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Abstract The optimal solution to the wind farm layout
optimization problem helps in maximizing the total energy
output from the given wind farm. Meta-heuristic algorithms
are one of the famous methods for achieving this objective.
In this paper, we focus on developing an efficient meta-
heuristic based on the grey wolf optimizer for solving the
wind farm layout optimization problem. The proposed algo-
rithm is called enhanced chaotic grey wolf optimizer and it
is introduced after validating it on a well-known benchmark
set of 23 numerical optimization problems. By confirming
its efficiency through these benchmarks, it is utilized for
wind farm layout optimization. The proposed algorithm
is comprised of four search strategies including a modi-
fied GWO search mechanism, modified control parameter,
chaotic search, and adaptive re-initialization of poor solu-
tions during the search. Two case studies of the wind farm
layout optimization problem are considered for numerical
experiments. Results are analyzed and compared with other
state-of-the-art algorithms. The comparison indicates the
efficiency of the proposed algorithm for solving numerical
and wind farm layout optimization problems.
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1 Introduction

In the field of renewable energy, the wind farm layout optimi-
zation problem (WFLOP) is a popular optimization problem,
which is a wind energy system to maximize the total energy
output of the farm. The total energy output of the farm depends
on the optimal configuration of the wind turbines, such as rotor
radius, hub height, and optimal location of the wind turbines.
The total energy output of a wind farm is also affected by other
factors. However, this paper considers only three wind turbine
parameters: wind turbine location, rotor radius, and hub height.
All of these have a significant impact on energy production.
In this regard, we maximize the total energy output of a wind
farm by adjusting these parameters of the problem. In the litera-
ture, many traditional and non-traditional algorithms have been
applied to solve the wind farm layout optimization problem.

In the work of Mosetti et al. (1994), Grady et al. (2005),
Chen et al. (2013), genetic algorithms are used to extract
the maximum energy with the minimum installation costs.
For the wind turbines, they used 100 square cells as possible
locations. In the work of Mittal et al. (2016b), a novel com-
bination of probabilistic genetic algorithms and determin-
istic gradient-based optimization algorithms, to simultane-
ously determine the optimum total number of turbines to be
placed in a wind farm along with their optimal locations. In
the work of Ulku and Alabas-Uslu (2019), a new nonlinear
mathematical model for the layout of wind turbines under
multiple wake effects is proposed considering two objective
functions separately: maximization of total power produc-
tion and minimization of cost per power. In the work of Patel
et al. (2017), a novel algorithm based on teaching-learning-
based optimization (TLBO) is proposed for an effective
solution for the optimum placement of wind turbines. Bio-
geographical-based optimization (BBO) (Pouraltafi-Kheljan
et al. 2018; Bansal and Farswan 2017; Bansal et al. 2018)
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and random search (Feng and Shen 2015) are used for the
optimal solution of wind farm layout optimization problem.
An adaptive genetic algorithm with monte-carlo tree search
reinforcement learning (Bai et al. 2022) is used to solve this
same problem. In this paper, the exploitation ability in the
adaptive genetic algorithm is improved by casting the reloca-
tion of multiple wind turbines into a single-player reinforce-
ment learning problem, which is addressed by monte-carlo
tree search embedded within the evolutionary algorithm. In
the work of Manikowski et al. (2021), a single objective
hill-climbing algorithm (HCA) and three multi-objective
evolutionary algorithms (NSGA-II, SPEA2, and PESA-II)
are applied to solve the similar optimization problem which
is used in Mosetti et al. (1994). In the work of Long et al.
(2020), Froese et al. (2022), Ju and Liu (2019), Xue and
Shen (2020), an adaptive differential evolution algorithm
(ADE) is proposed to solve the wind farm layout model. The
adaption mechanism of ADE benefits the automatic adjust-
ment of parameters in the mutation and crossover operators
to achieve the optimal solution.

In this paper, we apply the modified version of GWO
to solve the WFLOP. GWO (Mirjalili et al. 2014) is one of
the efficient swarm intelligence-based algorithms. Due to
its simplicity and efficiency, it has been used for solving
several optimization problems including optimization of
PID controller parameters (Das et al. 2015), non-convex
economic load dispatch problem (Kamboj et al. 2016), flow
shop scheduling problem (Komaki and Kayvanfar 2015),
training multi-layer perceptron (MLP) (Mirjalili 2015),
wireless sensor networks (Pitchaimanickam 2022; Bera
et al. 2021), feature selection (Al-Tashi et al. 2020; Hu
et al. 2021; Chantar et al. 2020). It has been observed that
in some complex optimization problems, the GWO suffers
from premature convergence, and has poor exploration
(Bansal and Singh 2021; Meidani et al. 2022; Mittal et al.
2016a; Cai et al. 2019; Mirjalili et al. 2020). To overcome
these drawbacks, many researchers have tried to improve
the search process of the GWO algorithm using different
mechanisms. For example—In the work of Ibrahim et al.
(2018), a chaotic opposition-based GWO with DE and
disruption operator called COGWO2D is introduced.
A chaotic map and the OBL are used to initialize the
population, which helps to avoid the drawbacks of the
random population. Then, the DE operators are combined
with the GWO algorithm, which works as a local search
mechanism to improve the exploitation ability. The
disruptive operator is used to enhance the exploration ability
of the algorithm. To improve the performance of the GWO
algorithm, a new version of the GWO, namely mutation-
driven modified grey wolf optimizer (MDM-GWO) (Singh
and Bansal 2022) is proposed. The MDM-GWO combines a
new update search mechanism, modified control parameter,
mutation-driven scheme, and greedy approach of selection

in the search procedure of the GWO. In the work of Yu et al.
(2021), an opposition-based learning (OGWO) is proposed
to improve the performance of GWO. In the work of Hu et al.
(2022), a new variant of GWO called SCGWO is proposed
with an improved spread strategy and a chaotic local search
(CLS) mechanism to improve search ability and convergence
speed. The first strategy is added to the agents around the
current position so that the GWO has more chances to find
the global optimal solution and the chances of stagnation
at the local optima can be avoided. The second strategy,
called CLS with shrinkage characteristics, is used to improve
the exploration ability of the GWO. An adaptive grey wolf
optimizer (AGWO) (Meidani et al. 2022) is proposed to tune
the exploration/exploitation parameters based on the fitness
history of the candidate solutions during the optimization.
AGWO automatically converges to a sufficiently good
optimum in the shortest time by controlling the stopping
criteria. To improve the exploration ability of the GWO,
an improved covariance matrix evolution GWO (GWOC-
MALOL) (Hu et al. 2021) is proposed. In this algorithm,
the levy-flight mechanism, orthogonal learning strategy,
and CMA-ES are added to improve the search quality of
the classical GWO. In the work of (Banaie-Dezfouli et al.
2021), a representative-based grey wolf optimizer (R-GWO)
is proposed. In R-GWO, a representative-based hunting
search strategy is introduced, which is a combination of
three effective trial vectors inspired by the behaviors of alpha
wolves.

This paper proposes a new variant of GWO called
enhanced chaotic grey wolf optimizer (EC-GWO) which
is tested over a set of 23 well-known benchmark problems
including unimodal, multimodal, and fixed-dimensional
multimodal problems. Moreover, the proposed EC-GWO
is applied to solve WFLOP. The main contributions of this
paper are summarized as follows:

e A new variant of GWO, named enhanced chaotic grey
wolf optimizer (EC-GWO), is proposed for solving
WFLOP.

e In the proposed EC-GWO, four search strategies,
a modified search mechanism, modified control
parameter, chaotic search, and adaptive re-initialization
of poor solutions during the search are incorporated
with the classical GWO.

e The performance of the proposed EC-GWO on a set
of well-known benchmark problems is evaluated and
compared with seven other meta-heuristic algorithms.

e EC-GWO is applied to solve the wind farm layout
optimization problem (WFLOP).

e The experiment results on benchmark problems and
WFLOP indicate that the proposed EC-GWO algorithm
is an efficient and reliable solver for WFLOP.
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The rest of the paper is organized as follows: Sect. 2 describes
the background i.e., wind farm layout optimization problem
modelling and GWO working frame work. In Sect. 3,
EC-GWO is proposed and analyzed. Section 4 validates
the proposed EC-GWO on a well-known set of benchmark
problems and compares its performance with other algorithms.
EC-GWO is applied to solve the wind farm layout optimization
problem in the same section. Finally, Sect. 5 concludes the
work and suggests some future research ideas.

2 Background

This section presents the details of the wind farm layout
optimization problem (WFLOP) and the classical grey wolf
optimizer (GWO).

2.1 Wind farm layout optimization problem (WFLOP)

Wind farm layout optimization (WFLO) is the pattern of
wind turbines scheme subject to the constraints related to the
position of the turbines, rotor radius, and hub height. In the
wind farm layout optimization problem (WFLOP) model, the
objective function is the maximization of expected power. The
solution of this problem is to find the optimal placement of
wind turbines so that the expected energy output of the whole
wind farm is maximum. For the WFLOP, two case studies are
considered, which include 26 and 30 turbines in the farm size
of 2 km X 2 km. The wind farm is subdivided into 100 grids
each of size 200 m X 200 m.

