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Abstract  The optimal solution to the wind farm layout 
optimization problem helps in maximizing the total energy 
output from the given wind farm. Meta-heuristic algorithms 
are one of the famous methods for achieving this objective. 
In this paper, we focus on developing an efficient meta-
heuristic based on the grey wolf optimizer for solving the 
wind farm layout optimization problem. The proposed algo-
rithm is called enhanced chaotic grey wolf optimizer and it 
is introduced after validating it on a well-known benchmark 
set of 23 numerical optimization problems. By confirming 
its efficiency through these benchmarks, it is utilized for 
wind farm layout optimization. The proposed algorithm 
is comprised of four search strategies including a modi-
fied GWO search mechanism, modified control parameter, 
chaotic search, and adaptive re-initialization of poor solu-
tions during the search. Two case studies of the wind farm 
layout optimization problem are considered for numerical 
experiments. Results are analyzed and compared with other 
state-of-the-art algorithms. The comparison indicates the 
efficiency of the proposed algorithm for solving numerical 
and wind farm layout optimization problems.

Keywords  Optimization · Wind farm layout · Wind 
turbine · Meta-heuristic algorithms · Grey wolf optimizer · 
Nature-inspired algorithms

1  Introduction

In the field of renewable energy, the wind farm layout optimi-
zation problem (WFLOP) is a popular optimization problem, 
which is a wind energy system to maximize the total energy 
output of the farm. The total energy output of the farm depends 
on the optimal configuration of the wind turbines, such as rotor 
radius, hub height, and optimal location of the wind turbines. 
The total energy output of a wind farm is also affected by other 
factors. However, this paper considers only three wind turbine 
parameters: wind turbine location, rotor radius, and hub height. 
All of these have a significant impact on energy production. 
In this regard, we maximize the total energy output of a wind 
farm by adjusting these parameters of the problem. In the litera-
ture, many traditional and non-traditional algorithms have been 
applied to solve the wind farm layout optimization problem.

In the work of Mosetti et al. (1994), Grady et al. (2005), 
Chen et al. (2013), genetic algorithms are used to extract 
the maximum energy with the minimum installation costs. 
For the wind turbines, they used 100 square cells as possible 
locations. In the work of Mittal et al. (2016b), a novel com-
bination of probabilistic genetic algorithms and determin-
istic gradient-based optimization algorithms, to simultane-
ously determine the optimum total number of turbines to be 
placed in a wind farm along with their optimal locations. In 
the work of Ulku and Alabas-Uslu (2019), a new nonlinear 
mathematical model for the layout of wind turbines under 
multiple wake effects is proposed considering two objective 
functions separately: maximization of total power produc-
tion and minimization of cost per power. In the work of Patel 
et al. (2017), a novel algorithm based on teaching-learning-
based optimization (TLBO) is proposed for an effective 
solution for the optimum placement of wind turbines. Bio-
geographical-based optimization (BBO) (Pouraltafi-Kheljan 
et al. 2018; Bansal and Farswan 2017; Bansal et al. 2018) 
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and random search (Feng and Shen 2015) are used for the 
optimal solution of wind farm layout optimization problem. 
An adaptive genetic algorithm with monte-carlo tree search 
reinforcement learning (Bai et al. 2022) is used to solve this 
same problem. In this paper, the exploitation ability in the 
adaptive genetic algorithm is improved by casting the reloca-
tion of multiple wind turbines into a single-player reinforce-
ment learning problem, which is addressed by monte-carlo 
tree search embedded within the evolutionary algorithm. In 
the work of Manikowski et al. (2021), a single objective 
hill-climbing algorithm (HCA) and three multi-objective 
evolutionary algorithms (NSGA-II, SPEA2, and PESA-II) 
are applied to solve the similar optimization problem which 
is used in Mosetti et al. (1994). In the work of Long et al. 
(2020), Froese et al. (2022), Ju and Liu (2019), Xue and 
Shen (2020), an adaptive differential evolution algorithm 
(ADE) is proposed to solve the wind farm layout model. The 
adaption mechanism of ADE benefits the automatic adjust-
ment of parameters in the mutation and crossover operators 
to achieve the optimal solution.

In this paper, we apply the modified version of GWO 
to solve the WFLOP. GWO (Mirjalili et al. 2014) is one of 
the efficient swarm intelligence-based algorithms. Due to 
its simplicity and efficiency, it has been used for solving 
several optimization problems including optimization of 
PID controller parameters (Das et al. 2015), non-convex 
economic load dispatch problem (Kamboj et al. 2016), flow 
shop scheduling problem (Komaki and Kayvanfar 2015), 
training multi-layer perceptron (MLP) (Mirjalili 2015), 
wireless sensor networks (Pitchaimanickam 2022; Bera 
et al. 2021), feature selection (Al-Tashi et al. 2020; Hu 
et al. 2021; Chantar et al. 2020). It has been observed that 
in some complex optimization problems, the GWO suffers 
from premature convergence, and has poor exploration 
(Bansal and Singh 2021; Meidani et al. 2022; Mittal et al. 
2016a; Cai et al. 2019; Mirjalili et al. 2020). To overcome 
these drawbacks, many researchers have tried to improve 
the search process of the GWO algorithm using different 
mechanisms. For example—In the work of Ibrahim et al. 
(2018), a chaotic opposition-based GWO with DE and 
disruption operator called COGWO2D is introduced. 
A chaotic map and the OBL are used to initialize the 
population, which helps to avoid the drawbacks of the 
random population. Then, the DE operators are combined 
with the GWO algorithm, which works as a local search 
mechanism to improve the exploitation ability. The 
disruptive operator is used to enhance the exploration ability 
of the algorithm. To improve the performance of the GWO 
algorithm, a new version of the GWO, namely mutation-
driven modified grey wolf optimizer (MDM-GWO) (Singh 
and Bansal 2022) is proposed. The MDM-GWO combines a 
new update search mechanism, modified control parameter, 
mutation-driven scheme, and greedy approach of selection 

in the search procedure of the GWO. In the work of Yu et al. 
(2021), an opposition-based learning (OGWO) is proposed 
to improve the performance of GWO. In the work of Hu et al. 
(2022), a new variant of GWO called SCGWO is proposed 
with an improved spread strategy and a chaotic local search 
(CLS) mechanism to improve search ability and convergence 
speed. The first strategy is added to the agents around the 
current position so that the GWO has more chances to find 
the global optimal solution and the chances of stagnation 
at the local optima can be avoided. The second strategy, 
called CLS with shrinkage characteristics, is used to improve 
the exploration ability of the GWO. An adaptive grey wolf 
optimizer (AGWO) (Meidani et al. 2022) is proposed to tune 
the exploration/exploitation parameters based on the fitness 
history of the candidate solutions during the optimization. 
AGWO automatically converges to a sufficiently good 
optimum in the shortest time by controlling the stopping 
criteria. To improve the exploration ability of the GWO, 
an improved covariance matrix evolution GWO (GWOC-
MALOL) (Hu et al. 2021) is proposed. In this algorithm, 
the levy-flight mechanism, orthogonal learning strategy, 
and CMA-ES are added to improve the search quality of 
the classical GWO. In the work of (Banaie-Dezfouli et al. 
2021), a representative-based grey wolf optimizer (R-GWO) 
is proposed. In R-GWO, a representative-based hunting 
search strategy is introduced, which is a combination of 
three effective trial vectors inspired by the behaviors of alpha 
wolves.

This paper proposes a new variant of GWO called 
enhanced chaotic grey wolf optimizer (EC-GWO) which 
is tested over a set of 23 well-known benchmark problems 
including unimodal, multimodal, and fixed-dimensional 
multimodal problems. Moreover, the proposed EC-GWO 
is applied to solve WFLOP. The main contributions of this 
paper are summarized as follows:

•	 A new variant of GWO, named enhanced chaotic grey 
wolf optimizer (EC-GWO), is proposed for solving 
WFLOP.

•	 In the proposed EC-GWO, four search strategies, 
a modified search mechanism, modified control 
parameter, chaotic search, and adaptive re-initialization 
of poor solutions during the search are incorporated 
with the classical GWO.

•	 The performance of the proposed EC-GWO on a set 
of well-known benchmark problems is evaluated and 
compared with seven other meta-heuristic algorithms.

•	 EC-GWO is applied to solve the wind farm layout 
optimization problem (WFLOP).

•	 The experiment results on benchmark problems and 
WFLOP indicate that the proposed EC-GWO algorithm 
is an efficient and reliable solver for WFLOP.
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The rest of the paper is organized as follows: Sect. 2 describes 
the background i.e., wind farm layout optimization problem 
modelling and GWO working frame work. In Sect.  3, 
EC-GWO is proposed and analyzed. Section 4 validates 
the proposed EC-GWO on a well-known set of benchmark 
problems and compares its performance with other algorithms. 
EC-GWO is applied to solve the wind farm layout optimization 
problem in the same section. Finally, Sect. 5 concludes the 
work and suggests some future research ideas.

2 � Background

This section presents the details of the wind farm layout 
optimization problem (WFLOP) and the classical grey wolf 
optimizer (GWO).

2.1 � Wind farm layout optimization problem (WFLOP)

Wind farm layout optimization (WFLO) is the pattern of 
wind turbines scheme subject to the constraints related to the 
position of the turbines, rotor radius, and hub height. In the 
wind farm layout optimization problem (WFLOP) model, the 
objective function is the maximization of expected power. The 
solution of this problem is to find the optimal placement of 
wind turbines so that the expected energy output of the whole 
wind farm is maximum. For the WFLOP, two case studies are 
considered, which include 26 and 30 turbines in the farm size 
of 2 km × 2 km. The wind farm is subdivided into 100 grids 
each of size 200 m × 200 m.

In the WFLOP, ith solution is represented by 
(pwt

i
, qwt

i
, rwt

i
, hwt

i
) , where (pwt

i
, qwt

i
) is the position of the wtth 

wind turbine, rwt
i

 is the radius of the wtth wind turbine, and hwt
i

 
is the height of the wtth wind turbine.

