 to 0 over the iterations and 1rand  is 
random value in the range (0,1). Clearly, A lies in the range ( , )a a−  or we 
can say A is a uniformly distributed random number between ( , ).a a−  It 
can be defined in Figure 2.
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= 2 2 (3)
max

t
t

a  
  
 

− ×

=| | (4)t t
pD C X X× −

2where 2 (5)C rand= ×

In equation (3), maxt  is the maximum iterations.
In the mathematical model of hunting strategy, the prey position is 

approximated by the ,α  β  and δ  wolves as follows: 

( 1) 1 2 3
3= (6)

t t t
t X X XX + + +

where, 

1 1 1= (7)t tX X A Dα − ×

2 2 2= (8)t tX X A Dβ − ×

3 3 3= (9)t tX X A Dδ − ×

and, 1 ,A  2A  and 3A  can be calculated from equation (2). 1 ,D  2D  and 3D  
are calculated as: 

1 1=| | (10)t tD C X Xα× −

2 2=| | (11)t tD C X Xβ× −

3 3=| | (12)t tD C X Xδ× −

The parameters 1 ,C  2C  and 3C  are lie randomly in the range (0, 2).
From the mathematical model of GWO, it is clear that the parameters 

A and C are the most significant parameters. They are responsible for 
exploration and exploitation during the search process. The flowchart of 
the GWO algorithm is presented in Figure 1.
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Figure 1
Flowchart of the grey wolf optimizer (GWO) 

Figure 2
Decreasing behavior of the parameter A 
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3. Stability Analysis

Swarm Intelligence methods belong to the family of stochastic 
optimization algorithms. In order to get a stable solution, the error due to 
the algorithm should be bounded. Therefore, we should find appropriate 
conditions so that the error remains bounded. These conditions depend 
upon many parameters of the considered optimization algorithms. In the 
GWO algorithm, parameters A and C play important roles during the 
search process. Therefore, it is required to derive the conditions under 
which the parameters A and C lie within the stable range. A stable range of 
parameters is the one which is obtained by performing a stability analysis 
of the algorithm. In this paper, the von Neumann stability criteria [36] is 
used to find the stable range of the parameters A and C of the GWO 
algorithm. In the following subsection, the von Neumann stability criteria 
is given and applied to the GWO algorithm:

3.1 von Neumann stability criteria

The von Neumann stability criteria is used for stability analysis for 
one or multidimensional finite difference schemes. This method is based 
on the Fourier series solution when boundary conditions are assumed to 
be periodic.

Consider the following partial differential equation with linear spatial 
differential operator ( ) :xC v′

( ) = 0 (13)x
v
t C v∂
∂

′+

where v is a dependent variable. The finite difference scheme corresponding 
to equation (13) can be written in the following form [36]: 

1 1

= =
= (14)

r r

l l

n n
q j q q j q

q q
R v S v

µ η

µ η

+ +
+ +

− −
∑ ∑

Where, ,lµ  ,rµ  ,lη  * ;rη ∈  *  denotes the set of non-negative 
numbers. j and n are mesh points in the time and space domain, 
respectively. In this method, each term ( )n

jv  of equation (14) is replaced by 
the thm  fourier coefficient of a harmonic decomposition of ,n

jv  i.e., by 
( )( ) ,mj xnw m eι ∆  where ( )nw m  represents thm  fourier coefficient at time level 

t and 1= .ι −

Fourier coefficient of harmonic decomposition of n
jv  at thn  and 

( 1)thn +  are given by the following formula: 
1: ( ) = ( ) ( ) (15)n nw m G m w m+
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where ( )G m  denotes the amplification factor. The finite difference scheme 
(14) is stable if and only if | ( )| 1G m ≤ .m∀  The scheme is unstable if 
| ( )|> 1G m  for some m. If | ( )|= 1G m m∀  finite difference scheme (14) is 
nondissipative or marginally stable.