In the WFLOP, i solution is represented by
(p;” , qlv.” , rlY”’ , hl?”), where (plY‘”, qlY”’ ) is the position of the wr”
wind turbine, riW’ is the radius of the wr"* wind turbine, and le"
is the height of the w#* wind turbine.

2.1.1 Jensen’s wake model

Firstly, Jensen’s wake model (Mosetti et al. 1994) was used
with a genetic algorithm in solving the wind farm optimization
problem. Assuming that the momentum is conserved in the
wake, the downstream wind speed in j”' turbine under the
influence of i" turbine is calculated using Eq.(1):

u; = ug;(1 = vdy) (1

where Uy is the free stream wind speed at j”’ turbine, and
vd;; is the velocity deficit induced on position j by the wake
generated by i, which is computed in Eq. (2):

vdl-j = )
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where d;; is the distance between i and j* turbine.  is a
constant value, and a is the induction factor defined in Eq.
3).
1-+4y/(1-C,)
a=——> (3)
2

C,,, 1s the thrust coefficient of the wind turbine, which is fixed
for all turbines. e is the entrainment constant pertaining to
i"" turbine and r; is the downstream rotor radius of i’ turbine,
which is find out by the following Egs. (4)-(5).

L _ 05
" In(l “

where A; is the hub height of i turbine and z; is the surface
roughness of wind farm.

. [ (1-a)
r=r 1-2a) (®)]

For the linear wake model, the wake region is conical
and represented by the wake influence radius, which is
represented in Fig. 1. The wake region is defined in Eq. (6):

R, =ad;+r, (6)

In the instance of a wind turbine encountering multiple
wakes, the kinetic energy of the mixed wake can be assumed
to be equal to the sum of the kinetic energy deficits. The
following Eq. (7) shows the velocity downstream of N,,

turbines:
ot u 2
km
<1 - u—> @)
m=1 Om

w, =uyl 1 —

= oyl )

PV

M

Fig. 1 Linear wake model of wind turbine
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where uy, and u,,, are the free stream wind velocity without
wake effect at kth and mth turbine, respectively. u, is the
wind velocity at kth turbine under the wake region of mth
turbine.

2.1.2 Power output model

P,,,.; 18 the total power output and is given by Eq. (8):

NWI
P = ), P, ®)
i=1

Here P; is the power output from the i turbine. The detailed
calculation of P; and associated terms are explained in
Jensen’s wake mode, which is given in the following Eq. (9).

P.=0 5p7rr2u3 Cp KW ©)]
! ' 1711000
where p is the air density and C,, is the rotor efficiency.
The objective of the WFLOP is to find the optimal layout
of all the wind turbines to maximize the power output and
minimize the cost of a wind farm, given in Eq. (10).

Objective = Cost

total

10)

where ‘Cost’ represents the cost of the wind farm, which
considered Mosetti’s cost model (Mosetti et al. 1994) having
N,,, number of turbines and defined in Eq. (11):

Cost = Nwt(% + 1 exp—0.00174N§,,> (11)

3
In this function, the Cost is directly proportional to the
number of turbines N, and consists of two terms: a constant
term and a variable term which depends on an exponential
function. The variable term decreases as the number of
turbines increases.

2.2 Grey wolf optimizer

The Grey wolf optimizer (GWO) algorithm is one of the
meta-heuristic algorithms inspired by the leadership
hierarchy and social behavior of grey wolves. Within the
pack of grey wolves, wolves are divided into four different
types of wolves, namely alpha (@), beta (), delta (6), and
omega (w). The wolves (a, f, and §) are known as leading
wolves and are used to guide the remaining wolves of the
pack to approach the prey. In the GWO, three main steps
are performed to complete their search procedure, including
encircling, hunting, and attacking the prey. All these steps
are explained as follows:

The encircling behavior of grey wolves is modeled
mathematically through Egs. (12) and (13).
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X(t+1) — Xt _At XDI 12

ij prey,j ij ij ( )
to_ ot t t

Di,,‘ - |Ci,;' X Xpreyj - Xi,j' (13)

where X[(;“) and Xl(fl) are the j components of the the

updated and current states of wolves X;. X; ey refers to the

7™ component of the prey location, ¢ represents the iteration

counter. A’, and D' are the coefficient vectors which are
calculated using Egs. (14) and (15):

Ai}. =2 X rand; — 1) xd (14)

CZ}. =2 X rand, (15)

where rand; and rand, are uniformly random numbers in
the range (0, 1). The parameter a is a linearly decreasing
variable from 2 to O over the iterations, which is calculated
by the Eq. (16):

af=2—2x<L> (16)

max

tay TfETS to the maximum number of iterations.

During the hunting process, wolves’ positions are updated
based on the three leading wolves, as the algorithm assumes
that they have better knowledge about the location of the
prey. The mathematical model of the hunting process is
described in Eq. (17):

(t+1) (t+1) (t+1)
X1 + X2 + X3

XD = a7
i 3

where

X\ =X, —Al ;XD (18)
X =X, — Ay x Dy (19)
Xy = X5, - AL X D, (20)
D, =|C; XX, ;= Xl (21
Dy = 1Cpp X Xy, = X (22)
Dj; = Cs 5 x X5, — X, | (23)

where A;J, A’M, and Ang show the uniformly random

numbers in the range (=2, 2) at #" iteration and calculated by
Eq. (14). C;J., C;}J., and CfsJ' are uniformly random numbers

in the range (0, 2) at ¢ iteration which is calculated using
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the Eq. (15). X;J, X;J., and X,ts,; are the j™ components of
leading wolves a, § and &, respectively which are calculated
using Egs. (18)-(20). The coefficient vectors D', 7 D;]J., and
DgJ are calculated using Egs. (21)-(23). The pseudo-code of
the classical GWO is presented in Algorithm 1.

Algorithm 1 Pseudo-code of the classical GWO

this may result premature convergence. In the literature,
various position-updated equations have been proposed
(Long et al. 2018; Singh and Bansal 2022; Heidari and
Pahlavani 2017) to deal with this drawback of GWO.
Enhancing the information-exchange mechanism among

Input: N, t,4, a, A, and C
Output: fittest wolf (a score)

Initialize the position of the wolves X;, (i =1,2,...,N)
Calculate the fitness value of each grey wolf f(X;)

Select leader wolves from the population

Initialize the iteration counter ¢ = 0 and function evaluation FES = N

while (t < tpae and FES < FESp,) do

Update the position of each wolf using eq. (17)

Calculate the fitness value of each wolf
FES =FES+1
Update a, A and C'
Update leading wolves of the population
t=t+1

end while

Return « score

3 Proposed method
3.1 Motivation

As aforementioned in the classical GWO, wolves update
their positions with the help of the leader wolves (a, f, and
0). If the leader wolves are not enough good, this behavior
may occasionally, mislead the pack towards the local optima
which results the algorithm’s premature convergence. With
this drawback, GWO faces an imbalance between explo-
ration and exploitation. The linear change in the control
parameter a is one main factor behind this imbalance. To
deal with this situation and improve the search efficiency of
the GWO, we have applied four search strategies in GWO
namely, a modified search mechanism, modified control
parameter, chaotic search, and adaptive re-initialization of
poor solutions during the search. A brief description of each
applied strategy is provided in the following subsections:

3.2 Modified search mechanism

It is clear from Eq. (17) that the search in GWO signifi-
cantly relies on the state of leader wolves. This search
behavior degrades the exploration or diversity feature of
the algorithm, and for complex and multimodal problems,

@ Springer

the wolves may reduce this shortcoming more effi-
ciently. Therefore, to improve the exploration ability of
the algorithm and to increase the information-exchange
mechanism among the wolves, we have introduced a new
position update equation in the classical GWO, which is
inspired by the weighted center learning method (WCL)
(Sun and Chen 2021; Deng et al. 2019). The WCL assigns
a weight to each individual based on their fitness so that
better solutions can contribute more than poor solutions.
In this approach, a new modified search equation in GWO
is introduced in Eq. (24):

Yo

wetj ~ Aiy XD, 24)

wel j

where X'  is the j component of the weighted average
wel,j
vector at " iteration. The weight is determined by the fitness
of each wolf. Since the weight of an individual has a nega-
tive correlation with individual fitness, a linear normaliza-
tion method is used to obtain the weighted average vector.
The weighted average vector X’ | is calculated using Eq.
wel
(25):
n (F[

" _ max
chlJ - 2 Z”_I(Fr

i=1 D max

- F(X))) .
—FX)+6) "

(25)
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where F! s the fitness of the worst solution in the popula-
tion, F(le) is the fitness of the i* wolf and 6 is a non-zero
positive small real number to prevent the denominator from
being zero. n indicates the number of leader wolves which
is obtained using the following Eq. (26):

t
n= round(N—(N— 1)><—> (26)
tmax
Here N is the total number of grey wolves. ¢ and ¢,,,, are the
current iteration counter and maximum number of iterations,
respectively. In Eq. (24), the difference vector Diﬂ_li is

obtained using the following Eq. (27).