2.1.1 � Jensen’s wake model

Firstly, Jensen’s wake model (Mosetti et al. 1994) was used 
with a genetic algorithm in solving the wind farm optimization 
problem. Assuming that the momentum is conserved in the 
wake, the downstream wind speed in jth turbine under the 
influence of ith turbine is calculated using Eq.(1):

where u0j is the free stream wind speed at jth turbine, and 
vdij is the velocity deficit induced on position j by the wake 
generated by i, which is computed in Eq. (2):

(1)uj = u0j(1 − vdij)

(2)vdij =
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where dij is the distance between ith and jth turbine. k is a 
constant value, and a is the induction factor defined in Eq. 
(3).

Cwt is the thrust coefficient of the wind turbine, which is fixed 
for all turbines. �i is the entrainment constant pertaining to 
ith turbine and r′

i
 is the downstream rotor radius of ith turbine, 

which is find out by the following Eqs. (4)-(5).

where hi is the hub height of ith turbine and z0 is the surface 
roughness of wind farm.

For the linear wake model, the wake region is conical 
and represented by the wake influence radius, which is 
represented in Fig. 1. The wake region is defined in Eq. (6):

In the instance of a wind turbine encountering multiple 
wakes, the kinetic energy of the mixed wake can be assumed 
to be equal to the sum of the kinetic energy deficits. The 
following Eq. (7) shows the velocity downstream of Nwt 
turbines:
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Fig. 1   Linear wake model of wind turbine
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where u0k and u0m are the free stream wind velocity without 
wake effect at kth and mth turbine, respectively. ukm is the 
wind velocity at kth turbine under the wake region of mth 
turbine.

2.1.2 � Power output model

Ptotal is the total power output and is given by Eq. (8):

Here Pi is the power output from the ith turbine. The detailed 
calculation of Pi and associated terms are explained in 
Jensen’s wake mode, which is given in the following Eq. (9).

where � is the air density and Cp is the rotor efficiency.
The objective of the WFLOP is to find the optimal layout 

of all the wind turbines to maximize the power output and 
minimize the cost of a wind farm, given in Eq. (10).

where ‘Cost’ represents the cost of the wind farm, which 
considered Mosetti’s cost model (Mosetti et al. 1994) having 
Nwt number of turbines and defined in Eq. (11):

In this function, the Cost is directly proportional to the 
number of turbines Nwt and consists of two terms: a constant 
term and a variable term which depends on an exponential 
function. The variable term decreases as the number of 
turbines increases.

2.2 � Grey wolf optimizer

The Grey wolf optimizer (GWO) algorithm is one of the 
meta-heuristic algorithms inspired by the leadership 
hierarchy and social behavior of grey wolves. Within the 
pack of grey wolves, wolves are divided into four different 
types of wolves, namely alpha (�) , beta (�) , delta (�) , and 
omega (�) . The wolves (�, �, and �) are known as leading 
wolves and are used to guide the remaining wolves of the 
pack to approach the prey. In the GWO, three main steps 
are performed to complete their search procedure, including 
encircling, hunting, and attacking the prey. All these steps 
are explained as follows:

The encircling behavior of grey wolves is modeled 
mathematically through Eqs. (12) and (13).
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 and X

(t)

i,j
 are the jth components of the the 

updated and current states of wolves Xi . Xt
prey,j

 refers to the 
jth component of the prey location, t represents the iteration 
counter. At , and Dt are the coefficient vectors which are 
calculated using Eqs. (14) and (15):

where rand1 and rand2 are uniformly random numbers in 
the range (0, 1). The parameter a is a linearly decreasing 
variable from 2 to 0 over the iterations, which is calculated 
by the Eq. (16):

tmax refers to the maximum number of iterations.
During the hunting process, wolves’ positions are updated 

based on the three leading wolves, as the algorithm assumes 
that they have better knowledge about the location of the 
prey. The mathematical model of the hunting process is 
described in Eq. (17):

where
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numbers in the range (−2, 2) at tth iteration and calculated by 
Eq. (14). Ct
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the Eq. (15). Xt
�,j

 , Xt
�,j

 , and Xt
�,j

 are the jth components of 
leading wolves �, � and � , respectively which are calculated 
using Eqs. (18)-(20). The coefficient vectors Dt

�,j
 , Dt

�,j
 , and 

Dt
�,j

 are calculated using Eqs. (21)-(23). The pseudo-code of 
the classical GWO is presented in Algorithm 1.

Algorithm 1   Pseudo-code of the classical GWO

3 � Proposed method

3.1 � Motivation

As aforementioned in the classical GWO, wolves update 
their positions with the help of the leader wolves ( � , � , and 
� ). If the leader wolves are not enough good, this behavior 
may occasionally, mislead the pack towards the local optima 
which results the algorithm’s premature convergence. With 
this drawback, GWO faces an imbalance between explo-
ration and exploitation. The linear change in the control 
parameter a is one main factor behind this imbalance. To 
deal with this situation and improve the search efficiency of 
the GWO, we have applied four search strategies in GWO 
namely, a modified search mechanism, modified control 
parameter, chaotic search, and adaptive re-initialization of 
poor solutions during the search. A brief description of each 
applied strategy is provided in the following subsections:

3.2 � Modified search mechanism

It is clear from Eq. (17) that the search in GWO signifi-
cantly relies on the state of leader wolves. This search 
behavior degrades the exploration or diversity feature of 
the algorithm, and for complex and multimodal problems, 

this may result premature convergence. In the literature, 
various position-updated equations have been proposed 
(Long et al. 2018; Singh and Bansal 2022; Heidari and 
Pahlavani 2017) to deal with this drawback of GWO. 
Enhancing the information-exchange mechanism among 

the wolves may reduce this shortcoming more effi-
ciently. Therefore, to improve the exploration ability of 
the algorithm and to increase the information-exchange 
mechanism among the wolves, we have introduced a new 
position update equation in the classical GWO, which is 
inspired by the weighted center learning method (WCL) 
(Sun and Chen 2021; Deng et al. 2019). The WCL assigns 
a weight to each individual based on their fitness so that 
better solutions can contribute more than poor solutions. 
In this approach, a new modified search equation in GWO 
is introduced in Eq. (24):

where Xt
wcl,j

 is the jth component of the weighted average 
vector at tth iteration. The weight is determined by the fitness 
of each wolf. Since the weight of an individual has a nega-
tive correlation with individual fitness, a linear normaliza-
tion method is used to obtain the weighted average vector. 
The weighted average vector Xt

wcl
 is calculated using Eq. 

(25):
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where Ft
max

 is the fitness of the worst solution in the popula-
tion, F(Xt

i
) is the fitness of the ith wolf and � is a non-zero 

positive small real number to prevent the denominator from 
being zero. n indicates the number of leader wolves which 
is obtained using the following Eq. (26):

Here N is the total number of grey wolves. t and tmax are the 
current iteration counter and maximum number of iterations, 
respectively. In Eq. (24), the difference vector Dt

wcl,j
 is 

obtained using the following Eq. (27).

where At
i,j

 and Ct
i,j

 are obtained using Eqs. (14) and (15), 
respectively. From Eq. (26), it can be seen that the number 
of leader wolves used to define the weighted average vector 
is decreased with iteration t. At the initial iteration of the 
algorithm, the number of leading wolves (n) equals the total 
number of grey wolves, which supports the exploration. 
When the number of leading wolves decreases with the 
iteration, then the exploration phase transits to the 
exploitation phase. This transition provides a balance 
between diversity and convergence. Using the WCL 
approach, in the initial phases of the search procedure, new 
solutions are discovered using the guidance of each wolf of 
the population. In contrast, in the later phases of the search, 
only the best-fitted wolves are used to guide the search 
procedure by other wolves. In this way, more iterations are 
being used for exploring the solution space.

After updating the positions of wolves, a greedy selection 
approach decides whether the obtained new positions of 
wolves ( Y (t+1)

i,j
 ) will survive in the next iteration or not. 

Mathematically, considering the optimization problem is 
minimization, the greedy selection approach can be defined 
with the help of Eq. (28):

where f (Y
(t+1)

i
) is the fitness of the ith wolf at (t + 1)th 

iteration and f (Xt
i
) is the fitness of the ith wolf at tth iteration.

3.3 � Modified control parameter

According to (Mirjalili et al. 2014) the parameters ‘A’ 
and ‘C’ are two parameters that control the f low of 
exploration and exploitation within the GWO algorithm. 

(26)n = round
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i
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, otherwise

The value |A| > 1 facilitates the exploration, and the 
value |A| < 1 refers to exploiting the solution space. The 
control parameter ‘a’ directly affects the parameter A, 
which decreases linearly from 2 to 0 through iterations. 
An appropriate selection of the control parameter ‘a’ is 
important to balance exploration and exploitation. In 
the first half of the search procedure of the GWO, the 
parameter ‘a’ with the linearly decreasing strategy is good 
at exploration but poor for convergence. In contrast, in 
the next half search procedure, this parameter is good 
for exploitation but easily trapped in the local optima 
due to insufficient exploration ability. This approach 
of parameter ‘a’ may not be suitable for providing high 
quality solutions. Hence, a modification in this parameter 
is required that may provide a sufficient amount of 
exploitation and exploration for the search procedure of 
GWO. In this work, we have improved the modification 
strategy of the control parameter ‘a’ through iterations. 
The improved strategy reduces ‘a’ nonlinearly resulting 
in more exploitation of identified regions during the 
exploration process. We have chosen a nonlinear function 
to select the parameter ‘a’. This approach has also been 
used in other study (Long et al. 2019). The mathematical 
formulation for the parameter a is given by Eq. (29)

where ainitial and afinal are the initial and final value of the 
parameter a which is fixed to 2 and 0, respectively. k is a 
modulation index that is fixed to be 0.2. Figure (2) shows the 
comparison graph of the original linearly decreasing strategy 
and the proposed nonlinear decreasing strategy. From Fig. 
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(2), it is clear that our approach for setting the parameter 
‘a’ focuses more on exploitation and less on exploration. 
Thus the proposed ‘a’ brings early exploitation in the search 
process. The reason for adopting this setting is to ensure the 
balance between exploration and exploitation as high explo-
ration has already been achieved in the strategy proposed in 
Sect. 3.2.