In the literature, there are many methods for the stability analysis: 
Z-transformation [22, 21, 31], Lyapunovâ€™s stability theorem [35, 17], 
eigenvalue method [7, 15], Crank-Nicolson scheme [18] and von Neumann 
stability criteria [36]. These methods have also been used to check the 
stability analysis of the metaheuristic algorithms, namely differential 
evolution (DE), artificial bee colony (ABC), particle swarm optimization 
(PSO), gravitational search algorithm (GSA), Bacterial foraging 
optimization (BFO), etc. In the GWO algorithm, the update equation can 
easily be converted to a finite difference scheme which can further be 
analyzed for stability by von Neumann stability criteria.

The next subsection explains the stability analysis of the GWO 
algorithm.

3.2 Stability Analysis of GWO algorithm

The exploration and exploitation are two important phases for the 
swarm intelligence-based algorithms. In the GWO algorithm, the first half 
of the iterations are used for exploration and the second half of the 
iterations are used for exploitation. The parameters A and C are very 
helpful in both phases of exploration and exploitation.

In the GWO algorithm, the encircling behavior of prey is given by the 
following equation: 

	
( 1) =t t

pX X A D+ − ×

where, t
pX  is the position of the leader wolves at tht  iteration, and the 

parameter A, and the distance vector D are given in equations (2) and (4).
From equation (4), 

( ), ( ) > 0
=|( )|=

( ), otherwise

t t t t
p pt t

p t t
p

C X X C X X
D C X X

C X X

 × − × −× − 
− × −

Case 1: When ( ) > 0,t t
pC X X× −  

( 1) = ( )t t t t
p pX X A C X X+ − × × −
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	 ( 1) = (1 )t t t
pX A C X A X+ − × × + ×

In the whole process, we take 1 = (1 ).B A C− ×
The above equation can be written in the i and j space as follows: 

( 1)
, 1 , ,= (16)t t t

i j p j i jX B X A X+ + ×

where, ( 1)
,
t

i jX +  and ,
t
i jX  is the position of the thi  grey wolf of the thj  

dimension at ( 1)tht +  and tht  iterations, respectively. Without loss of 
generality, equation (16) is written as follows: 

( 1)
1= (17)t t t

i p iX B X A X+ × + ×

where i denotes the index of grey wolf and without loss of generality, p can 
be written as = ,p i b±  b is a random integer in the range [1, ],SN  SN is the 
number of grey wolves.

Then, 
( 1)

1 (18)t t t
i i b iX B X A X+

±= × + ×

Consider that the exact (optimal) solution of the optimization problem 
is = ( , )X X i t  at time t and uniform mesh grid point i, and , = ( , )l n l nX X i t  is 
the approximate solution of the problem. After that equation (18) can be 
written in terms of node points as: 

( 1)
1= (19)n n n

l l b lX B X A X+
±× + ×

According to the von Neumann stability criteria, in the equation (19), 
each term ( )n

lX  is replaced by the Fourier coefficient i.e., ( )( ) .n ml iw m eι ∆  
After putting the value of each term in equation (19), the value of the 
amplification factor ( )G m  can be calculated [Appendix A] and given as: 

2 2
1 12

| ( )|= ( 4 sin (20)G m A B A Bθ 
 
 

+ − × ×

As discussed in subsection (3.1) the condition of stability is: 

	 | ( )| 1G m ≤

2 2
1 12

or ( ) 4 sin 1A B A Bθ 
 
 

+ − × × ≤

squaring both sides, 

	 2 2
1 12

( ) 4 sin 1A B A Bθ 
 
 

+ − × × ≤
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2 2
1 12

( ) 1 4 sin (21)A B A Bθ 
 
 

+ − ≤ × ×

Where A is uniformly distributed random value between 2−  and 2 
i.e., ( 2, 2)A rand∈ −  and C is also a uniformly distributed random value in 
[0, 2] i.e., (0, 2).C rand∈  The stability condition will be different for 
different sets of range of values of the parameters A and C. Here, the 
following cases need to be discussed.

Case 1(A): when = (0, 2)A rand  and = (0, 2)C rand  then 1B  may be positive 
or negative which leads the following subcases:

Subcase (a): when 1B  is positive. 
2 21

1

( ) 1
4 2

sinA B
A B

θ   + −
   × ×    

≤

2 2!