D} ;= 1C X Xy = X 27
where A;J. and Cl’}]. are obtained using Eqs. (14) and (15),
respectively. From Eq. (26), it can be seen that the number
of leader wolves used to define the weighted average vector
is decreased with iteration 7. At the initial iteration of the
algorithm, the number of leading wolves () equals the total
number of grey wolves, which supports the exploration.
When the number of leading wolves decreases with the
iteration, then the exploration phase transits to the
exploitation phase. This transition provides a balance
between diversity and convergence. Using the WCL
approach, in the initial phases of the search procedure, new
solutions are discovered using the guidance of each wolf of
the population. In contrast, in the later phases of the search,
only the best-fitted wolves are used to guide the search
procedure by other wolves. In this way, more iterations are
being used for exploring the solution space.

After updating the positions of wolves, a greedy selection
approach decides whether the obtained new positions of
wolves (Yl.(;“l)) will survive in the next iteration or not.
Mathematically, considering the optimization problem is
minimization, the greedy selection approach can be defined
with the help of Eq. (28):

1 (t+1)
ey _ Y ) < fXD)

i e (28)
ij’

otherwise

where f(Yi('H)) is the fitness of the i wolf at (¢ + 1)
iteration and f(X?) is the fitness of the i wolf at /" iteration.

3.3 Modified control parameter

According to (Mirjalili et al. 2014) the parameters ‘A’
and ‘C’ are two parameters that control the flow of
exploration and exploitation within the GWO algorithm.

The value |A| > 1 facilitates the exploration, and the
value |A| < 1 refers to exploiting the solution space. The
control parameter ‘a’ directly affects the parameter A,
which decreases linearly from 2 to O through iterations.
An appropriate selection of the control parameter ‘a’ is
important to balance exploration and exploitation. In
the first half of the search procedure of the GWO, the
parameter ‘a’ with the linearly decreasing strategy is good
at exploration but poor for convergence. In contrast, in
the next half search procedure, this parameter is good
for exploitation but easily trapped in the local optima
due to insufficient exploration ability. This approach
of parameter ‘a’ may not be suitable for providing high
quality solutions. Hence, a modification in this parameter
is required that may provide a sufficient amount of
exploitation and exploration for the search procedure of
GWO. In this work, we have improved the modification
strategy of the control parameter ‘a’ through iterations.
The improved strategy reduces ‘a’ nonlinearly resulting
in more exploitation of identified regions during the
exploration process. We have chosen a nonlinear function
to select the parameter ‘a’. This approach has also been
used in other study (Long et al. 2019). The mathematical
formulation for the parameter a is given by Eq. (29)

2
d" = (Aipiriar = Ainar) X €XP <—+> + A (29)
where a,,;,,, and ag,,, are the initial and final value of the
parameter a which is fixed to 2 and 0, respectively. k is a
modulation index that is fixed to be 0.2. Figure (2) shows the
comparison graph of the original linearly decreasing strategy
and the proposed nonlinear decreasing strategy. From Fig.

Non-linear
linear

Value of the control parameter ’a’

L L L . . .
100 200 300 400 500 600 700 800 9200 1000
Iterations

Fig. 2 Comparison of linear and nonlinear control parameter ‘a’
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(2), it is clear that our approach for setting the parameter
‘a’ focuses more on exploitation and less on exploration.
Thus the proposed ‘a’ brings early exploitation in the search
process. The reason for adopting this setting is to ensure the
balance between exploration and exploitation as high explo-
ration has already been achieved in the strategy proposed in
Sect. 3.2.

3.4 Chaotic local search

In this subsection, we will define our third strategy called
chaotic local search (CLS). The CLS is employed in GWO
to improve the local search of the algorithm. Our modified
search scheme, as explained in subsection 3.2 has been
applied to increase the exploration ability of the algorithm.
However, with the exploration of solution space, exploitation
of discovered search areas is necessary to prevent skipping
promising solutions. Therefore, the CLS scheme has been
applied to the proposed algorithm to further exploit the
discovered search areas. The chaotic search is an approach
to perform the search faster than the ergodic search (dos
Santos Coelho and Mariani 2008; Alatas 2010; Jia et al.
2011; Gao et al. 2019). The search process of CLS is based
on the regularity of chaos, and it is very sensitive to its initial
condition. A huge number of sequences can be obtained by
only changing their initial values. The advantage of CLS lies
in its randomicity which helps in avoiding the problem of
stagnation. Mathematically, CLS is defined by the following
Eq. (30):

1
Zl’j = XfJ. +Rx (UB; - LB)) X (C, = 0.5) (30)

where X; . is the position of the i" wolf at 1" iteration. UB;
and LB; are the upper and lower bounds of the search space
in j" dimension. R € (0, 1) denotes the chaotic search radius
to control the search range. C' is the logistic chaotic func-
tion that is used in #” iteration in the chaotic local search to
generate a chaotic sequence (Zhenyu et al. 2006). In this
paper, we have taken the initial value of C’_is 0.7. It is
defined in the following Eq. (31):

@ Springer

CHl=puxC x(1-C) @31

After each performance of CLS, if the new fitness is better
than the current fitness value, then the solution with new
fitness replaces itself to go to the next iteration, while the
others stay the same in the next iteration.

3.5 Re-initialization

In the proposed algorithm, we have re-initialized the
poor wolves only when they do not improve their states
in terms of fitness up to a predefined number of itera-
tions. It can be assumed that these wolves are potentially
weak to update their states. Therefore, a restart mecha-
nism is required to pull out these unfit wolves from the
optimization procedure, and random solutions distributed
in the solution space will be inserted in place of them.
To decide whether a particular wolf is unfit or not, we
assigned a counter for each wolf of the population. If any
wolf cannot achieve its better state, a counter associated
with that wolf is increased to 1. This counter value is
rechecked in each iteration and compared with the preset
threshold limit C; . If the counter reaches to this limit, the
corresponding wolf is re-initialized using the following
Eq. (32).

X+ { LB, + rand X (UB; — LB;), counter; > C, (32)

i no change, otherwise

where X;; is the j component of the i" wolf, counter; is

counter associated with wolf X;. LB;, and UB; are the ik
components of the lower and upper bounds of the search
space. rand(0, 1) is a uniformly distributed random number
in the range 0 and 1. The proposed strategy is inspired by
the artificial bee colony (ABC) (Karaboga et al. 2005). The
pseudo-code and flow chart of the proposed EC-GWO are
presented in Algorithm 2 and Fig. (3), respectively.
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Algorithm 2 Pseudo-code of the proposed EC-GWO

IHPUt: N,- tmaz,- FESmamv (initials Afinals A-, Ov CVL-, Ogm k

Output: fittest wolf (« score)

Initialize the position of the wolves X;, (i =1,2,...,N)

Calculate the fitness value of each wolf f(X;)

Select the fittest wolf (« score) of the current population
Initialize the iteration counter ¢ = 0, function evaluation F'/ES = N, and counter = 0

while (f <ty and FES < FES,,) do

Update the control parameter ‘a’ using eq. (29)

for i=1:N do

Obtain the position Y;*! of wolf X! using eq. (24)

Calculate the fitness value f(Y;™!) at Y™

FES=FES+1
Apply greedy selection:
if f(Y/)<f(X!) then
Xyl
counter(1)=0
else
X xt
counter (i) = counter(i) + 1

Obtain the position Z/™ of wolf X! using eq. (30)
Calculate the fitness value f(Z/!) at Z/™

FES=FES+1
Apply greedy selection:
if f(ZF)<f(X!) then
Xtz
counter(i)=0
else
XXt
counter (i) = counter(i) + 1
end if
end if
if counter(i) > Cf, then

Re-initialize the position of the wolf using eq. (32)
Calculate the fitness value f(Xi(HI)) of the wolf

FES=FES+1
counter(i) =0
end if
end for
t=t+1
end while
Return: « score

4 Experimental results

The proposed EC-GWO is first tested over a set of 23 well-
known benchmark problems in Sect. 4.1 and then applied to
solve the WFLOP in Sect. 4.2.

4.1 Testing on benchmark problems

4.1.1 Benchmark problems and parameters settings

To evaluate the performance of the EC-GWO, a set of 23

well-known benchmark problems (Bzck and Schwefel 1993;
Fogel 1991; Long et al. 2018; Bansal and Singh 2021) is

selected. Many researchers have used these benchmark
problems in the literature to evaluate the performance of
various meta-heuristic algorithms (Li et al. 2021; Yu et al.
2021; Dong et al. 2022; Lakshmi and Mohanaiah 2021; Teng
et al. 2019; Heidari et al. 2019; Li et al. 2020, 2021). The
details of these problems are reported in Table 1. In this
table, according to the characteristics, problems are divided
into three categories: unimodal, multimodal, and fixed-
dimensional multimodal problems. In Table 1, D indicates
the number of decision variables and Range refers to the
search range for the decision variables. The F represents
the true optima of the problem.
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Initialize the parameters of Initialize the position of the Select the fittest wolf
the EC-GWO wolves in the population from the population
4 N ‘
If newly
generated wolves t <t —of
are better, Apply the modified GWO search \
replace the old procedure given by eq. (24) FES < FES;pgx ?

wolves with the

new wolves and
set: counter =

0, otherwise set:
counter =
counter + 1

by eq. (30)

Apply chaotic local search given

Yes

o P

counter = C;,

Yes

Reinitialize the position of the wolf
using eq. (32) and counter =0

4

[ Select the fittest wolf ]

Fig. 3 Flow Chart of the proposed EC-GWO

A fair parameter setting is important to compare the
performance of the meta-heuristic algorithms. The pop-
ulation size (N), maximum number of iterations (z,,,,),
and maximum number of function evaluations (FES,,,,)
are set to 50, 1000, and 5 x 10%, respectively for all the
algorithms. The algorithm ran 30 times independently.
The parameter setting of the compared meta-heuristic
algorithms, namely ABC (Karaboga and Basturk 2007),
BBO (Simon 2008), SCA (Mirjalili 2016), WOA (Mir-
jalili and Lewis 2016)), GWO (Mirjalili et al. 2014) and
variants of the GWO (MGWO (Mittal et al. 2016a), and
RWGWO (Gupta and Deep 2019)) is derived from their
original papers. A detailed parameter setting for all the
compared algorithms is given in Table 2. These algorithms
are very competitive or have recently been published in
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the literature. Hence, they have been chosen for the per-
formance comparison of the EC-GWO.