3.4 � Chaotic local search

In this subsection, we will define our third strategy called 
chaotic local search (CLS). The CLS is employed in GWO 
to improve the local search of the algorithm. Our modified 
search scheme, as explained in subsection  3.2 has been 
applied to increase the exploration ability of the algorithm. 
However, with the exploration of solution space, exploitation 
of discovered search areas is necessary to prevent skipping 
promising solutions. Therefore, the CLS scheme has been 
applied to the proposed algorithm to further exploit the 
discovered search areas. The chaotic search is an approach 
to perform the search faster than the ergodic search (dos 
Santos Coelho and Mariani 2008; Alatas 2010; Jia et al. 
2011; Gao et al. 2019). The search process of CLS is based 
on the regularity of chaos, and it is very sensitive to its initial 
condition. A huge number of sequences can be obtained by 
only changing their initial values. The advantage of CLS lies 
in its randomicity which helps in avoiding the problem of 
stagnation. Mathematically, CLS is defined by the following 
Eq. (30):

where Xt
i,j

 is the position of the ith wolf at tth iteration. UBj 
and LBj are the upper and lower bounds of the search space 
in jth dimension. R ∈ (0, 1) denotes the chaotic search radius 
to control the search range. Ct

no
 is the logistic chaotic func-

tion that is used in tth iteration in the chaotic local search to 
generate a chaotic sequence (Zhenyu et al. 2006). In this 
paper, we have taken the initial value of Ct

no
 is 0.7. It is 

defined in the following Eq. (31):

(30)Zt+1
i,j

= Xt
i,j
+ R × (UBj − LBj) × (Ct

no
− 0.5)

After each performance of CLS, if the new fitness is better 
than the current fitness value, then the solution with new 
fitness replaces itself to go to the next iteration, while the 
others stay the same in the next iteration.

3.5 � Re‑initialization

In the proposed algorithm, we have re-initialized the 
poor wolves only when they do not improve their states 
in terms of fitness up to a predefined number of itera-
tions. It can be assumed that these wolves are potentially 
weak to update their states. Therefore, a restart mecha-
nism is required to pull out these unfit wolves from the 
optimization procedure, and random solutions distributed 
in the solution space will be inserted in place of them. 
To decide whether a particular wolf is unfit or not, we 
assigned a counter for each wolf of the population. If any 
wolf cannot achieve its better state, a counter associated 
with that wolf is increased to 1. This counter value is 
rechecked in each iteration and compared with the preset 
threshold limit CL . If the counter reaches to this limit, the 
corresponding wolf is re-initialized using the following 
Eq. (32).

where Xi,j is the jth component of the ith wolf, counteri is 
counter associated with wolf Xi . LBj , and UBj are the jth 
components of the lower and upper bounds of the search 
space. rand(0, 1) is a uniformly distributed random number 
in the range 0 and 1. The proposed strategy is inspired by 
the artificial bee colony (ABC) (Karaboga et al. 2005). The 
pseudo-code and flow chart of the proposed EC-GWO are 
presented in Algorithm 2 and Fig. (3), respectively.

(31)Ct+1
no

= � × Ct
no
× (1 − Ct

no
)

(32)X
(t+1)

i,j
=

{
LBj + rand × (UBj − LBj), counteri > CL

no change, otherwise
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Algorithm 2   Pseudo-code of the proposed EC-GWO

4 � Experimental results

The proposed EC-GWO is first tested over a set of 23 well-
known benchmark problems in Sect. 4.1 and then applied to 
solve the WFLOP in Sect. 4.2.

4.1 � Testing on benchmark problems

4.1.1 � Benchmark problems and parameters settings

To evaluate the performance of the EC-GWO, a set of 23 
well-known benchmark problems (Bäck and Schwefel 1993; 
Fogel 1991; Long et al. 2018; Bansal and Singh 2021) is 

selected. Many researchers have used these benchmark 
problems in the literature to evaluate the performance of 
various meta-heuristic algorithms (Li et al. 2021; Yu et al. 
2021; Dong et al. 2022; Lakshmi and Mohanaiah 2021; Teng 
et al. 2019; Heidari et al. 2019; Li et al. 2020, 2021). The 
details of these problems are reported in Table 1. In this 
table, according to the characteristics, problems are divided 
into three categories: unimodal, multimodal, and fixed-
dimensional multimodal problems. In Table 1, D indicates 
the number of decision variables and Range refers to the 
search range for the decision variables. The F∗

i
 represents 

the true optima of the problem.
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A fair parameter setting is important to compare the 
performance of the meta-heuristic algorithms. The pop-
ulation size (N), maximum number of iterations ( tmax ), 
and maximum number of function evaluations ( FESmax ) 
are set to 50, 1000, and 5 × 104 , respectively for all the 
algorithms. The algorithm ran 30 times independently. 
The parameter setting of the compared meta-heuristic 
algorithms, namely ABC (Karaboga and Basturk 2007), 
BBO (Simon 2008), SCA (Mirjalili 2016), WOA (Mir-
jalili and Lewis 2016)), GWO (Mirjalili et al. 2014) and 
variants of the GWO (MGWO (Mittal et al. 2016a), and 
RWGWO (Gupta and Deep 2019)) is derived from their 
original papers. A detailed parameter setting for all the 
compared algorithms is given in Table 2. These algorithms 
are very competitive or have recently been published in 

the literature. Hence, they have been chosen for the per-
formance comparison of the EC-GWO.

The simulation environment is MATLAB 2014a, 
the operating system is Windows 10, 8GB RAM, and 
the processor is Intel(R) Core(TM) i5-8250U CPU @ 
1.60GHz 1.80 GHz with 8 GB RAM.

4.1.2 � Comparison with classical GWO and other 
meta‑heuristic algorithms

To evaluate the advantages of the proposed algorithm, the 
EC-GWO is compared with GWO and other meta-heuristic 
algorithms on a set of problems given in Table 1. These 
algorithms are ABC, BBO, SCA, WOA, GWO, and vari-
ants of the GWO, namely MGWO, and RWGWO. We have 
used four statistics; namely, average, best, worst, median, 

Fig. 3   Flow Chart of the proposed EC-GWO
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and standard deviation (Std) to compare the optimization 
results. Here, ‘average’, best, worst, median, and stand‑
ard deviation (Std) are the mean, best, worst, median, and 

standard deviation of the fitness values which are obtained 
in 30 runs. The results are shown in Tables 3, 4, 5, where the 
better results are highlighted in boldface.

Table 1   Benchmark problems

Problem Types D Range F
∗
i

F1(x)=
∑D

i=1
x2

i
Unimodal 30 [−100,100] 0

F2(x)=
∑D

i=1
�x2

i
� + 

∏D

i=1
�xi� Unimodal 30 [−10,10] 0

F3(x)=
∑D

i=1

�∑i

j−1
xj

�2 Unimodal 30 [−100,100] 0

F4(x)=maxi

{|xi|, 1 ≤ i ≤ D
}

Unimodal 30 [−100,100] 0

F5(x)=
∑D−1

i=1

�
100

�
xi+1 − x2

i

�2
+
�
xi − 1

�2
�

Unimodal 30 [−30,30] 0

F6(x)=
∑D

i=1

��
xi + 0.5

��2 Unimodal 30 [−100,100] 0

F7(x)=
∑D

i=1
ix4

i
+ random[0, 1) Unimodal 30 [−1.28,1.28] 0

F8(x)=
∑D

i=1
−xi sin

�√�xi�
�

Multimodal 30 [−500,500] −418.9829×n

F9(x)=
∑D

i=1

�
x2

i
− 10 cos

�
2�xi

�
+ 10

� Multimodal 30 [−5.12,5.12] 0

F10(x)=
−20 exp(−0.2

�
1

D

∑D

i=1
x2

i
) − exp

�
1

D

∑D

i=1
cos

�
2�xi

��
+ 20 + e

Multimodal 30 [-32,32] 0

F11(x)=
1

4000

∑D

i=1
x2

i
−
∏D

i=1
cos

�
xi√

i

�
+ 1 Multimodal 30 [−600,600] 0

F12(x)=
�

D

�
10 sin

�
�y1

�
+
∑D−1

i=1
(yi − 1)2

�
1 + 10 sin2(�yi+1)

�
+ (yD − 1)2

�
+
∑D

i=1
u(xi, 10, 100, 4) Multimodal 30 [−50,50] 0

yi = 1 +
xi+1

4
u(xi, a, k, m) =

⎧⎪⎨⎪⎩

k(xi − a)m xi > a

0 − a < xi < a

k(−xi − a)m xi < −a

F13(x)=0.1
�

sin2(3�x1) +
∑D

i=1

�
xi − 1

�2�
1 + sin2(3�xi + 1)

�
+ (xD − 1)2

�
1 + sin2(2�xD)

��
+ Multimodal 30 [−50,50] 0

∑D

i=1
u(xi, 5, 100, 4)

F14(x)=

�
1

500
+
∑25

j=1

1

j+
∑2

i=1 (xi−aij)
6

�−1 Fixed-dimensional 
multimodal

2 [−65, 65] 0.998

F15(x)=
∑11

i=1

�
ai −

x1(b2
i
+bix2)

b2
i
+bix3+x4

�2 Fixed-dimensional 
multimodal

4 [−5, 5] 0.00030

F16(x)=4x2
1
− 2.1x4

1
+

1

3
x6

1
+ x1x2 − 4x2

2
+ 4x4

2
Fixed-dimensional 

multimodal
2 [−5, 5] −1.0316

F17(x)=

(
x2 −

5.1

4�2
x2

1
+

5

�
x1 − 6

)2

+ 10
(

1 −
1

8�

)
cos x1 + 10

Fixed-dimensional 
multimodal

2 [−5, 5] 0.398

F18(x)=

[
1 +

(
x1 + x2 + 1

)2(
19 − 14x1 + 3x2

1
− 14x2 + 6x1x2 + 3x2

2

)] Fixed-dimensional 
multimodal

2 [−2, 2] 3

[
30 +

(
2x1 − 3x2

)2(
18 − 32x1 + 12x2

1
+ 48x2 − 36x1x2 + 27x2

2

)]