1

( ) 1
4 2

1 1sinA B
A B

θ   + −
   × ×    

≤ ≤

2
1( ) 1 0A B− − ≤

2
1( ) 1 (22)A B− ≤

By using condition 1 0B ≥  and obtained inequality (22), it can be 
concluded that the parameters A and C are random numbers in the range 
(0, 1) i.e., A, C∈ (0,1).rand

Subcase (b): when 1B  is negative. 
2 21

1

( ) 1
4 2

sinA B
A B

θ   + −
   × ×    

≥

2 21

1

( ) 1
4 2

0 0sinA B
A B

θ   + −
   × ×    

≥ ≥

2
1( ) 1 0A B+ − ≤

2
1( ) 1 (23)A B+ ≤

By using condition 1 < 0B  and above inequality (23), it can be 
concluded that the value of A and C are random numbers in the interval 
(1, 2) i.e., A, C∈ (1, 2).rand
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Case 1(B): when = ( 2,0)A rand −  and = (0, 2)C rand  then 1B  is always 
positive. From equation (21), 

2 21

1

2 21

1
2

1
2

1

( ) 1
4 2

( ) 1
4 2

sin

0 0sin

( ) 1 0
( ) 1 (24)

A B
A B

A B
A B

A B
A B

θ

θ

   + −
   × ×    

   + −
   × ×    

≥

≥ ≥

+ − ≤

+ ≤



By using condition 1 > 0B  and obtained inequality (24), it can be 
concluded that A takes random value between –2 and 0 i.e., ( 2,0)A rand∈ −  
and (0, 2)C rand∈  

Case 2: when, ( ) 0,t t
pC X X× − ≤

Again, from equation (1), 
( 1) = (1 ) (25)t t t

pX A C X A X+ + × × − ×

In the whole process, we take 2 = (1 ).B A C+ ×
As an earlier calculation, the amplification factor is calculated 

[Appendix A] for equation (25) same as equation (19). 

2( ) = (26)G k B e Aιθ× −

By similar analysis and calculation as done earlier, 

	
2 2

2 2 2
1 ( ) 4 sinA B A B θ 

 
 

− − ≥ × × ×

Again, A is random value in ( 2, 2)−  i.e., ( 2, 2)A rand∈ −  and C is a 
random value between 0 and 2 i.e., (0, 2).C rand∈

Case 2(A): when = (0, 2)A rand  and = (0, 2)C rand  then 2B  is positive. 
2 22

2

2 22

2
2

2
2

2

1 ( )
4 2

1 ( )
4 2

sin

0 sin 0

1 ( ) 0
( ) 1 (27)

A B
A B

A B
A B

A B
A B

θ

θ

   − −
   × ×    

   − −
   × ×    

≥

≥ ≥

− − ≥

− ≤


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By using condition 2 > 0B  and obtained inequality (27), it can be 
concluded that A is random value between 0 and 2 i.e., (0, 2)A rand∈  and 
C takes random value between 0 and 2 i.e., (0, 2).C rand∈

Case 2(B): when = ( 2,0)A rand −  and = (0, 2)C rand  the 2B  may be positive 
or negative.

Subcase (a): when 2B  is positive. 

2 22

2

2 22

2
2

2
2

2

1 ( )
4 2

1 ( )
4 2

sin

1 sin 1

1 ( )) 0
( ) 1 (28)

A B
A B

A B
A B

A B
A B

θ

θ

   − −
   × ×    

   − −
   × ×    

≤

≤ ≤

− + ≥

+ ≤



In this case, by using condition 2 > 0B  and obtained inequality (28), it 
can be concluded that A is random value between 1−  and 0 i.e., 

( 1,0)A rand∈ −  and C takes a random value between 0 and 1 i.e., 
(0,1).C rand∈

Subcase (b): when 2B  is negative. 

2 22

2

2 22

2
2

2
2

2

1 ( )
4 2

1 ( )
4 2

sin

0 sin 0

1 ( ) 0
( ) 1 (29)

A B
A B

A B
A B

A B
A B

θ

θ

   − −
   × ×    

   − −
   × ×    

≥

≥ ≥

− − ≥

− ≤



By using condition 2 < 0B  and obtained inequality (29), it can be 
concluded that A is random value between –2 and 1 i.e., ( 2,1)A rand∈ −  
and C takes random value between 1 and 2 i.e., (1, 2).C rand∈

The above discussed cases and the respective stable conditions (or 
stable range of parameters, A and C) are outlined in Table 1.
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Table 1
The values of parameters A and C using von Neumann stability criteria 

Cases Considered 
Parameter value 

Relation between 
A and C Conclusion

1.
 