The simulation environment is MATLAB 2014a,
the operating system is Windows 10, 8GB RAM, and
the processor is Intel(R) Core(TM) i5-8250U CPU @
1.60GHz 1.80 GHz with 8 GB RAM.

4.1.2 Comparison with classical GWO and other
meta-heuristic algorithms

To evaluate the advantages of the proposed algorithm, the
EC-GWO is compared with GWO and other meta-heuristic
algorithms on a set of problems given in Table 1. These
algorithms are ABC, BBO, SCA, WOA, GWO, and vari-
ants of the GWO, namely MGWO, and RWGWO. We have
used four statistics; namely, average, best, worst, median,
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Table 1 Benchmark problems

Problem Types D Range F?
FI(0=X2, » Unimodal 30 [~100,100]
F20=Y", |21+ 12, Il Unimodal 30 [-10,10]
i 2 Unimodal 30 [-100,100]
D i >
F3(0=2i=! (ZH Kl )
F4(x)=max, {|xi|, 1<i< D} Unimodal 30 [-100,100]
1:5(,()_2?;11 [100<Xi+1 _xiz)z n (Xi _ 1)2] Unimodal 30 [-30,30]
F6(X)=le:1 ([xi + 05] )2 Unimodal 30 [—100,100] 0
F7(X):ZiD=1 ZX? + random|0, 1) Unimodal 30 [-1.28,1.28] 0O
ZD —x sin (\/M) Multimodal 30 [-500,500] —418.9829%xn
F8(x)=~i=1 ’
F9(X)=Z?=1 x? —10cos (zﬂxi) + 10] Multimodal 30 [-5.12,5.12] O
1 vD 1 D Multimodal 30 [-32,32 0
Flopo_20exp(-02y/ 5 T2 xb) —exp (322 cos (27x) ) +20+ ¢ -32.321
1 5D 2 1P X Multimodal 30 [-600,600] O
Fll(X)=4000 Z,’:l i Hi:l cos ( \ﬁ> +1
Fi260 =1£>{ 10sin (zy,) + X270, = D?[1 + 10sin3(zy,,. )] + (p — 1)2} + 32 ux, 10,100,4) Multimodal 30 [=5050] 0
k(x; —a)" x;>a
y,-=1+x’T+1u(x,-,a,k,m)= 0 —a<x;<a
k(=x; —a)" x; < —a
F13 (X)_O.l{sin2(3n’x1) + 30 (5 = 1)°[1+sinGax, + D] + (o — D21+ sin(27x)] }+ Multimodal 30 [=50,50] O
> u(x;, 5,100, 4)
. »s . -1 Fixed-dimensional 2 [—65,65] 0.998
ot T multimodal
Fl4(x)=\"" =L (i)
" (B b) 12 Fixed-dimensional 4 [-5,5] 0.00030
FlS(x)=2i=1 [ai - bf+bYX3+X4] multimodal
F16(x):4x% - 2.1x‘1‘ + lx? XX, — 4x§ + 4x‘2‘ Fixed-dimensional 2 [-5,5] —1.0316
3 multimodal
2 Fixed-dimensional 2 [-5,5] 0.398
R S S P -1 ’
F17(x)=(x2 et 6) + ]O<] 87 > cosx; +10 multimodal
2 2 2 Fixed-dimensional 2 [-2,2] 3
F18(x)=[1 + (xl +x, + 1) (19 — 14 + 3] — 14x, + 6x,x, + 3x2)] multimodal
[30 + (26, = 31, (18 = 32x, + 122 + 48x, — 36x,x, + 27x§)]
v N3 ()2 Fixed-dimensional 3  [1,3] —-3.86
Fl9()= Zi=1 € e""( Zpn (= py) ) multimodal
vt N6 ()2 Fixed-dimensional 6 [0, 1] -3.32
F20(x)= Ziei € exp( Zf:l i (x’ p”) ) multimodal
5 T -1 Fixed-dimensional 4 [0, 10] —10.1532
F21(x)= Ziei [(X —a)(X—a) + C[] multimodal
7 T -1 Fixed-dimensional 4 [0, 10] —10.4028
F22(x)= Ziei [(X —a)(X—a;) + C"] multimodal
-1 . . .
10 T Fixed-dimensional 4 [0.10] —10.5363
F23(x)= o [(X —a)(X—a) + "'] multimodal

and standard deviation (Std) to compare the optimization  standard deviation of the fitness values which are obtained
results. Here, ‘average’, best, worst, median, and stand- in 30 runs. The results are shown in Tables 3, 4, 5, where the
ard deviation (Std) are the mean, best, worst, median, and better results are highlighted in boldface.
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Table 2 Parameter setting

‘ o Algorithms Parameter setting
for comparing meta-heuristic
optimization algorithms GWO a is linearly decreased from 2 to 0
ABC Food sources (SN) is 50, Limit is SNX D
BBO Habitat modification probability is 1, initial mutation probability is 0.1
number of best habitats is 2
SCA ais 2, r; is linearly decreased from 2 to 0, r, is (2 X z) X rand(), r5 is random
number in the range [0,2], and r, is random number in the range [0,1]
WOA a, is linearly decreased from 2 to 0 and a, is linearly decreased
from - 1 to - 2, r; =rand(), r, = rand(), b = 1, p = rand()
MGWO a is non-linearly decreased from 2 to 0
RWGWO a is linearly decreased from 2 to 0
EC-GWO a is non-linearly decreased from 2 to 0, C;, = 50, k = 0.2

For the unimodal benchmark promlems (F1-F7), results
are given in Table 3. In this table, the EC-GWO has achieved
an optimal value (0) for the problems F1-F4. The proposed
strategies provide solutions with higher precision to each
problem. As compared to other algorithms, the proposed
EC-GWO has provided better results for the problem F5.
However, ABC has outstanding performance for problem F6
as compared to the proposed EC-GWO, BBO, SCA, WOA,
GWO, MGWO, and RWGWO. Moreover, for problem F7,
the results obtained by EC-GWO are very close to the results
of the MGWO algorithm and performed better than ABC,
BBO, SCA, WOA, GWO, and RWGWO. It can be verified
from the results of unimodal problems that the EC-GWO has
performed overall better than other compared algorithms,
which proves its strong exploitation ability. Hence, the modi-
fied control parameter and chaotic local search have proven
their efficiency in enhancing the exploitation abilities of the
classical GWO.

For the multimodal problems (F8-F13), results are shown
in Table 4. The proposed EC-GWO has obtained optimal
solution for the problems F8, F9, and F11. As Compared
with ABC, BBO, SCA, WOA, GWO, MGWO, and
RWGWO, the proposed EC-GWO has achieved better results
for problem F10. For problems F12 and F13, ABC has
provided good results as compared to the other algorithms.
Hence, the results on multimodal problems indicate that
the proposed EC-GWO has more advantages of jumping
out from the local optimal regions than other compared
algorithms.

For the fixed-dimensional multimodal problems (F14-
F23), results are indicated in Table 5. ABC has performed
better than BBO, SCA, WOA, GWO, MGWO, RWGWO,
and EC-GWO for the problem F14. For the same function,
RWGWO is the second best algorithm. For problem F15,
RWGWO has provided better results in terms of average,
best, and median values, and the proposed EC-GWO has
obtained better results in terms of worst and std values. For
problems F16-F19, all the algorithms have provided better
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and similar results in terms of average, best, worst, and
median values than the BBO algorithm. The ABC algorithm
has performed better in all the statistics for problems F16-
F19. For problem F20, ABC has provided better results than
the other compared algorithms. The proposed EC-GWO and
the ABC have performed very well on problems F21-F23,
but in these problems, ABC has provided better results in
terms of all the statistics. As compared to the multimodal
problems, these problems have less local optima. There-
fore, the ability to maintain a comparatively better balance
between exploration and exploitation is verified in the EC-
GWO through these problems. Thus, it can be concluded
that all the employed strategies have shown their impact
on improving the search mechanism of the GWO for better
solution accuracy.