F19(x)=
−
∑4

i=1
ci exp

�
−
∑3

j=1
aij

�
xj − pij

�2
�

Fixed-dimensional 
multimodal

3 [1, 3] −3.86

F20(x)=
−
∑4

i=1
ci exp

�
−
∑6

j=1
aij

�
xj − pij

�2
�

Fixed-dimensional 
multimodal

6 [0, 1] −3.32

F21(x)=
−
∑5

i=1

�
(X − ai)

�
X − ai

�T
+ ci

�−1 Fixed-dimensional 
multimodal

4 [0, 10] −10.1532

F22(x)=
−
∑7

i=1

�
(X − ai)

�
X − ai

�T
+ ci

�−1 Fixed-dimensional 
multimodal

4 [0, 10] −10.4028

F23(x)=
−
∑10

i=1

�
(X − ai)

�
X − ai

�T
+ ci

�−1 Fixed-dimensional 
multimodal

4 [0.10] −10.5363
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For the unimodal benchmark promlems (F1-F7), results 
are given in Table 3. In this table, the EC-GWO has achieved 
an optimal value (0) for the problems F1-F4. The proposed 
strategies provide solutions with higher precision to each 
problem. As compared to other algorithms, the proposed 
EC-GWO has provided better results for the problem F5. 
However, ABC has outstanding performance for problem F6 
as compared to the proposed EC-GWO, BBO, SCA, WOA, 
GWO, MGWO, and RWGWO. Moreover, for problem F7, 
the results obtained by EC-GWO are very close to the results 
of the MGWO algorithm and performed better than ABC, 
BBO, SCA, WOA, GWO, and RWGWO. It can be verified 
from the results of unimodal problems that the EC-GWO has 
performed overall better than other compared algorithms, 
which proves its strong exploitation ability. Hence, the modi-
fied control parameter and chaotic local search have proven 
their efficiency in enhancing the exploitation abilities of the 
classical GWO.

For the multimodal problems (F8-F13), results are shown 
in Table 4. The proposed EC-GWO has obtained optimal 
solution for the problems F8, F9, and F11. As Compared 
with ABC, BBO, SCA, WOA, GWO, MGWO, and 
RWGWO, the proposed EC-GWO has achieved better results 
for problem F10. For problems F12 and F13, ABC has 
provided good results as compared to the other algorithms. 
Hence, the results on multimodal problems indicate that 
the proposed EC-GWO has more advantages of jumping 
out from the local optimal regions than other compared 
algorithms.

For the fixed-dimensional multimodal problems (F14-
F23), results are indicated in Table 5. ABC has performed 
better than BBO, SCA, WOA, GWO, MGWO, RWGWO, 
and EC-GWO for the problem F14. For the same function, 
RWGWO is the second best algorithm. For problem F15, 
RWGWO has provided better results in terms of average, 
best, and median values, and the proposed EC-GWO has 
obtained better results in terms of worst and std values. For 
problems F16-F19, all the algorithms have provided better 

and similar results in terms of average, best, worst, and 
median values than the BBO algorithm. The ABC algorithm 
has performed better in all the statistics for problems F16-
F19. For problem F20, ABC has provided better results than 
the other compared algorithms. The proposed EC-GWO and 
the ABC have performed very well on problems F21-F23, 
but in these problems, ABC has provided better results in 
terms of all the statistics. As compared to the multimodal 
problems, these problems have less local optima. There-
fore, the ability to maintain a comparatively better balance 
between exploration and exploitation is verified in the EC-
GWO through these problems. Thus, it can be concluded 
that all the employed strategies have shown their impact 
on improving the search mechanism of the GWO for better 
solution accuracy.

4.1.3 � Convergence analysis

This subsection compares and analyzes the convergence 
feature of the proposed EC-GWO and other compared 
algorithms. Fig. 4, 5, 6 plots the convergence curves for 
the selected benchmark problems F1, F4, F5, F6, F8, F10, 
F11, F13, F14, F15, F20, and F23 of the EC-GWO, and 
compares them with the convergence curves of the other 
compared algorithms. In these curves, the horizontal axis 
represents the function evaluations, and the fitness val-
ues are depicted on the vertical axis. These curves show 
that the proposed EC-GWO achieved a faster convergence 
rate than other algorithms for most of the problems. For 
problems F1, F4, and F5, the convergence speed of the 
proposed EC-GWO is very fast compared to other algo-
rithms. For some problems, such as F6, F13, F15, and 
F20, the convergence speed of EC-GWO is worse than 
ABC, but its convergence speed is better than the speed 
of the other algorithms. It can be concluded that the pro-
posed EC-GWO also has the highest convergence speed.

Table 2   Parameter setting 
for comparing meta-heuristic 
optimization algorithms

Algorithms Parameter setting

GWO a is linearly decreased from 2 to 0
ABC Food sources (SN) is 50, Limit is SN× D
BBO Habitat modification probability is 1, initial mutation probability is 0.1

number of best habitats is 2
SCA a is 2, r1 is linearly decreased from 2 to 0, r2 is (2 × � ) × rand(), r3 is random

number in the range [0,2], and r4 is random number in the range [0,1]
WOA a1 is linearly decreased from 2 to 0 and a2 is linearly decreased

from - 1 to - 2, r1 = rand(), r2 = rand(), b = 1, p = rand()
MGWO a is non-linearly decreased from 2 to 0
RWGWO a is linearly decreased from 2 to 0
EC-GWO a is non-linearly decreased from 2 to 0, CL = 50 , k = 0.2
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Table 3   Comparison results 
obtained by EC-GWO and 
ABC, BBO, SCA, WOA, GWO, 
MGWO, and RWGWO on a 
set of unimodal benchmark 
problems

Problem Algorithm Average Best Worst Median Std

F1 ABC 2.80E−11 2.70E−12 1.89E−10 1.27E−11 4.26E−11
BBO 5.94E+00 2.76E+00 1.34E+01 5.25E+00 2.46E+00
SCA 2.60E−03 9.59E−07 2.22E−02 4.24E−04 5.00E−03
WOA 1.60E−172 2.43E−185 3.24E−171 9.05E−180 0.00E+00
GWO 3.14E−76 5.30E−80 4.69E−75 3.62E−77 8.73E−76
MGWO 2.07E−99 2.54E−103 1.68E−98 2.58E−100 3.82E−99
RWGWO 6.02E−75 1.08E−77 6.11E−74 3.53E−75 1.14E−74
EC-GWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 ABC 9.80E−07 4.21E−07 2.11E−06 9.08E−07 3.86E−07
BBO 8.52E−01 6.01E−01 1.26E+00 8.25E−01 1.58E−01
SCA 7.61E−06 9.51E−10 8.10E−05 1.02E−06 1.69E−05
WOA 1.43E−109 1.31E−118 2.39E−108 2.07E−113 4.73E−109
GWO 4.70E−45 2.35E−46 3.81E−44 2.66E−45 7.14E−45
MGWO 1.84E−57 6.99E−59 1.35E−56 7.61E−58 2.87E−57
RWGWO 1.99E−43 1.56E−44 4.70E−43 1.53E−43 1.43E−43
EC-GWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F3 ABC 1.25E+04 7.89E+03 1.68E+04 1.27E+04 2.30E+03
BBO 8.91E+03 4.21E+03 1.41E+04 8.56E+03 2.35E+03
SCA 2.87E+03 1.77E+02 1.18E+04 1.98E+03 3.00E+03
WOA 8.61E+03 2.82E+02 2.99E+04 8.53E+03 6.48E+03
GWO 2.04E−21 9.02E−29 5.82E−20 6.38E−25 1.06E−20
MGWO 1.13E−19 3.66E−28 1.30E−18 3.25E−24 3.47E−19
RWGWO 4.53E−12 4.53E−17 3.51E−11 1.31E−13 1.02E−11
EC-GWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F4 ABC 2.16E+01 1.05E+01 2.63E+01 2.27E+01 3.81E+00
BBO 6.31E+00 4.58E+00 9.27E+00 6.36E+00 1.00E+00
SCA 1.24E+01 1.36E+00 3.06E+01 1.11E+01 7.84E+00
WOA 3.76E+01 1.16E−02 8.18E+01 3.62E+01 2.70E+01
GWO 5.90E−17 2.84E−19 5.96E−16 9.86E−18 1.23E−16
MGWO 2.99E−23 2.08E−25 1.37E−22 1.26E−23 4.02E−23
RWGWO 9.66E−14 1.67E−15 3.91E−13 3.56E−14 1.23E−13
EC−GWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F5 ABC 2.38E+00 7.24E−02 1.12E+01 1.77E+00 2.41E+00
BBO 3.26E+02 1.72E+02 6.80E+02 3.06E+02 1.25E+02
SCA 9.48E+01 2.77E+01 7.13E+02 3.15E+01 1.55E+02
WOA 2.67E+01 2.58E+01 2.74E+01 2.67E+01 3.22E−01
GWO 2.66E+01 2.53E+01 2.72E+01 2.66E+01 5.34E−01
MGWO 2.64E+01 2.50E+01 2.87E+01 2.62E+01 9.19E−01
RWGWO 2.58E+01 2.49E+01 2.71E+01 2.60E+01 5.45E−01
EC−GWO 1.85E−02 5.41E−03 3.40E−02 1.87E−02 7.27E−03

F6 ABC 2.06E−11 2.16E−12 1.07E−10 1.29E−11 2.40E−11
BBO 5.70E+00 2.01E+00 9.96E+00 5.40E+00 2.28E+00
SCA 4.27E+00 3.50E+00 4.95E+00 4.24E+00 3.10E−01
WOA 1.07E−02 1.10E−03 1.90E−01 3.70E−03 3.39E−02
GWO 5.26E−01 1.49E−05 9.92E−01 5.00E−01 2.56E−01
MGWO 3.81E−01 3.08E−05 7.57E−01 2.57E−01 2.42E−01
RWGWO 4.96E−02 5.45E−06 3.22E−01 9.75E−06 9.46E−02
EC-GWO 3.31E−04 1.03E−04 1.29E−03 2.69E−04 2.47E−04
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4.1.4 � Statistical analysis

The Wilcoxon rank-sum test (Derrac et al. 2011) statistically, at 
a significance level of 5% has been used to evaluate EC-GWO. It 
is a pairwise test that tries to find significant differences between 
two independent groups. It ensures that significant results for 
algorithms do not occur by chance. The results of the Wilcoxon 
rank-sum test for a set of 23 well-known benchmark problems 
are listed in Table 6. In table 6, “ +∕ − ∕ ≈ ” are used to indicate 
that the EC-GWO is significantly better, worse, or the same as 
the ABC, BBO, SCA, WOA, GWO, MGWO, and RWGWO. As 
can be seen from the results the proposed EC-GWO is signifi-
cantly better than the ABC for 17 problems, BBO for 23 prob-
lems, SCA for 21 problems, WOA for 17 problems, classical 
GWO for 17 problems, MGWO for 17 problems, and RWGWO 
for 15 problems out of 23 problems. Conclusively, EC-GWO has 
better exploration capability and better synergy between exploi-
tation and exploration than other algorithms. Moreover, we have 
also ranked the average values obtained by EC-GWO and other 
algorithms for each problem, as shown in Table 7. In Table 7, 
EC-GWO gets the first rank in all the problems. The complete 
ranking order is EC-GWO, ABC, WOA, RWGWO, MGWO, 
GWO, BBO, and SCA.