( ) > 0t t

pC X X× −
(0,2)A rand∈

and
(0,2)C rand∈

1 > 0B (0,1)A rand∈

2
1( ) 1A B− ≤ (0,1)C rand∈

1 < 0B (1,2)A rand∈
2

1( ) 1A B+ ≤ (1,2)C rand∈

( 2,0)A rand∈ −
and

(0,2)C rand∈
1 > 0B ( 2,0)A rand∈ −

2
1( ) 1A B+ ≤ (0,2)C rand∈

2.
 
( ) 0t t

pC X X× − ≤
(0,2)A rand∈

and
(0,2)C rand∈

2 > 0B (0,2)A rand∈

2
2( ) 1A B− ≤ (0,2)C rand∈

( 2,0)A rand∈ −
and

(0,2)C rand∈
2 > 0B ( 1,0)A rand∈ −

2
2( ) 1A B+ ≤ (0,1)C rand∈

2 < 0B ( 2,1)A rand∈ −
2

2( ) 1A B− ≤ (1,2)C rand∈

This table has discussed two cases, e.g., case 1 and case 2. In these 
cases, von Neumann stability criteria have been applied. After applying 
stability criteria, many cases have arisen, which are discussed in subsection 
3.2. Using von Neumann stability criteria, we determine the best values 
for the parameters A and C. From the above discussion, it can be concluded 
that the values of parameters A and C lie in the range that was proposed 
for these parameters in [26].

The next section explains the numerical results of the stability analysis 
of GWO (StabeGWO). It shows that the values of the parameters are in the 
stable range and the stability analysis of GWO (StabeGWO) has the same 
behavior as GWO.
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4.  Numerical results

In this section, the validation of the GWO with parameters which 
satisfy the stability conditions, call it- StableGWO (StableGWO) algorithm 
is performed by numerical experiments on 23 classical benchmark 
functions which are commonly used by many researchers [26, 39, 33, 37]. 
These functions can be divided into three types of functions namely, 
unimodal, multimodal, and multimodal functions with fixed dimensional. 
Since the unimodal functions contain only one optima called global 
optima, they can be utilized to evaluate the local search ability of the 
algorithm and the multimodal functions contain more than one optimal 
solution, so that these can be used to evaluate global exploration ability. In 
order to ensure the comparability of the simulation experiments, the 
experimental parameters which are used in the StableGWO are set as:

Number of wolves ( )SN  = 30,

Maximum iteration ( )maxt  = 500,

The number of independent runs = 30.

4.1 Analysis of the results

In this subsection, the performance evaluation of the StableGWO is 
performed through various metrics such as mean, minimum, maximum, 
median, and standard deviation (STD). The results of StableGWO are 
compared to the results obtained with GWO and GWO1. For a fair 
comparison, the experimental setting is the same for GWO and GWO1. 
GWO indicates the range of A in ( 2, 2)−  and the range of C in (0, 2)  and 
GWO1 indicates the range of A in ( 3, 3)−  and the range of C in (0, 2).  The 
obtained results are reported in Table 2. In Table 2, for F1-F7 functions, 
StableGWO is significantly better than GWO1 and performs the same as 
the GWO algorithm. For F8-F13 functions, StableGWO is better than GWO 
and GWO1 in terms of mean value, and for F9 and F11 functions, 
StableGWO, GWO, and GWO1 obtained optimal value. In F10, StableGWO 
is performed better in F12 and F13. For F14-F23 functions, the GWO1 
algorithm performed better than StableGWO and GWO. In F16, F17, F20, 
and F21, StableGWO is better and in F21-F23, StableGWO, GWO, and 
GWO1 obtained optimal value.