4.1.3 Convergence analysis

This subsection compares and analyzes the convergence
feature of the proposed EC-GWO and other compared
algorithms. Fig. 4, 5, 6 plots the convergence curves for
the selected benchmark problems F1, F4, F5, F6, F§, F10,
F11, F13, F14, F15, F20, and F23 of the EC-GWO, and
compares them with the convergence curves of the other
compared algorithms. In these curves, the horizontal axis
represents the function evaluations, and the fitness val-
ues are depicted on the vertical axis. These curves show
that the proposed EC-GWO achieved a faster convergence
rate than other algorithms for most of the problems. For
problems F1, F4, and F5, the convergence speed of the
proposed EC-GWO is very fast compared to other algo-
rithms. For some problems, such as F6, F13, F15, and
F20, the convergence speed of EC-GWO is worse than
ABC, but its convergence speed is better than the speed
of the other algorithms. It can be concluded that the pro-
posed EC-GWO also has the highest convergence speed.
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Table 3 Comparison results Problem Algorithm Average Best Worst Median Std
obtained by EC-GWO and
ABC, BBO, SCA, WOA, GWO, g ABC 2.80E-11 2.70E—12 1.89E—10 1.27E—11 4.26E—11
MGWO. and RIWOWO on 2 BBO SO4E+00  276E+00  134E+01  525E400  2.46E+00
problems SCA 260E-03  9.59E-07  222E-02  424B-04  5.00E-03
WOA 1.60E-172 2.43E-185 3.24E-171 9.05E—180 0.00E+00
GWO 3.14E-76 5.30E-80 4.69E-75 3.62E-77 8.73E-76
MGWO 2.07E-99 2.54E-103 1.68E—98 2.58E—100 3.82E-99
RWGWO 6.02E-75 1.08E-77 6.11E-74 3.53E-75 1.14E-74
EC-GWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 ABC 9.80E-07 4.21E-07 2.11E-06 9.08E-07 3.86E—07
BBO 8.52E-01 6.01E-01 1.26E+00 8.25E-01 1.58E-01
SCA 7.61E—-06 9.51E-10 8.10E-05 1.02E-06 1.69E—05
WOA 1.43E-109 1.31E-118 2.39E-108 2.07E-113 4.73E-109
GWO 4.70E—45 2.35E-46 3.81E-44 2.66E—45 7.14E-45
MGWO 1.84E-57 6.99E—59 1.35E-56 7.61E-58 2.87E-57
RWGWO 1.99E-43 1.56E—44 4.70E—43 1.53E-43 1.43E—-43
EC-GWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F3 ABC 1.25E+04 7.89E+03 1.68E+04 1.27E+04 2.30E+03
BBO 8.91E+03 4.21E+03 1.41E+04 8.56E+03 2.35E+03
SCA 2.87E+03 1.77E+02 1.18E+04 1.98E+03 3.00E+03
WOA 8.61E+03 2.82E+02 2.99E+04 8.53E+03 6.48E+03
GWO 2.04E-21 9.02E-29 5.82E-20 6.38E-25 1.06E-20
MGWO 1.13E-19 3.66E—28 1.30E-18 3.25E-24 3.47E-19
RWGWO 4.53E—12 4.53E-17 3.51E-11 1.31E-13 1.02E-11
EC-GWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F4 ABC 2.16E+01 1.05E+01 2.63E+01 2.27E+01 3.81E+00
BBO 6.31E+00 4.58E+00 9.27E+00 6.36E+00 1.00E+00
SCA 1.24E+01 1.36E+00 3.06E+01 1.11E+01 7.84E+00
WOA 3.76E+01 1.16E-02 8.18E+01 3.62E+01 2.70E+01
GWO 5.90E—17 2.84E—-19 5.96E—-16 9.86E—18 1.23E-16
MGWO 2.99E-23 2.08E-25 1.37E-22 1.26E-23 4.02E-23
RWGWO 9.66E—14 1.67E-15 3.91E-13 3.56E-14 1.23E-13
EC-GWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F5 ABC 2.38E+00 7.24E-02 1.12E+01 1.77E4+00 2.41E+00
BBO 3.26E+02 1.72E+02 6.80E+02 3.06E+02 1.25E+02
SCA 9.48E+01 2.77E+01 7.13E+02 3.15E+01 1.55E+02
WOA 2.67E+01 2.58E+01 2.74E+01 2.67E+01 3.22E-01
GWO 2.66E+01 2.53E+01 2.72E+01 2.66E+01 5.34E-01
MGWO 2.64E+01 2.50E+01 2.87E+01 2.62E+01 9.19E-01
RWGWO 2.58E+01 2.49E+01 2.71E+01 2.60E+01 5.45E-01
EC-GWO 1.85E—-02 5.41E-03 3.40E—02 1.87E—-02 7.27E-03
Fo6 ABC 2.06E—11 2.16E—12 1.07E-10 1.29E-11 240E-11
BBO 5.70E+00 2.01E+00 9.96E+00 5.40E+00 2.28E+00
SCA 4.27E+00 3.50E+00 4.95E+00 4.24E+00 3.10E-01
WOA 1.07E-02 1.10E-03 1.90E-01 3.70E-03 3.39E-02
GWO 5.26E-01 1.49E-05 9.92E-01 5.00E-01 2.56E-01
MGWO 3.81E-01 3.08E-05 7.57E-01 2.57E-01 2.42E-01
RWGWO 4.96E-02 5.45E—-06 3.22E-01 9.75E-06 9.46E—02
EC-GWO 3.31E-04 1.03E-04 1.29E-03 2.69E—-04 2.47E-04
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Table 3 (continued)

Problem Algorithm Average Best Worst Median Std

F7 ABC 1.10E-01 5.48E-02 1.59E-01 1.12E-01 2.54E-02
BBO 2.47E-02 1.19E-02 6.31E-02 2.16E-02 1.12E-02
SCA 2.96E-02 2.00E-03 1.03E-01 2.21E-02 2.51E-02
WOA 1.20E-03 1.74E-05 6.60E—03 7.86E—04 1.30E-03
GWO 7.69E—04 2.63E—04 2.80E—03 6.58E—04 4.85E-04
MGWO 4.39E-04 1.66E—04 9.92E—-04 3.84E—-04 2.29E—-04
RWGWO 1.21E-03 3.85E-04 2.64E-03 1.20E-03 6.09E—04
EC-GWO 4.29E—04 1.38E—04 1.24E-03 4.10E-04 2.33E-04

4.1.4 Statistical analysis

The Wilcoxon rank-sum test (Derrac et al. 2011) statistically, at
a significance level of 5% has been used to evaluate EC-GWO. It
is a pairwise test that tries to find significant differences between
two independent groups. It ensures that significant results for
algorithms do not occur by chance. The results of the Wilcoxon
rank-sum test for a set of 23 well-known benchmark problems
are listed in Table 6. In table 6, “+/ — / &” are used to indicate
that the EC-GWO is significantly better, worse, or the same as
the ABC, BBO, SCA, WOA, GWO, MGWO, and RWGWO. As
can be seen from the results the proposed EC-GWO is signifi-
cantly better than the ABC for 17 problems, BBO for 23 prob-
lems, SCA for 21 problems, WOA for 17 problems, classical
GWO for 17 problems, MGWO for 17 problems, and RWGWO
for 15 problems out of 23 problems. Conclusively, EC-GWO has
better exploration capability and better synergy between exploi-
tation and exploration than other algorithms. Moreover, we have
also ranked the average values obtained by EC-GWO and other
algorithms for each problem, as shown in Table 7. In Table 7,
EC-GWO gets the first rank in all the problems. The complete
ranking order is EC-GWO, ABC, WOA, RWGWO, MGWO,
GWO, BBO, and SCA.

Overall, we can conclude that as compared with ABC, BBO,
SCA, WOA, GWO, MGWO, and RWGWO, the proposed
EC-GWO has the best performance and robustness when
solving global optimization problems. Thus, the EC-GWO is
suitable for solving global optimization problems.

4.2 The proposed EC-GWO for wind farm layout
optimization problem (WFLOP)

4.2.1 Numerical experiment results and discussion
This subsection is devoted to numerical investigations
while solving the WFLOP using various meta-heuristics.

To verify and validate the performance of the proposed
EC-GWO, its simulation results are compared with ABC,
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BBO, SCA, WOA, GWO, MGWO, and RWGWO. The
parameters setting of these algorithms are the same as in
Table 2. For the considered wind farm (2 km X 2 km), air
density (p) is 1.2254 kg/m>, rotor efficiency (C,) is 0.4,
thrust coefficient (C,,,) is 8/9 and the surface roughness of
wind farm (z;) is 0.3 m. For all the compared algorithms,
the population size and the maximum function evalua-
tions are set to 50 and 5 x 10%, respectively. In this paper,
we have considered two cases, namely case 1 for 26 wind
turbines and case 2 for 30 wind turbines. For case 1 and
case 2, the numerical results for all compared algorithms
over 30 independent runs in terms of the average, mini-
mum, maximum, median, std, and cost, and correspond-
ing optimal positions, rotor radius, and hub height are
presented in Tables 8, 9, 10, 11, 12, 13.