Overall, we can conclude that as compared with ABC, BBO, 
SCA, WOA, GWO, MGWO, and RWGWO, the proposed 
EC-GWO has the best performance and robustness when 
solving global optimization problems. Thus, the EC-GWO is 
suitable for solving global optimization problems.

4.2 � The proposed EC‑GWO for wind farm layout 
optimization problem (WFLOP)

4.2.1 � Numerical experiment results and discussion

This subsection is devoted to numerical investigations 
while solving the WFLOP using various meta-heuristics. 
To verify and validate the performance of the proposed 
EC-GWO, its simulation results are compared with ABC, 

BBO, SCA, WOA, GWO, MGWO, and RWGWO. The 
parameters setting of these algorithms are the same as in 
Table 2. For the considered wind farm (2 km × 2 km), air 
density ( � ) is 1.2254 kg∕m3 , rotor efficiency ( Cp ) is 0.4, 
thrust coefficient ( Cwt ) is 8/9 and the surface roughness of 
wind farm ( z0 ) is 0.3 m. For all the compared algorithms, 
the population size and the maximum function evalua-
tions are set to 50 and 5 × 104 , respectively. In this paper, 
we have considered two cases, namely case 1 for 26 wind 
turbines and case 2 for 30 wind turbines. For case 1 and 
case 2, the numerical results for all compared algorithms 
over 30 independent runs in terms of the average, mini-
mum, maximum, median, std, and cost, and correspond-
ing optimal positions, rotor radius, and hub height are 
presented in Tables 8, 9, 10, 11, 12, 13.

For case 1 and case 2, Tables  8 and 11 report the 
average, minimum, maximum, median, and std of the 
total power obtained over 30 runs of all the compared 
algorithms and also, the statistical analysis through the 
Wilcoxon rank-sum test at a significance level of 5% are 
reported in the same Tables 8 and 11. Moreover, Cost 
indicates the objective function value. In these tables, “ + ” 
indicates that the EC-GWO is significantly better than the 
ABC, BBO, SCA, WOA, MGWO, and RWGWO while 
“ ≈ ” shows that the EC-GWO is the same as ABC, BBO, 
SCA, WOA, MGWO, and RWGWO. From the results of 
Table 8, it can be observed that the proposed EC-GWO 
has provided a better solution as it gives a maximum 
value for a total power that is 13792.53138 KW as well as 
the minimum value for a total cost is 0.0014549 obtained 
by case 1. Referring to Table 8, it can be seen that BBO 
has also performed better than ABC, SCA, WOA, GWO, 
MGWO, and RWGWO. Overall, the proposed EC-GWO 
has provided better results for case 1. For case 2, the pro-
posed EC-GWO has performed better than ABC, BBO, 
SCA, WOA, MGWO, and RWGWO. The proposed EC-
GWO has obtained a maximum power 15787.08 KW and 
the corresponding objective value is 0.00140418. BBO 

Table 3   (continued) Problem Algorithm Average Best Worst Median Std

F7 ABC 1.10E−01 5.48E−02 1.59E−01 1.12E−01 2.54E−02

BBO 2.47E−02 1.19E−02 6.31E−02 2.16E−02 1.12E−02

SCA 2.96E−02 2.00E−03 1.03E−01 2.21E−02 2.51E−02

WOA 1.20E−03 1.74E−05 6.60E−03 7.86E−04 1.30E−03

GWO 7.69E−04 2.63E−04 2.80E−03 6.58E−04 4.85E−04

MGWO 4.39E−04 1.66E−04 9.92E−04 3.84E−04 2.29E−04

RWGWO 1.21E−03 3.85E−04 2.64E−03 1.20E−03 6.09E−04

EC-GWO 4.29E−04 1.38E−04 1.24E−03 4.10E−04 2.33E−04
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Table 4   Comparison results 
obtained by EC-GWO and 
ABC, BBO, SCA, WOA, GWO, 
MGWO, and RWGWO on a 
set of multimodal benchmark 
problems

Problem Algorithm Average Best Worst Median Std

F8 ABC −1.22E+04 −1.25E+04 −1.19E+04 −1.22E+04 1.27E+02
BBO −1.26E+04 −1.26E+04 −1.25E+04 −1.26E+04 6.55E+00
SCA −4.01E+03 −4.60E+03 −3.44E+03 −3.99E+03 2.80E+02
WOA −1.13E+04 −1.26E+04 −8.17E+03 −1.23E+04 1.65E+03
GWO −6.35E+03 −7.36E+03 −3.64E+03 −6.37E+03 7.39E+02
MGWO −6.22E+03 −7.74E+03 −3.57E+03 −6.62E+03 1.28E+03
RWGWO −8.80E+03 −1.00E+04 −7.86E+03 −8.79E+03 5.12E+02
EC-GWO −1.26E+04 −1.26E+04 −1.26E+04 −1.26E+04 4.28E−03

F9 ABC 2.78E−01 5.25E−09 1.55E+00 6.09E−05 4.84E−01
BBO 2.48E+00 6.04E−01 4.81E+00 2.25E+00 9.19E−01
SCA 1.32E+01 1.36E−06 1.33E+02 4.66E−02 2.87E+01
WOA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
GWO 1.39E+00 0.00E+00 1.31E+01 0.00E+00 3.39E+00
MGWO 6.95E−02 0.00E+00 2.08E+00 0.00E+00 3.81E−01
RWGWO 1.17E+01 0.00E+00 2.56E+01 1.19E+01 6.23E+00
EC-GWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F10 ABC 1.42E−05 4.30E−06 4.10E−05 1.21E−05 8.59E−06
BBO 1.28E+00 6.31E−01 1.93E+00 1.22E+00 3.19E−01
SCA 1.25E+01 7.50E−05 2.03E+01 1.98E+01 9.60E+00
WOA 4.80E−15 8.88E−16 7.99E−15 4.44E−15 2.16E−15
GWO 8.11E−15 4.44E−15 1.51E−14 7.99E−15 1.47E−15
MGWO 6.10E−15 4.44E−15 7.99E−15 4.44E−15 1.80E−15
RWGWO 8.23E−15 7.99E−15 1.51E−14 7.99E−15 1.30E−15
EC-GWO 8.88E−16 8.88E−16 8.88E−16 8.88E−16 0.00E+00

F11 ABC 7.15E−04 4.76E−11 1.22E−02 1.29E−07 2.74E−03
BBO 1.05E+00 1.02E+00 1.09E+00 1.04E+00 1.85E−02
SCA 1.66E−01 2.26E−06 7.90E−01 8.14E−02 2.16E−01
WOA 1.30E−03 0.00E+00 3.89E−02 0.00E+00 7.10E−03
GWO 3.90E−03 0.00E+00 2.12E−02 0.00E+00 6.60E−03
MGWO 8.04E−04 0.00E+00 1.37E−02 0.00E+00 3.10E−03
RWGWO 2.70E−03 0.00E+00 2.89E−02 0.00E+00 6.69E−03
EC-GWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F12 ABC 1.31E−12 6.75E−14 5.39E−12 6.94E−13 1.47E−12
BBO 3.97E−02 8.30E−03 1.27E−01 2.28E−02 3.65E−02
SCA 4.34E+00 3.09E−01 6.02E+01 7.25E−01 1.21E+01
WOA 2.00E−03 1.70E−04 1.37E−02 5.55E−04 3.40E−03
GWO 3.40E−02 1.32E−02 7.85E−02 2.91E−02 1.67E−02
MGWO 2.01E−02 7.17E−06 4.05E−02 1.97E−02 9.20E−03
RWGWO 1.08E−02 6.01E−07 1.16E−01 3.55E−03 2.33E−02
EC-GWO 1.35E−04 8.08E−06 1.72E−03 4.49E−05 3.36E−04

F13 ABC 7.73E−11 1.68E−12 1.81E−09 1.15E−11 3.27E−10
BBO 2.76E−01 1.11E−01 4.50E−01 2.90E−01 8.92E−02
SCA 3.18E+00 2.02E+00 1.33E+01 2.57E+00 2.11E+00
WOA 3.75E−02 4.10E−03 2.07E−01 2.58E−02 4.30E−02
GWO 4.79E−01 1.96E−01 7.79E−01 4.46E−01 1.62E−01
MGWO 2.81E−01 3.46E−05 6.24E−01 3.04E−01 1.49E−01
RWGWO 7.92E−02 8.11E−06 3.08E−01 7.72E−02 8.32E−02
EC-GWO 2.85E−04 1.66E−05 9.32E−04 2.71E−04 1.96E−04
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Table 5   Comparison results 
obtained by EC-GWO and 
ABC, BBO, SCA, WOA, 
GWO, MGWO, and RWGWO 
on a set of fixed-dimensional 
multimodal problems