To demonstrate the significant difference between the StableGWO, 
GWO, and GWO1 algorithms, a Wilcoxon-rank sum test at a 5%  level of 
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significance has been carried out. The p-value and corresponding 
conclusion have also been represented in Table 3. In Table 3, “+”� denotes 
significantly better, “–”� refers significantly worse, and “ ”≈ � indicates 
similar. NaN (not a Numerical) indicates that the test is not applicable to 
similar solution vectors. The StableGWO algorithm is the same as the 
GWO algorithm for F1-F23 except for F11. In function F11, StableGWO 
does not perform better. StableGWO is performed better in comparison to 
the GWO1 algorithm in functions F1-F4, F10, F16, F17, F20, F21, and F22.

Furthermore, the convergence behavior of some selected benchmark 
functions F1, F3, F6, F7, F9, F11, F14, F17, F20 and F23 are shown in Figure 
3. In such figures, on horizontal axis denotes the number of iterations, and 
on vertical axis indicates the best score (α  score) in the intermediate 
iterations for a single run. In these figures, the convergence rate of 
StableGWO same as the GWO algorithm.

Table 2
Comparison of Results obtained by StableGWO, GWO, and GWO1 on 23 

classical benchmark functions 

Function Algorithm Mean Minimum Maximum Median STD
StableGWO 1.34E-31 6.74E-34 5.62E-31 8.76E-32 1.62E-31

F1 GWO 3.00E-31 3.28E-33 1.70E-30 1.56E-31 4.16E-31
GWO1 6.35E-25 7.46E-27 4.65E-24 1.93E-25 1.07E-24
StableGWO 3.38E-19 1.74E-20 1.35E-18 2.45E-19 3.08E-19

F2 GWO 2.72E-19 3.26E-20 1.00E-18 1.70E-19 2.53E-19
GWO1 9.81E-16 6.97E-17 6.93E-15 5.95E-16 1.23E-15
StableGWO 3.36E-06 2.60E-10 3.55E-05 3.72E-07 7.68E-06

F3 GWO 1.63E-05 3.69E-10 0.000204541 2.79E-07 5.13E-05
GWO1 0.001599545 5.26E-07 0.028659993 0.000132327 0.005335064
StableGWO 2.71E-06 1.43E-07 3.37E-05 7.70E-07 7.12E-06

F4 GWO 2.01E-06 9.14E-08 1.03E-05 1.12E-06 2.52E-06
GWO1 0.000150888 4.67E-06 0.000891406 6.42E-05 0.000201049
StableGWO 27.12355125 25.93090586 29.49135076 27.11885485 0.913807199

F5 GWO 27.34395156 26.05559344 28.77939111 27.17847622 0.869403974
GWO1 27.11730427 25.9458105 28.75701076 27.13230818 0.769944863
StableGWO 0.918660352 0.000165775 1.775965121 0.882292536 0.473006744

F6 GWO 0.782782433 8.64E-05 1.510812255 0.757370174 0.380594874
GWO1 0.737866424 0.000385655 1.519159871 0.730523999 0.424489966

Contd...
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StableGWO 0.003033099 0.00082825 0.008128232 0.002585117 0.001673333
F7 GWO 0.002616563 0.000905647 0.00534812 0.002456694 0.000977994

GWO1 0.003724349 0.000620238 0.009728167 0.003402236 0.002029109
StableGWO -6408.746544 -8054.43197 -3193.147726 -6418.948487 937.8221955

F8 GWO -6356.388823 -7712.524775 -3595.24404 -6563.333436 1004.806
GWO1 -6056.957638 -8516.459683 -3690.781754 -6481.564073 1666.878842
StableGWO 8.521519434 0 31.00115006 5.755922473 8.891314718

F9 GWO 10.04039697 0 35.69714859 7.287431798 8.431554069
GWO1 7.49885094 0 18.92573346 7.159423884 5.879173404
StableGWO 3.37E-14 2.93E-14 4.35E-14 3.29E-14 4.14E-15

F10 GWO 3.42E-14 2.93E-14 4.35E-14 3.29E-14 4.12E-15
GWO1 2.725827406 6.48E-14 20.51133004 2.19E-13 7.068374576
StableGWO 0.007355793 0 0.037026274 0 0.011577079

F11 GWO 0.002351183 0 0.018693359 0 0.005482864
GWO1 0.003864345 0 0.023478213 0 0.008178915
StableGWO 0.056904662 0.01569415 0.131798181 0.050120182 0.029025729