For case 1 and case 2, Tables 8 and 11 report the
average, minimum, maximum, median, and std of the
total power obtained over 30 runs of all the compared
algorithms and also, the statistical analysis through the
Wilcoxon rank-sum test at a significance level of 5% are
reported in the same Tables 8 and 11. Moreover, Cost
indicates the objective function value. In these tables, “+”
indicates that the EC-GWO is significantly better than the
ABC, BBO, SCA, WOA, MGWO, and RWGWO while
“~” shows that the EC-GWO is the same as ABC, BBO,
SCA, WOA, MGWO, and RWGWO. From the results of
Table 8, it can be observed that the proposed EC-GWO
has provided a better solution as it gives a maximum
value for a total power that is 13792.53138 KW as well as
the minimum value for a total cost is 0.0014549 obtained
by case 1. Referring to Table 8, it can be seen that BBO
has also performed better than ABC, SCA, WOA, GWO,
MGWO, and RWGWO. Overall, the proposed EC-GWO
has provided better results for case 1. For case 2, the pro-
posed EC-GWO has performed better than ABC, BBO,
SCA, WOA, MGWO, and RWGWO. The proposed EC-
GWO has obtained a maximum power 15787.08 KW and
the corresponding objective value is 0.00140418. BBO
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Table 4 Comparison results

. Problem Algorithm Average Best Worst Median Std

obtained by EC-GWO and

ABC, BBO, SCA, WOA, GWO,  pg ABC —1.22E+04  —125E+04  —1.19B4+04  —1.22E+04  1.27E+02

ls\;[tcovarg;li?ri(l){clzcl;a\s;cc)h?;laik BBO “126E404  —126E+04  —125E404  —126E+04  6.55E+00

problems SCA —401E+03  —4.60E+03  —3.44B+03  —3.99E+03  2.80E+02

WOA —1.13E+04  —1.26E+04  —8.17E+03  —1.23E+04  1.65E+03

GWO —6.35B+03  —-7.36B+03  —3.64E+03  —6.37E+03  7.39E+02

MGWO —6.22E+03  —7.74E+03  —3.57E+03  —6.62E+03  1.28E+03

RWGWO —8.80E+03  —1.00E+04  —7.86E+03  —8.79E+03  5.12E+02

EC-GWO  —1.26E+04 —126E+04 —126E+04 —1.26E+04  4.28E—03

F9 ABC 2.78E-01 5.25E—09 1.55E+00 6.09E—05 4.84E-01

BBO 2.48E+00 6.04E—01 4.81E+00 2.25E+00 9.19E-01

SCA 1.32E+01 1.36E—06 1.33E+02 4.66E—02 2.87E+01

WOA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

GWO 1.39E+00 0.00E+00 1.31E+01 0.00E+00 3.39E+00

MGWO 6.95E—02 0.00E+00 2.08E+00 0.00E+00 3.81E-01

RWGWO 1.17E+01 0.00E+00 2.56E+01 1.19E+01 6.23E+00

EC-GWO  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F10 ABC 1.42E-05 4.30E—06 4.10E-05 1.21E-05 8.59E—06

BBO 1.28E+00 6.31E-01 1.93E+00 1.22E+00 3.19E-01

SCA 1.25E+01 7.50E—05 2.03E+01 1.98E+01 9.60E+00

WOA 4.80E—15 8.88E—16 7.99E—15 4.44E-15 2.16E-15

GWO 8.11E-15 4.44E-15 1.51E-14 7.99E—15 1.47E-15

MGWO 6.10E—15 4.44E-15 7.99E—15 4.44E-15 1.80E—15

RWGWO 8.23E—15 7.99E—15 1.51E-14 7.99E-15 1.30E—15

EC-GWO  8.88E—16 8.88E—16 8.88E—16 8.88E—16 0.00E+00

Fi1 ABC 7.15E—04 4.76E—11 1.22E—02 1.29E—07 2.74E-03

BBO 1.05E+00 1.02E+00 1.09E+00 1.04E+00 1.85E—02

SCA 1.66E—01 2.26E—06 7.90E—01 8.14E-02 2.16E-01

WOA 1.30E—03 0.00E+00 3.89E—02 0.00E+00 7.10E-03

GWO 3.90E-03 0.00E+00 2.12E-02 0.00E+00 6.60E—03

MGWO 8.04E—04 0.00E+00 1.37E-02 0.00E+00 3.10E—03

RWGWO  2.70E-03 0.00E+00 2.89E—02 0.00E+00 6.69E—03

EC-GWO  0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F12 ABC 1.31E-12 6.75E—14 5.39E—12 6.94E—13 1.47E-12

BBO 3.97E—02 8.30E—03 1.27E-01 2.28E—02 3.65E—02

SCA 4.34E+00 3.09E—01 6.02E+01 7.25E-01 1.21E+01

WOA 2.00E-03 1.70E—04 1.37E-02 5.55E—04 3.40E-03

GWO 3.40E—02 1.32E—02 7.85E—-02 2.91E-02 1.67E—02

MGWO 2.01E-02 7.17E-06 4.05E-02 1.97E-02 9.20E-03

RWGWO 1.08E—02 6.01E—07 1.16E-01 3.55E-03 2.33E-02

EC-GWO  1.35E-04 8.08E—06 1.72E-03 4.49E—05 3.36E—04

F13 ABC 7.73E-11 1.68E—12 1.81E—09 1.15E-11 3.27E-10

BBO 2.76E-01 1.11E-01 4.50E—01 2.90E-01 8.92E—02

SCA 3.18E+00 2.02E+00 1.33E+01 2.57E+00 2.11E+00

WOA 3.75E-02 4.10E—03 2.07E-01 2.58E-02 4.30E—02

GWO 4.79E—01 1.96E—01 7.79E—01 4.46E—01 1.62E—01

MGWO 2.81E-01 3.46E-05 6.24E-01 3.04E-01 1.49E—01

RWGWO  7.92E—02 8.11E-06 3.08E-01 7.72E-02 8.32E-02

EC-GWO  2.85E—04 1.66E—05 9.32E—04 2.71E-04 1.96E—04
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Table 5 Comparison results

. Problem Algorithm Average Best Worst Median Std

obtained by EC-GWO and

ABC, BBO, SCA, WOA, Fl4 ABC 9.98E-01 9.98E-01 9.98E-01 9.98E-01 1.40E-16

OWO, MEWO. and RWOWD BBO 998E-01  998E-01  1.00E+00  998E-0I 7.56E-04

multimodal problems SCA 1.20E+00 9.98E-01 2.98E+00 9.98E-01 6.05E-01

WOA 1.88E+00 9.98E-01 1.08E+01 9.98E-01 2.49E+00

GWO 3.42E+00 9.98E-01 1.27E+01 2.98E+00 3.65E+00

MGWO 2.51E+00 9.98E-01 1.27E+01 9.98E-01 2.69E+00

RWGWO 9.98E-01 9.98E-01 9.98E-01 9.98E-01 7.17E-12

EC-GWO 9.98E-01 9.98E-01 9.98E-01 9.98E-01 4.95E-10

F15 ABC 6.30E-04 3.65E-04 8.42E-04 6.41E-04 1.11E-04

BBO 4.70E-03 9.94E-04 2.11E-02 2.00E-03 6.00E-03

SCA 8.58E-04 3.91E-04 1.30E-03 7.35E-04 3.25E-04

WOA 6.14E-04 3.08E-04 1.40E-03 3.91E-04 3.90E-04

GWO 5.70E-03 3.07E-04 2.04E-02 3.07E-04 9.00E-03

MGWO 1.80E-03 3.07E-04 2.04E-02 3.08E-04 5.10E-03

RWGWO 3.38E-04 3.07E-04 1.22E-03 3.07E-04 1.67E-04

EC-GWO 7.05E-04 5.70E-04 7.47E-04 7.15E-04 3.81E-05

F16 ABC -1.03E+00  -1.03E+00  -1.03E+00  -1.03E+00  5.05E-16

BBO -1.03E+00  -1.03E+00  -1.02E+00  -1.03E+00  2.80E-03

SCA -1.03E+00  -1.03E+00  -1.03E+00  -1.03E+00 1.28E-05

WOA -1.03E+00  -1.03E+00  -1.03E+00  -1.03E+00 1.22E-11

GWO -1.03E+00  -1.03E+00  -1.03E+00  -1.03E+00 1.46E-09

MGWO -1.03E+00  -1.03E+00  -1.03E+00  -1.03E+00 1.42E-08

RWGWO -1.03E+00  -1.03E+00  -1.03E+00  -1.03E+00 1.01E-09

EC-GWO -1.03E4+00  -1.03E+00  -1.03E+00  -1.03E+00  1.42E-09

F17 ABC 3.98E-01 3.98E-01 3.98B-01 3.98E-01 0.00E+00

BBO 4.00E-01 3.98E-01 4.10E-01 3.99E-01 2.50E-03

SCA 3.98B-01 3.98E-01 4.01E-01 3.98E-01 5.62E-04

WOA 3.98E-01 3.98E-01 3.98E-01 3.98E-01 1.14E-07

GWO 3.98E-01 3.98E-01 3.98E-01 3.98E-01 6.49E-08

MGWO 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.97E-07

RWGWO 3.98E-01 3.98E-01 3.98E-01 3.98E-01 5.58E-08

EC-GWO 3.98E-01 3.98E-01 3.98E-01 3.98E-01 5.65E-08

F18 ABC 3.00E+00 3.00E+00 3.02E+00 3.00E+00 3.19E-03

BBO 6.00E+00 3.00E+00 3.42E+01 3.02E+00 9.11E+00

SCA 3.00E+00 3.00E+00 3.00E+00 3.00E+00 4.55E-06

WOA 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.80BE-06

GWO 3.00E+00 3.00E+00 3.00E+00 3.00E+00 1.89E-06

MGWO 3.00E+00 3.00E+00 3.00E+00 3.00E+00 1.79E-06

RWGWO 3.00E+00 3.00E+00 3.00E+00 3.00E+00 9.12E-07

EC-GWO  3.00E+00 3.00E+00 3.00E+00 3.00E+00 1.81E-06

F19 ABC -3.00E-01 -3.00E-01 -3.00E-01 -3.00E-01 2.26E-16

BBO -2.80E-01 -2.97E-01 -2.45E-01 -2.87E-01 1.35E-02

SCA -3.01E-01 -3.01E-01 -3.01E-01 -3.01E-01 2.26E-16

WOA -3.01E-01 -3.01E-01 -3.01E-01 -3.01E-01 2.26E-16

GWO -3.01E-01 -3.01E-01 -3.01E-01 -3.01E-01 2.26E-16

MGWO -3.01E-01 -3.01E-01 -3.01E-01 -3.01E-01 2.26E-16

RWGWO -3.00E-01 -3.00E-01 -3.00E-01 -3.00E-01 2.26E-16

EC-GWO -3.00E-01 -3.00E-01 -3.00E-01 -3.00E-01 2.26E-16
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Table 5 (continued) Problem Algorithm Average Best Worst Median Std