Problem Algorithm Average Best Worst Median Std

F14 ABC 9.98E-01 9.98E-01 9.98E-01 9.98E-01 1.40E-16
BBO 9.98E-01 9.98E-01 1.00E+00 9.98E-01 7.56E-04
SCA 1.20E+00 9.98E-01 2.98E+00 9.98E-01 6.05E-01
WOA 1.88E+00 9.98E-01 1.08E+01 9.98E-01 2.49E+00
GWO 3.42E+00 9.98E-01 1.27E+01 2.98E+00 3.65E+00
MGWO 2.51E+00 9.98E-01 1.27E+01 9.98E-01 2.69E+00
RWGWO 9.98E-01 9.98E-01 9.98E-01 9.98E-01 7.17E-12
EC-GWO 9.98E-01 9.98E-01 9.98E-01 9.98E-01 4.95E-10

F15 ABC 6.30E-04 3.65E-04 8.42E-04 6.41E-04 1.11E-04
BBO 4.70E-03 9.94E-04 2.11E-02 2.00E-03 6.00E-03
SCA 8.58E-04 3.91E-04 1.30E-03 7.35E-04 3.25E-04
WOA 6.14E-04 3.08E-04 1.40E-03 3.91E-04 3.90E-04
GWO 5.70E-03 3.07E-04 2.04E-02 3.07E-04 9.00E-03
MGWO 1.80E-03 3.07E-04 2.04E-02 3.08E-04 5.10E-03
RWGWO 3.38E-04 3.07E-04 1.22E-03 3.07E-04 1.67E-04
EC-GWO 7.05E-04 5.70E-04 7.47E-04 7.15E-04 3.81E-05

F16 ABC -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 5.05E-16
BBO -1.03E+00 -1.03E+00 -1.02E+00 -1.03E+00 2.80E-03
SCA -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 1.28E-05
WOA -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 1.22E-11
GWO -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 1.46E-09
MGWO -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 1.42E-08
RWGWO -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 1.01E-09
EC-GWO -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 1.42E-09

F17 ABC 3.98E-01 3.98E-01 3.98E-01 3.98E-01 0.00E+00
BBO 4.00E-01 3.98E-01 4.10E-01 3.99E-01 2.50E-03
SCA 3.98E-01 3.98E-01 4.01E-01 3.98E-01 5.62E-04
WOA 3.98E-01 3.98E-01 3.98E-01 3.98E-01 1.14E-07
GWO 3.98E-01 3.98E-01 3.98E-01 3.98E-01 6.49E-08
MGWO 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.97E-07
RWGWO 3.98E-01 3.98E-01 3.98E-01 3.98E-01 5.58E-08
EC-GWO 3.98E-01 3.98E-01 3.98E-01 3.98E-01 5.65E-08

F18 ABC 3.00E+00 3.00E+00 3.02E+00 3.00E+00 3.19E-03
BBO 6.00E+00 3.00E+00 3.42E+01 3.02E+00 9.11E+00
SCA 3.00E+00 3.00E+00 3.00E+00 3.00E+00 4.55E-06
WOA 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.80E-06
GWO 3.00E+00 3.00E+00 3.00E+00 3.00E+00 1.89E-06
MGWO 3.00E+00 3.00E+00 3.00E+00 3.00E+00 1.79E-06
RWGWO 3.00E+00 3.00E+00 3.00E+00 3.00E+00 9.12E-07
 EC-GWO 3.00E+00 3.00E+00 3.00E+00 3.00E+00 1.81E-06

F19 ABC -3.00E-01 -3.00E-01 -3.00E-01 -3.00E-01 2.26E-16
BBO -2.80E-01 -2.97E-01 -2.45E-01 -2.87E-01 1.35E-02
SCA -3.01E-01 -3.01E-01 -3.01E-01 -3.01E-01 2.26E-16
WOA -3.01E-01 -3.01E-01 -3.01E-01 -3.01E-01 2.26E-16
GWO -3.01E-01 -3.01E-01 -3.01E-01 -3.01E-01 2.26E-16
MGWO -3.01E-01 -3.01E-01 -3.01E-01 -3.01E-01 2.26E-16
RWGWO -3.00E-01 -3.00E-01 -3.00E-01 -3.00E-01 2.26E-16
EC-GWO -3.00E-01 -3.00E-01 -3.00E-01 -3.00E-01 2.26E-16
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has also performed approximately the same as the pro-
posed EC-GWO. For all the compared algorithms, corre-
sponding to maximum total power, the optimal position of 
the turbines (OP), Rotor radius (RR), and hub height (RH) 
are given in Tables 9 and 10 for case 1 and Tables 12 

and 13 for case 2. Figures 7 and 9 represent the optimal 
configuration of case 1 and case 2, respectively for the 
ABC, BBO, SCA, WOA, GWO, MGWO, RWGWO, and 
the proposed EC-GWO. Figures 8 and 10 show the con-
vergence rate of ABC, BBO, SCA, WOA, GWO, MGWO, 

Table 5   (continued) Problem Algorithm Average Best Worst Median Std

F20 ABC -3.32E+00 -3.32E+00 -3.32E+00 -3.32E+00 1.65E-15

BBO -3.29E+00 -3.32E+00 -3.20E+00 -3.32E+00 5.36E-02

SCA -2.95E+00 -3.13E+00 -1.92E+00 -3.01E+00 2.51E-01

WOA -3.27E+00 -3.32E+00 -3.14E+00 -3.32E+00 6.83E-02

GWO -3.25E+00 -3.32E+00 -3.13E+00 -3.26E+00 7.26E-02

MGWO -3.26E+00 -3.32E+00 -3.09E+00 -3.32E+00 7.42E-02

RWGWO -3.25E+00 -3.32E+00 -3.20E+00 -3.20E+00 6.07E-02

EC-GWO -3.29E+00 -3.32E+00 -3.20E+00 -3.32E+00 5.17E-02
F21 ABC -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 5.16E-15

BBO -4.62E+00 -1.01E+01 -2.62E+00 -2.68E+00 3.13E+00
SCA -2.86E+00 -7.69E+00 -4.97E-01 -1.77E+00 2.32E+00
WOA -9.22E+00 -1.02E+01 -2.63E+00 -1.02E+01 2.15E+00
GWO -9.06E+00 -1.02E+01 -2.68E+00 -1.02E+01 2.26E+00
MGWO -8.97E+00 -1.02E+01 -5.06E+00 -1.02E+01 2.18E+00
RWGWO -9.48E+00 -1.02E+01 -5.10E+00 -1.02E+01 1.75E+00
EC-GWO -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 4.16E-05

F22 ABC -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 1.40E-15
BBO -5.76E+00 -1.04E+01 -2.75E+00 -3.72E+00 3.34E+00
SCA -4.49E+00 -7.88E+00 -9.07E-01 -4.92E+00 1.95E+00
WOA -1.02E+01 -1.04E+01 -5.09E+00 -1.04E+01 9.70E-01
GWO -1.00E+01 -1.04E+01 -5.09E+00 -1.04E+01 1.35E+00
MGWO -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 7.21E-04
RWGWO -1.02E+01 -1.04E+01 -5.09E+00 -1.04E+01 9.70E-01
EC-GWO -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 7.36E-05

F23 ABC -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 1.11E-06
BBO -6.20E+00 -1.05E+01 -2.42E+00 -3.83E+00 3.60E+00
SCA -4.31E+00 -8.86E+00 -9.44E-01 -4.85E+00 2.21E+00
WOA -9.92E+00 -1.05E+01 -2.81E+00 -1.05E+01 1.92E+00
GWO -1.01E+01 -1.05E+01 -2.42E+00 -1.05E+01 1.75E+00
MGWO -1.04E+01 -1.05E+01 -5.13E+00 -1.05E+01 9.87E-01
RWGWO -1.02E+01 -1.05E+01 -5.12E+00 -1.05E+01 1.37E+00
EC-GWO -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 3.43E-05
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RWGWO, and the proposed EC-GWO, respectively. From 
these curves, it can be concluded that the EC-GWO algo-
rithm has the fastest convergence rate. Hence, based on 

different performance measures, it is obvious that the pro-
posed EC-GWO is more efficient than other compared 
algorithms for solving the WFLOP.
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Table 7   Ranking on algorithms 
based on their performances 
on a set of 23 well-known 
benchmark problems

Bold values indicate the best result

Algorithm ⇒ ABC BBO SCA WOA MGWO RWGWO GWO Proposed GWO

Average Rank 3.3 6.61 6.91 3.93 4.26 3.96 5.13 1.89
Rank 2 7 8 3 5 4 6 1

Table 8   Comparison results obtained by EC-GWO and other meta-heuristic algorithms on 26 turbines

Bold values indicate the best result

ABC BBO SCA WOA GWO MGWO RWGWO EC-GWO

Average 6634.2 13582.77 7797.006 10890 11535.56 11512.4259 12655.30082 13573.04987
Minimum 5961.676 13503.97 7321.713 9860.269578 10650.76 10484.5509 11367.26817 13380.6456
Maximum 6997.555 13622.37 8357.669 12414.83983 12131.47 12152.7529 13037.66957 13792.53138
Median 6617.683 13595.46 7840.819 10829.95817 11640.46 11615.78979 12851.75888 13583.31962
Std 286.2216 41.94022 349.4201 775.741274 470.1764 526.6938 508.0193608 132.4547915
Cost 0.002867(+) 0.001473(≈) 0.002401(+) 0.001616421(+) 0.00165411(+) 0.00165121(+) 0.00153914(+) 0.0014549

Table 9   Optimal positions, hub heights, and rotor radii obtained by ABC, BBO, SCA, and WOA for 26 turbines

OP: best position of turbines obtained by algorithms, RR: rotor radius, HH: hub height