F12 GWO 0.062379459 0.018753801 0.155444685 0.04815991 0.034540774
GWO1 0.04992272 0.018141645 0.099393363 0.046172614 0.019708632
StableGWO 0.801301665 0.30322729 1.24749455 0.796442876 0.223130771

F13 GWO 0.817685241 0.28835001 1.234320261 0.827182874 0.24454802
GWO1 0.699691468 0.223648188 1.123658046 0.689298899 0.231672149
StableGWO 5.425549884 0.998003838 12.67050581 2.982105157 4.9017482

F14 GWO 4.291433922 0.998003838 12.67050581 2.982105157 4.361775889
GWO1 2.437478495 0.998003838 10.76318067 0.998003838 2.944720718
StableGWO 0.003142417 0.000307488 0.020363341 0.000321173 0.006878567

F15 GWO 0.003137654 0.000307544 0.020363348 0.000368376 0.006878574
GWO1 0.001820985 0.000307688 0.020363342 0.000384232 0.005047424
StableGWO -1.031628444 -1.031628453 -1.031628406 -1.031628446 1.02E-08

F16 GWO -1.031628446 -1.031628453 -1.031628412 -1.03162845 1.03E-08
GWO1 -1.031628421 -1.031628453 -1.031628304 -1.031628432 3.61E-08
StableGWO 0.397887579 0.39788738 0.397888098 0.397887521 2.04E-07

F17 GWO 0.397887642 0.397887373 0.397888331 0.397887577 2.70E-07
GWO1 0.397888226 0.397887372 0.397891813 0.397887974 9.69E-07
StableGWO 5.700028459 3.000003696 84.00001411 3.000017712 14.78850634

F18 GWO 5.700020677 3.000000041 84.00002639 3.00001265 14.78851013
GWO1 3.000021995 3.000000003 3.000178944 3.000006756 3.75E-05
StableGWO -0.300478907 -0.300478907 -0.300478907 -0.300478907 2.26E-16
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F19 GWO -0.300478907 -0.300478907 -0.300478907 -0.300478907 2.26E-16
GWO1 -0.300478907 -0.300478907 -0.300478907 -0.300478907 2.26E-16
StableGWO -3.263294493 -3.321993744 -3.018892349 -3.321978468 0.08520441

F20 GWO -3.233464878 -3.321992027 -3.018250864 -3.321946772 0.104296686
GWO1 -3.151803248 -3.321989166 -1.840911133 -3.179983574 0.26194494
StableGWO -8.970772402 -10.15310337 -5.055194793 -10.15257032 2.179079979

F21 GWO -8.551745587 -10.15313216 -2.682767049 -10.15242419 2.522414307
GWO1 -8.547761634 -10.15308093 -2.682759378 -10.15078677 2.526367658
StableGWO -10.04927558 -10.40281835 -5.087656775 -10.40235323 1.34321338

F22 GWO -10.22666271 -10.40293709 -5.128678173 -10.40255385 0.962855627
GWO1 -9.693986204 -10.40234468 -5.087621363 -10.40110949 1.833579939
StableGWO -9.275134907 -10.53626742 -2.421683783 -10.53571509 2.903117491

F23 GWO -9.797287082 -10.53620533 -1.859420858 -10.53559152 2.300645742
GWO1 -9.815718129 -10.53634714 -5.12844822 -10.53503997 1.865381438

Table 3
Results of Wilcoxon signed-rank sum Test for 23 classical benchmark functions 

Function Algorithm GWO GWO1
F1 p-value NaN 1.73E-06

conclusion ≈ +

F2 p-value NaN 1.73E-06
conclusion ≈ +

F3 p-value NaN 3.52E-06
conclusion ≈ +

F4 p-value NaN 2.60E-06
conclusion ≈ +

F5 p-value NaN NaN
conclusion ≈ ≈

F6 p-value NaN NaN
conclusion ≈ ≈

F7 p-value NaN NaN
conclusion ≈ ≈

F8 p-value NaN NaN
conclusion ≈ ≈

Contd...
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F9 p-value NaN NaN
conclusion ≈ ≈