F20 ABC -3.32E+00 -3.32E+00 -3.32E+00 -3.32E+00 1.65E-15
BBO -3.29E+00 -3.32E+00 -3.20E+00 -3.32E+00 5.36E-02

SCA -2.95E+00 -3.13E+00 -1.92E+00 -3.01E+00 2.51E-01

WOA -3.27E+00 -3.32E+00 -3.14E+00 -3.32E+00 6.83E-02

GWO -3.25E+00 -3.32E+00 -3.13E+00 -3.26E+00 7.26E-02

MGWO -3.26E+00 -3.32E+00 -3.09E+00 -3.32E+00 7.42E-02

RWGWO -3.25E+00 -3.32E+00 -3.20E+00 -3.20E+00 6.07E-02

EC-GWO -3.29E+00 -3.32E+00 -3.20E+00 -3.32E+00 5.17E-02

F21 ABC -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 5.16E-15
BBO -4.62E+00 -1.01E+01 -2.62E+00 -2.68E+00 3.13E4+00
SCA -2.86E+00 -7.69E+00 -4.97E-01 -1.77E+00 2.32E+00
WOA -9.22E+00 -1.02E+01 -2.63E+00 -1.02E+01 2.15E+00
GWO -9.06E+00 -1.02E+01 -2.68E+00 -1.02E+01 2.26E+00
MGWO -8.97E+00 -1.02E+01 -5.06E+00 -1.02E+01 2.18E+00
RWGWO -9.48E+00 -1.02E+01 -5.10E+00 -1.02E+01 1.75E+00

EC-GWO -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 4.16E-05

F22 ABC -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 1.40E-15
BBO -5.76E+00 -1.04E+01 -2.75E+00 -3.72E+00 3.34E+00
SCA -4.49E+00 -7.88E+00 -9.07E-01 -4.92E+00 1.95E+00

WOA -1.02E+01 -1.04E+01 -5.09E+00 -1.04E+01 9.70E-01
GWO -1.00E+01 -1.04E+01 -5.09E+00 -1.04E+01 1.35E+00

MGWO -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 7.21E-04

RWGWO -1.02E+01 -1.04E+01 -5.09E+00 -1.04E+01 9.70E-01

EC-GWO -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 7.36E-05

F23 ABC -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 1.11E-06
BBO -6.20E+00 -1.05E+01 -2.42E+00 -3.83E+00 3.60E+00
SCA -4.31E+00 -8.86E+00 -9.44E-01 -4.85E+00 2.21E+00
WOA -9.92E+00 -1.05E+01 -2.81E+00 -1.05E+01 1.92E+00
GWO -1.01E+01 -1.05E+01 -2.42E+00 -1.05E+01 1.75E+00

MGWO -1.04E+01 -1.05E+01 -5.13E+00 -1.05E+01 9.87E-01
RWGWO -1.02E+01 -1.05E+01 -5.12E+00 -1.05E+01 1.37E4+00

EC-GWO -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 3.43E-05

has also performed approximately the same as the pro-
posed EC-GWO. For all the compared algorithms, corre-
sponding to maximum total power, the optimal position of
the turbines (OP), Rotor radius (RR), and hub height (RH)
are given in Tables 9 and 10 for case 1 and Tables 12

and 13 for case 2. Figures 7 and 9 represent the optimal
configuration of case 1 and case 2, respectively for the
ABC, BBO, SCA, WOA, GWO, MGWO, RWGWO, and
the proposed EC-GWO. Figures 8 and 10 show the con-
vergence rate of ABC, BBO, SCA, WOA, GWO, MGWO,
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Fig. 6 Convergence curves for selected benchmark problems

RWGWO, and the proposed EC-GWO, respectively. From
these curves, it can be concluded that the EC-GWO algo-
rithm has the fastest convergence rate. Hence, based on

different performance measures, it is obvious that the pro-
posed EC-GWO is more efficient than other compared
algorithms for solving the WFLOP.
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Table7 Ranking onalgorithms — Ajo0ihm=  ABC BBO SCA WOA MGWO RWGWO GWO  Proposed GWO
based on their performances
on a set of 23 well-known Average Rank 3.3 6.6 691 393 426 3.96 513 1.89
benchmark problems Rank ) 7 3 3 5 4 6 1
Bold values indicate the best result

Table 8 Comparison results obtained by EC-GWO and other meta-heuristic algorithms on 26 turbines

ABC BBO SCA WOA GWO MGWO RWGWO EC-GWO
Average 6634.2 13582.77 7797.006 10890 11535.56 11512.4259 12655.30082 13573.04987
Minimum  5961.676 13503.97 7321.713 9860.269578 10650.76 10484.5509 11367.26817 13380.6456
Maximum 6997.555 13622.37 8357.669 12414.83983 12131.47 12152.7529 13037.66957 13792.53138
Median 6617.683 13595.46 7840.819 10829.95817 11640.46 11615.78979 12851.75888 13583.31962
Std 286.2216 41.94022 349.4201 775.741274 470.1764 526.6938 508.0193608 132.4547915
Cost 0.002867(+) 0.001473(~) 0.002401(+) 0.001616421(+) 0.00165411(+) 0.00165121(+) 0.00153914(+) 0.0014549
Bold values indicate the best result
Table 9 Optimal positions, hub heights, and rotor radii obtained by ABC, BBO, SCA, and WOA for 26 turbines
ABC BBO SCA WOA
OP RR HH OP RR HH OP RR HH OP RR HH
(1600,1400)  20.00  23.78 (1000,1800) 19.69  43.34 (1200,1200) 20.00 60.00  (1200,1000)  20.00  29.85
(400,1800) 20.00  54.95 (1400,1400) 19.78  45.32  (800,1600) 20.00 31.90  (1400,1000)  20.00  42.04
(600,1800) 18.03 32.37 (1800,1600) 19.85 26.68 (200,1000) 20.00 38.03 (200,800) 0.00 50.88
(200,800) 5290  36.11 (400,1200) 19.93 50.13 (1000,600) 0.00 7.909 (600,400) 17.37  26.38
(1400,200) 12.37 38.07 (1400,1200) 19.92  25.78 (800,800) 16.39 60.00  (1600,1600) 20.00  30.78
(600,1200) 19.44  50.34  (200,400) 20.00  47.61 (1400,1200)  20.00 60.00  (200,1200) 20.00 3641
(1200,1400) 6.496 2742  (600,1600) 19.87 23.60  (1000,1000)  20.00 60.00  (1800,1000) 20.00  52.00
(1600,1800) 38.33 4130  (1000,1600) 19.96  20.29 (200,200) 20.00 38.94  (1400,600) 20.00  59.97
(1400,1400)  7.937 10.18 (1800,1400) 19.93 53.80  (1800,1000) 20.00 60.00  (600,400) 20.00  35.16
(1800,600) 2.577 3.045 (1600,1200) 20.00  20.33 (400,800) 0.000 26.17 (200,1000) 20.00  34.28
(400,1000) 1424 37.78 (1800,1000) 19.89  47.67 (400,1200) 3.243 60.00 (600,600) 0.000  24.72
(1000,1600) 13.65 58.04  (800,1200) 19.79  58.79 (800,200) 0.000 51.68 (200,800) 19.66  47.52
(800,1800) 8.135 18.67 (1600,1000) 19.64  28.50  (200,1000) 0.000 60.00  (1600,800) 20.00  31.39
(1200,400) 17.56  22.75 (600,1000) 19.97 30.48 (800,1000) 20.00 34.29 (800,1800) 20.00  23.73
(200,200) 19.74  48.13 (600,800) 19.96  27.92 (200,400) 16.37 47.90  (200,600) 20.00  25.09
(1000,1200) 17.98 34.15 (1200,400) 19.77 4693 (800,1600) 14.00 31.66 (1800,800) 18.87 31.66
(1000,200) 97.21 31.73 (1800,400) 1990 5240  (1800,600) 02126  60.00  (200,1800) 18.73 49.24
(400,600) 17.56  21.08 (1400,600) 19.96 33.69 (1800,200) 20.00 23.86 (1600,600) 20.00  54.70
(200,1600) 3.119 34.57 (1400,400) 19.59 3281 (1800,1600)  20.00 40.57 (600,1800) 20.00  40.37
(600,600) 5.331 13.69 (1000,800) 19.99  36.50  (200,1200) 19.02 60.00  (800,600) 20.00  35.65
(1800,1200) 8.741 45.84  (600,600) 19.85 44.76 (1200,200) 20.00 60.00  (200,200) 20.00  26.57
(1400,1000) 6.631 56.62 (400,600) 19.92 36.54 (800,800) 20.00 4141 (1200,200) 20.00 54.64
(1200,1000) 19.06 2764 (800,200) 19.95 58.88 (1400,400) 0.000 20.00  (1600,600) 20.00  42.39
(1000,1000) 18.43 55.89 (1600,200) 1920 4578 (1800,1600)  0.000 60.00  (1800,800) 19.91 44.19
(600,800) 19.87  48.36  (400,400) 19.66 31.52  (1000,1000)  20.00 60.00 (400,1200) 1944  57.62
(600,200) 18.95 54.83 (1800,200) 19.98 55.28 (400,1200) 14.43 60.00  (200,1600) 20.00  43.04