ABC BBO SCA WOA

OP RR HH OP RR HH OP RR HH OP RR HH

(1600,1400) 20.00 23.78 (1000,1800) 19.69 43.34 (1200,1200) 20.00 60.00 (1200,1000) 20.00 29.85
(400,1800) 20.00 54.95 (1400,1400) 19.78 45.32 (800,1600) 20.00 31.90 (1400,1000) 20.00 42.04
(600,1800) 18.03 32.37 (1800,1600) 19.85 26.68 (200,1000) 20.00 38.03 (200,800) 0.00 50.88
(200,800) 52.90 36.11 (400,1200) 19.93 50.13 (1000,600) 0.00 7.909 (600,400) 17.37 26.38
(1400,200) 12.37 38.07 (1400,1200) 19.92 25.78 (800,800) 16.39 60.00 (1600,1600) 20.00 30.78
(600,1200) 19.44 50.34 (200,400) 20.00 47.61 (1400,1200) 20.00 60.00 (200,1200) 20.00 36.41
(1200,1400) 6.496 27.42 (600,1600) 19.87 23.60 (1000,1000) 20.00 60.00 (1800,1000) 20.00 52.00
(1600,1800) 38.33 41.30 (1000,1600) 19.96 20.29 (200,200) 20.00 38.94 (1400,600) 20.00 59.97
(1400,1400) 7.937 10.18 (1800,1400) 19.93 53.80 (1800,1000) 20.00 60.00 (600,400) 20.00 35.16
(1800,600) 2.577 3.045 (1600,1200) 20.00 20.33 (400,800) 0.000 26.17 (200,1000) 20.00 34.28
(400,1000) 14.24 37.78 (1800,1000) 19.89 47.67 (400,1200) 3.243 60.00 (600,600) 0.000 24.72
(1000,1600) 13.65 58.04 (800,1200) 19.79 58.79 (800,200) 0.000 51.68 (200,800) 19.66 47.52
(800,1800) 8.135 18.67 (1600,1000) 19.64 28.50 (200,1000) 0.000 60.00 (1600,800) 20.00 31.39
(1200,400) 17.56 22.75 (600,1000) 19.97 30.48 (800,1000) 20.00 34.29 (800,1800) 20.00 23.73
(200,200) 19.74 48.13 (600,800) 19.96 27.92 (200,400) 16.37 47.90 (200,600) 20.00 25.09
(1000,1200) 17.98 34.15 (1200,400) 19.77 46.93 (800,1600) 14.00 31.66 (1800,800) 18.87 31.66
(1000,200) 97.21 31.73 (1800,400) 19.90 52.40 (1800,600) 0.2126 60.00 (200,1800) 18.73 49.24
(400,600) 17.56 21.08 (1400,600) 19.96 33.69 (1800,200) 20.00 23.86 (1600,600) 20.00 54.70
(200,1600) 3.119 34.57 (1400,400) 19.59 32.81 (1800,1600) 20.00 40.57 (600,1800) 20.00 40.37
(600,600) 5.331 13.69 (1000,800) 19.99 36.50 (200,1200) 19.02 60.00 (800,600) 20.00 35.65
(1800,1200) 8.741 45.84 (600,600) 19.85 44.76 (1200,200) 20.00 60.00 (200,200) 20.00 26.57
(1400,1000) 6.631 56.62 (400,600) 19.92 36.54 (800,800) 20.00 41.41 (1200,200) 20.00 54.64
(1200,1000) 19.06 2764 (800,200) 19.95 58.88 (1400,400) 0.000 20.00 (1600,600) 20.00 42.39
(1000,1000) 18.43 55.89 (1600,200) 19.20 45.78 (1800,1600) 0.000 60.00 (1800,800) 19.91 44.19
(600,800) 19.87 48.36 (400,400) 19.66 31.52 (1000,1000) 20.00 60.00 (400,1200) 19.44 57.62
(600,200) 18.95 54.83 (1800,200) 19.98 55.28 (400,1200) 14.43 60.00 (200,1600) 20.00 43.04
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Table 10   Optimal positions, hub heights, and rotor radii obtained by GWO, MGWO, RWGWO, and the proposed EC-GWO for 26 turbines

OP: best position of turbines obtained by algorithms, RR: rotor radius, HH: hub height

GWO MGWO RWGWO EC-GWO

OP RR HH OP RR HH OP RR HH OP RR HH

(800,1200) 1.734 34.14 (200,1400) 15.88 46.00 (1800,1600) 19.05 58.54 (1200,1600) 20.00 60.00
(600,1800) 18.96 51.00 (1600,1800) 20.00 55.83 (1800,1200) 20.00 29.81 (600,1600) 20.00 60.00
(400,1200) 19.48 36.88 (800,1200) 19.35 48.24 (1600,1800) 19.86 42.22 (1200,1400) 20.00 60.00
(200,1200) 19.45 33.40 (1800,1000) 20.00 38.67 (1400,600) 19.71 28.19 (1800,1200) 20.00 60.00
(1800,800) 19.89 36.47 (1600,200) 19.50 26.35 (200,1400) 18.66 35.33 (1800,1000) 20.00 60.00
(400,400) 20.00 43.54 (1200,400) 19.39 33.63 (1600,600) 20.00 22.71 (1600,1000) 20.00 60.00
(1200,1800) 19.78 47.68 (800,800) 19.50 26.46 (400,800) 20.00 50.67 (1400,1600) 20.00 60.00
(600,1600) 19.36 52.01 (1400,600) 18.11 58.03 (600,600) 19.57 39.97 (600,1000) 20.00 60.00
(1400,800) 19.21 42.51 (1800,1000) 18.15 50.88 (1200,1400) 18.75 44.44 (200,1800) 20.00 60.00
(400,400) 19.51 51.97 (1600,600) 19.89 35.76 (200,1200) 19.21 33.78 (1600,600) 20.00 60.00
(1600,400) 19.50 30.72 (1400,400) 18.64 38.96 (1400,400) 20.00 27.38 (1400,1000) 20.00 60.00
(1600,1600) 19.78 23.98 (200,1200) 20.00 34.28 (1000,200) 20.00 44.78 (200,400) 20.00 60.00
(1200,400) 18.86 49.41 (1200,400) 20.00 52.11 (1800,1000) 20.00 33.37 (1600,400) 20.00 60.00
(1000,1600) 19.40 44.57 (1200,200) 19.63 21.42 (800,1400) 20.00 36.29 (1200,400) 20.00 60.00
(1000,800) 16.14 54.14 (400,1600) 18.42 35.15 (1600,1600) 19.99 20.00 (1400,800) 20.00 60.00
(1800,600) 19.91 44.28 (1000,1600) 19.11 24.78 (1000,1600) 20.00 36.15 (600,800) 20.00 60.00
(1000,800) 20.00 21.27 (400,1600) 19.26 51.81 (600,400) 19.01 30.70 (1000,1800) 20.00 60.00
(1600,200) 19.31 31.63 (1600,400) 0.03669 45.32 (600,400) 20.00 26.43 (800,400) 20.00 60.00
(400,1200) 13.29 32.26 (800,200) 19.36 29.97 (1200,1000) 20.00 28.96 (800,200) 20.00 60.00
(1200,400) 19.33 36.24 (600,1200) 20.00 43.91 (1200,800) 19.67 21.75 (600,600) 20.00 60.00
(1600,1600) 19.97 56.09 (1200,1600) 19.01 36.70 (800,800) 17.16 41.35 (1000,1200) 20.00 60.00
(1200,200) 18.71 38.31 (400,1200) 19.93 23.78 (200,1200) 19.36 27.24 (1600,200) 20.00 60.00
(1200,200) 19.12 35.25 (400,800) 19.39 34.29 (1600,1600) 18.61 47.25 (1400,600) 20.00 60.00
(400,400) 19.34 26.71 (200,800) 19.76 30.37 (1800,600) 19.44 48.01 (800,1800) 20.00 60.00
(600,400) 19.72 46.12 (1200,200) 18.89 52.94 (400,200) 20.00 39.48 (400,1800) 20.00 60.00
(800,200) 19.74 41.36 (1600,800) 19.31 30.14 (1000,1600) 18.96 51.20 (1000,1000) 19.66 31.62
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Fig. 7   Optimal configurations of 26 wind turbines
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Fig. 8   Convergence curves for 
WFLOP with 26 turbines
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Table 11   Comparison results obtained by EC-GWO and other meta-heuristic algorithms on 30 turbines

ABC BBO SCA WOA GWO MGWO RWGWO EC-GWO

Average 7512.327 15457.39 8393.217 11562.7 12746.41 12663.71 13951.93 15535.19
Minimum 7300.36 15317.01 7489.006 10662.78 12091.47 11869.33 13317.5 15215.84
Maximum 7898.162 15560.09 9119.794 13514.58 13398.93 13497.38 14419.16 15787.08
Median 7458.713 15457.55 8334.575 11355.78 12674.76 12636.83 14070.37 15487.3
Std 229.4362 70.23642 457.5484 904.0591 465.1145 450.1876 419.1293 184.6043
Cost 0.0028067(+) 0.0014247(≈) 0.00243074(+) 0.0016403(+) 0.0016545(+) 0.00164238(+) 0.00153739(+) 0.00140418
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Table 12   Optimal positions, hub heights and rotor radii obtained by ABC, BBO, SCA, and WOA for 30 turbines. (OP: best position of turbines 
obtained by algorithms, RR: rotor radius, HH: hub height)