F10 p-value NaN 1.73E-06
conclusion ≈ +

F11 p-value 3.53E-02 NaN
conclusion – ≈

F12 p-value NaN NaN
conclusion ≈ ≈

F13 p-value NaN NaN
conclusion ≈ ≈

F14 p-value NaN 2.18E-02
conclusion ≈ –

F15 p-value NaN NaN
conclusion ≈ ≈

F16 p-value NaN 1.48E-03
conclusion ≈ +

F17 p-value NaN 7.51E-05
conclusion ≈ +

F18 p-value NaN 1.32E-02
conclusion ≈ –

F19 p-value NaN NaN
conclusion ≈ ≈

F20 p-value NaN 1.25E-04
conclusion ≈ +

F21 p-value NaN 7.27E-03
conclusion ≈ +

F22 p-value NaN 5.29E-04
conclusion ≈ +

F23 p-value NaN NaN
conclusion ≈ ≈
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Figure 3
Convergence Curves 
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From the numerical results, statistical analyses, and convergence rate, 
it can be concluded that the StableGWO performs similarly to the Standard 
GWO algorithm on these benchmark problems. So from this analysis, it 
can also be concluded that StableGWO (or Standard GWO) is a reliable 
algorithm and its parameters are in stable range. Since it is now found that 
Standard GWO and StableGWO both perform the same on the test 
problems or in other words StableGWO performance does not deteriorate 
as compared to GWO. Thus for real-world problems, StableGWO is 
recommended as compared to GWO with any other parameter settings, 
because if unstable GWO is applied to solve real-world problems, an 
unbounded error may occur.

5.  Conclusion and future work

For nature-inspired algorithms, finding a stable range of user 
parameters is a crucial and difficult task. This paper presents the stability 
analysis of GWO using von Neumann stability criteria and the conditions 
on parameters A and C are obtained. It is found that the range of the 
parameters for StableGWO is different than that of the GWO. The GWO 
with parameters in the stable range (StableGWO) has been tested and 
compared with standard GWO on 23 classical benchmark problems. The 
performance of GWO and StableGWO over test problems is found to be 
the same. This concludes that StableGWO with a stable range of parameters 
will not provide inferior results than GWO while providing the guarantee 
of stable solutions and therefore the bounded error. Thus for real-world 
problems, StableGWO is recommended over GWO.

Because of the ease of implementation of the von Neumann stability 
criterion, it can be used to find the stability condition for a variety of other 
swarm intelligence-based optimization algorithms and it can also further 
be extended for the convergence analysis of the GWO algorithm. 

Conflict of interest: The authors declare no conflict of interest.
Data Availability: No data were used to support the findings of the 

study.

Appendix A

According to the discussion in the subsection (3.2), to calculate the 
amplification factor, each term n

lX  of the equation (19) replace by 
( ) .n ml iw m eι ∆×  After substituting the value of ,n

lX  equation (19) is modified 
in this way: 
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1 ( ) ( ) ( )
1( ) ( ) ( )n ml i n m l b i n ml iw m e B w m e A w m eι ι ι+ ∆ ± ∆ ∆× = × × + × ×

1 ( )
1( ) = ( ) ( )n m b i nw m B e A w mι+ ± ∆× + ×

By comparing from equation (15), 

1( ) = (30)G m B e Aιθ× +

where, = ( )m b iθ ± ∆
Similarly, the amplification factor can be calculated for equation (25).
For equation (30), the amplification factor is calculated as: 

1( ) =G m B e Aιθ× +

1( ) = (cos sin )G m B Aθ ι θ× + +

1 1( ) = ( cos ) sinG m B A Bθ ι θ× + + ×

By taking the modulus on both sides, we get, 
2 2 2

1 1| ( )|= ( cos ) sinG m B A Bθ θ× + + ×

2 2
1 1| ( )|= 2 cosG m B A A B θ+ + × × ×

2 2 2
1 1| ( )|= 2 (1 2sin /2)G m B A A B θ+ + × × × −

2 2 2
1 1 12

| ( )|= 2 4 sinG m B A AB A Bθ 
 
 

+ + × − × ×

2 2
1 12

| ( )|= ( ) 4 sinG m A B A Bθ 
 
 

+ − × ×
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