ABC BBO SCA WOA

OP RR HH OP RR HH OP RR HH OP RR HH

(600,600) 18.05 24.48 (1200,1000) 19.86 45.83 (1200,600) 0.000 60.00 (1400,1400) 20.00 23.96
(1400,1400) 18.84 43.94 (800,800) 19.91 31.51 (800,200) 20.00 55.86 (200,200) 17.28 41.91
(1000,800) 19.05 36.14 (1000,1600) 19.52 24.88 (1600,1000) 0.000 60.00 (800,1800) 20.00 55.14
(400,1400) 18.16 29.92 (600, 1400) 19.21 29.85 (400,600) 20.00 60.00 (1400,1200) 19.25 19.62
(1200,1000) 16.16 57.87 (400,1800) 19.91 39.41 (1000,1000) 16.83 60.00 (800,1800) 19.20 52.99
(400,200) 3.506 21.81 (1800,1800) 19.96 59.59 (200,600) 20.00 60.00 (1400,1800) 20.00 35.96
(1600,1400) 27.01 34.12 (1600,800) 19.73 23.79 (1600,400) 20.00 60.00 (400,1000) 20.00 60.00
(1200,200) 9.250 16.95 (1400,1400) 19.68 40.81 (600,800) 20.00 60.00 (800,400) 20.00 48.28
(600,1200) 18.16 40.73 (200,1400) 19.85 58.45 (1800,1600) 20.00 22.61 (1200,1200) 0.4356 17.11
(800,1600) 15.28 30.97 (200,800) 19.98 50.19 (1200,800) 0.000 60.00 (1400,600) 20.00 50.83
(800,800) 16.13 23.51 (1000,800) 19.90 34.22 (400,1400) 1.377 53.21 (600,600) 17.41 18.18
(1200,1200) 15.14 39.46 (800,600) 19.98 22.34 (600,1200) 4.513 60.00 (400,800) 19.83 23.48
(400,1200) 16.28 52.68 (1200,400) 19.86 50.08 (600,1000) 0.000 44.75 (1600,1800) 19.91 34.96
(1800,200) 17.19 32.02 (1000,600) 19.62 28.53 (200,1800) 0.000 60.00 (1200,1000) 18.96 33.51
(200,1600) 13.42 54.03 (1400,1000) 19.86 33.68 (1400,1800) 20.00 60.00 (600,400) 0.000 59.83
(1600,1800) 8.403 35.41 (200,400) 19.98 32.55 (1400,800) 0.000 4.199 (1400,1400) 20.00 36.07
(200,1800) 11.43 13.76 (1600,600) 19.99 30.48 (200,1400) 6.914 60.00 (1200,200) 20.00 22.08
(1600,200) 15.38 22.06 (800,400) 18.91 57.87 (1800,1400) 20.00 51.66 (200,1800) 20.00 33.01
(1200,800) 2.013 46.38 (1600,400) 19.65 45.44 (800,400) 20.00 55.52 (1800,400) 17.75 59.50
(1000,1000) 14.67 47.16 (1200,200) 19.20 20.14 (600,800) 6.924 60.00 (400,200) 0.000 60.00
(1200,600) 18.67 40.55 (800,200) 19.54 29.47 (1000,1800) 20.00 48.95 (200,1000) 20.00 60.00
(400,1800) 4.450 13.03 (400,1200) 19.99 51.11 (1400,1000) 0.000 3.931 (1200,1600) 18.52 60.00
(1200,400) 16.15 50.48 (1800,1400) 19.43 42.59 (1800,600) 18.32 33.23 (800,200) 19.87 60.00
(1400,1600) 18.33 37.88 (1400,400) 19.88 43.53 (400,1800) 20.00 60.00 (400,1600) 20.00 44.54
(1000,400) 8.695 31.38 (1000,200) 19.95 55.83 (1800,1200) 0.000 60.00 (600,800) 20.00 52.53
(1600,800) 8.396 46.99 (1800,1200) 19.98 39.23 (1200,1600) 20.00 49.29 (1400,200) 20.00 22.00
(1600,1200) 15.28 23.78 (1800,1000) 19.93 27.51 (1200,1600) 20.00 34.17 (1000,1000) 20.00 53.66
(400,1000) 18.29 47.57 (400,800) 19.35 35.34 (1000,200) 20.00 43.21 (400,1200) 19.91 59.90
(1600,600) 16.10 23.37 (400,200) 19.71 44.39 (1200,800) 20.00 60.00 (1000,600) 20.00 50.09
(1800,1800) 11.40 55.83 (1600,200) 19.96 43.47 (1600,200) 20.00 60.00 (1600,1000) 20.00 51.26
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Table 13   Optimal positions, hub heights, and rotor radii obtained by GWO, MGWO, RWGWO, and the proposed EC-GWO for 30 turbines

OP: best position of turbines obtained by algorithms, RR: rotor radius, HH: hub height

GWO MGWO RWGWO EC-GWO

OP RR HH OP RR HH OP RR HH OP RR HH

(1600,1600) 18.86 50.10 (200, 1200) 14.82 47.94 (1000,400) 19.90 48.84 (600,1600) 20.00 60.00
(1400,800) 19.84 30.68 (1400, 1000) 19.16 30.95 (200,1800) 20.00 37.35 (200,800) 20.00 60.00
(200,1200) 20.00 44.80 (1400, 1400) 19.61 53.23 (600,600) 19.60 48.48 (1600,1400) 20.00 60.00
(1200,400) 19.70 35.47 (400, 1200) 19.70 60.00 (200,800) 20.00 40.02 (1800,800) 20.00 60.00
(600, 1400) 20.00 48.76 (1000, 200) 20.00 54.55 (1600,1800) 20.00 49.59 (1600,1000) 20.00 60.00
(1000,1400) 19.57 34.06 (1400, 200) 17.47 23.26 (1600,800) 20.00 33.09 (1000,1600) 20.00 60.00
(200,1000) 18.77 32.06 (1800, 1800) 0.000 45.21 (1800,1800) 18.68 31.80 (1200,1000) 20.00 60.00
(1400,600) 0.7639 25.34 (800, 1200) 19.42 30.72 (200,600) 19.79 30.24 (1000,1200) 20.00 60.00
(1200,1000) 5.810 20.54 (600, 400) 19.15 25.26 (800,400) 18.37 48.33 (400,1800) 20.00 60.00
(200,400) 18.53 47.67 (1400, 1600) 18.97 28.74 (600,600) 19.63 50.95 (1200,400) 20.00 60.00
(1800,1200) 19.13 31.37 (1000, 200) 20.00 25.59 (400,600) 19.36 33.51 (1200,1600) 20.00 60.00
(1800,1200) 18.98 35.70 (1200, 1800) 19.10 22.38 (600,600) 20.00 39.17 (1400,800) 20.00 60.00
(1800,400) 14.97 43.72 (1400, 1600) 20.00 36.88 (1200,200) 18.24 34.45 (1400,200) 20.00 60.00
(1000,1000) 20.00 27.92 (800, 800) 0.7677 19.87 (400,600) 19.13 55.36 (1800,400) 20.00 60.00
(1000,600) 20.00 56.26 (800, 400) 19.95 49.77 (400,400) 19.23 26.94 (200,600) 20.00 60.00
(800,1400) 20.00 34.51 (1200, 1800) 20.00 41.02 (600,200) 20.00 39.21 (1200,200) 20.00 60.00
(1400,200) 19.73 40.48 (1600, 800) 20.00 51.46 (1600,400) 18.70 38.98 (200,400) 20.00 60.00
(1600,1200) 19.99 22.72 (1600, 400) 19.56 50.55 (1000,200) 19.88 46.46 (1600,200) 20.00 60.00
(600, 1400) 18.49 39.08 (200, 1200) 19.43 20.16 (1000,200) 19.63 54.53 (1000,800) 20.00 60.00
(1200,1800) 16.38 27.69 (1000, 1800) 20.00 53.04 (800,200) 20.00 29.34 (600,1000) 20.00 60.00
(200,400) 18.52 42.17 (1200, 1000) 19.86 50.90 (1800,1600) 19.24 52.30 (200,200) 20.00 60.00
(1000,1200) 18.66 39.97 (1000, 1800) 20.00 50.76 (1600,1800) 17.02 58.54 (800,200) 20.00 60.00
(1800,1600) 18.36 41.94 (1600, 1800) 20.00 25.67 (400,400) 18.74 35.56 (1000,400) 20.00 60.00
(1200,1600) 18.21 26.24 (400, 800) 16.95 23.67 (600,200) 19.44 24.86 (1000,200) 20.00 60.00
(400,1000) 20.00 31.04 (1400, 200) 18.99 24.90 (1800,400) 19.57 23.96 (400,1600) 20.00 60.00
(600, 1400) 16.93 35.64 (1400, 200) 19.38 41.77 (1800,1000) 18.45 56.36 (200,1800) 20.00 60.00
(1400,800) 20.00 22.13 (400, 600) 20.00 29.61 (1000,1800) 18.74 22.62 (1800,200) 20.00 60.00
(800,400) 20.00 36.34 (200, 600) 19.06 28.86 (1600,400) 12.27 53.43 (600,400) 20.00 60.00
(1600,1000) 20.00 25.36 (200, 200) 19.26 46.84 (200,600) 19.26 57.38 (400,1400) 20.00 60.00
(1400,200) 20.00 59.26 (1600, 1800) 16.33 51.02 (1000,1000) 19.22 48.61 (400,1200) 17.83 38.53
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Fig. 9   Optimal configurations of 30 wind turbines
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5 � Conclusion

This paper proposes a modified grey wolf optimizer, 
namely an enhanced chaotic grey wolf optimizer (EC-
GWO), for the solution of the wind farm layout optimi-
zation problem. The EC-GWO is combined with four 
different strategies, including a modified GWO search 
mechanism, modified control parameter, chaotic search, 
and adaptive re-initialization of poor solutions. The modi-
fied control parameter is used to enhance the exploitation 
ability of the proposed EC-GWO algorithm, and chaotic 
search and adaptive re-initialization strategies have been 
combined with the EC-GWO to improve the exploration 
ability of the algorithm. The remaining strategy is the 
modification of the search scheme of the GWO, which 
includes the weighted average vector as a base vector 
for the search process. This strategy helps to provide a 
better transition from the exploration to the exploitation 
phase. The proposed algorithm EC-GWO, together with 
all these strategies, is validated on a well-known bench-
mark set of 23 numerical optimization problems. This set 
contains the problems of various difficulty levels such 
as unimodal, multimodal, and low-dimensional multi-
modal, which have verified that the proposed EC-GWO 
has an appropriate efficiency to manage and balance the 
exploration and exploitation levels during the optimiza-
tion process. By confirming its efficiency through these 
benchmarks, it is applied to solve the wind farm layout 
optimization problem with a square wind farm of 2 km 
× 2 km. The numerical results for two cases with 26 and 
30 turbines are obtained and compared with that of other 
meta-heuristic algorithms. From the obtained results, it 

can be concluded that the proposed EC-GWO is not only 
a better optimizer for WFLOP but also performs best on 
test problems. Thus, the proposed EC-GWO is recom-
mended as an efficient solver for the WFLOP. The utility 
of EC-GWO can further be explored for other real-world 
problems.
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