OP: best position of turbines obtained by algorithms, RR: rotor radius, HH: hub height
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Table 10 Optimal positions, hub heights, and rotor radii obtained by GWO, MGWO, RWGWO, and the proposed EC-GWO for 26 turbines

GWO MGWO RWGWO EC-GWO

OP RR HH OP RR HH op RR HH opP RR HH
(800,1200) 1.734  34.14  (200,1400) 15.88 46.00  (1800,1600) 19.05 58.54  (1200,1600)  20.00  60.00
(600,1800) 1896  51.00  (1600,1800)  20.00 55.83 (1800,1200)  20.00  29.81 (600,1600) 20.00  60.00
(400,1200) 19.48  36.88  (800,1200) 19.35 48.24  (1600,1800) 19.86 4222 (1200,1400)  20.00  60.00
(200,1200) 19.45 33.40  (1800,1000)  20.00 38.67 (1400,600) 19.71 28.19 (1800,1200)  20.00  60.00
(1800,800) 19.89 3647  (1600,200) 19.50 26.35 (200,1400) 18.66  35.33 (1800,1000)  20.00  60.00
(400,400) 20.00 4354  (1200,400) 19.39 33.63 (1600,600) 20.00 2271 (1600,1000)  20.00  60.00
(1200,1800) 19.78  47.68  (800,800) 19.50 26.46  (400,800) 20.00  50.67 (1400,1600)  20.00  60.00
(600,1600) 19.36  52.01 (1400,600) 18.11 58.03 (600,600) 19.57 39.97 (600,1000) 20.00  60.00
(1400,800) 19.21 42.51 (1800,1000) 18.15 50.88 (1200,1400) 18.75  44.44  (200,1800) 20.00  60.00
(400,400) 19.51 51.97 (1600,600) 19.89 35776 (200,1200) 19.21 33.78 (1600,600) 20.00  60.00
(1600,400) 19.50  30.72  (1400,400) 18.64 38.96  (1400,400) 20.00  27.38 (1400,1000)  20.00  60.00
(1600,1600) 19.78  23.98 (200,1200) 20.00 34.28 (1000,200) 20.00  44.78 (200,400) 20.00  60.00
(1200,400) 18.86  49.41 (1200,400) 20.00 52.11 (1800,1000)  20.00  33.37 (1600,400) 20.00  60.00
(1000,1600) 19.40  44.57 (1200,200) 19.63 21.42  (800,1400) 20.00  36.29  (1200,400) 20.00  60.00
(1000,800) 16.14  54.14  (400,1600) 18.42 35.15 (1600,1600) 19.99  20.00  (1400,800) 20.00  60.00
(1800,600) 19.91 44.28 (1000,1600) 19.11 24.78 (1000,1600)  20.00  36.15 (600,800) 20.00  60.00
(1000,800) 20.00  21.27 (400,1600) 19.26 51.81 (600,400) 19.01 30.70  (1000,1800)  20.00  60.00
(1600,200) 19.31 31.63 (1600,400) 0.03669 4532  (600,400) 20.00 2643 (800,400) 20.00  60.00
(400,1200) 1329 3226  (800,200) 19.36 29.97  (1200,1000)  20.00  28.96  (800,200) 20.00  60.00
(1200,400) 19.33 36.24  (600,1200) 20.00 43.91 (1200,800) 19.67  21.75 (600,600) 20.00  60.00
(1600,1600) 19.97 56.09  (1200,1600) 19.01 36.70  (800,800) 17.16  41.35 (1000,1200)  20.00  60.00
(1200,200) 18.71 38.31 (400,1200) 19.93 23.78  (200,1200) 19.36 27.24  (1600,200) 20.00  60.00
(1200,200) 19.12 3525 (400,800) 19.39 3429  (1600,1600) 18.61 47.25 (1400,600) 20.00  60.00
(400,400) 19.34  26.71 (200,800) 19.76 30.37  (1800,600) 19.44  48.01 (800,1800) 20.00  60.00
(600,400) 19.72  46.12  (1200,200) 18.89 52.94  (400,200) 20.00  39.48  (400,1800) 20.00  60.00
(800,200) 19.74 4136  (1600,800) 19.31 30.14  (1000,1600) 18.96  51.20  (1000,1000) 19.66  31.62

OP: best position of turbines obtained by algorithms, RR: rotor radius, HH: hub height
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Fig. 7

Layout configuration of turbines using ABC

L 2 * .
& *u
L1 L 30
- *u
. L
ou L
o L 20
00 400 508 802 1000

Layout configuration of turbines using SCA

Layout configuration of turbines using RWGWO

L
LE *n
*u L *n
L] *u
.-
*n
L2 .
00 a0 500 a0 10
L2l
L1l *u
L3 on L
*n
*n *n
o
00 0o e o 1m0
LED
o .
*n
.7 L
L1
o
L ] o
00 400 o oo 100

Optimal configurations of 26 wind turbines

on

EE B 5B R

£

§

E g

g

L2

*n

L 2

Layout configuration of turbines using BBO

.
L& .
*:
eu .
.
LE L1
en o
.u o
®u
0 ) 1000 1200 1800

L0 ®u

L L
*u L L 2
L L

*u
600 w0 1005 1200 1800

. *n
L2 LT}
LY
.
on eu
*n *n
o0 w0 1008 120 1000

L LT
®: L .
.
oo
*r . o
ou o
o on
*n *u
LT
o0 w0 1008 1200 1000

L 30

@ Springer



4772 IntJ Syst Assur Eng Manag (October 2024) 15(10):4750-4778

Fig. 8 Convergence curves for
WFLOP with 26 turbines 13000
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Table 11 Comparison results obtained by EC-GWO and other meta-heuristic algorithms on 30 turbines
ABC BBO SCA WOA GWO MGWO RWGWO EC-GWO
Average 7512.327 15457.39 8393.217 11562.7 12746.41 12663.71 13951.93 15535.19
Minimum  7300.36 15317.01 7489.006 10662.78 12091.47 11869.33 13317.5 15215.84
Maximum  7898.162 15560.09 9119.794 13514.58 13398.93 13497.38 14419.16 15787.08
Median 7458.713 15457.55 8334.575 11355.78 12674.76 12636.83 14070.37 15487.3
Std 229.4362 70.23642 457.5484 904.0591 465.1145 450.1876 419.1293 184.6043
Cost 0.0028067(+) 0.0014247(~) 0.00243074(+) 0.0016403(+) 0.0016545(+) 0.00164238(+) 0.00153739(+) 0.00140418
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Table 12 Optimal positions, hub heights and rotor radii obtained by ABC, BBO, SCA, and WOA for 30 turbines. (OP: best position of turbines
obtained by algorithms, RR: rotor radius, HH: hub height)

ABC BBO SCA WOA

OP RR HH OP RR HH OP RR HH OP RR HH
(600,600) 18.05 24.48 (1200,1000) 19.86  45.83 (1200,600) 0.000  60.00  (1400,1400) 20.00 23.96
(1400,1400) 18.84 4394 (800,800) 19.91 31.51 (800,200) 20.00  55.86  (200,200) 17.28 4191
(1000,800) 19.05 36.14 (1000,1600) 19.52  24.88 (1600,1000)  0.000  60.00  (800,1800) 20.00 55.14
(400,1400) 18.16 29.92 (600, 1400) 19.21 29.85 (400,600) 20.00  60.00  (1400,1200) 19.25 19.62
(1200,1000) 16.16  57.87 (400,1800) 19.91 39.41 (1000,1000) 16.83 60.00  (800,1800) 19.20 52.99
(400,200) 3506  21.81 (1800,1800) 1996  59.59 (200,600) 20.00  60.00 (1400,1800) 20.00 35.96
(1600,1400) 27.01 34.12 (1600,800) 19.73 23.79 (1600,400) 20.00  60.00  (400,1000) 20.00 60.00
(1200,200) 9.250 16.95 (1400,1400) 19.68  40.81 (600,800) 20.00  60.00  (800,400) 20.00 48.28
(600,1200) 18.16  40.73 (200,1400) 19.85 58.45 (1800,1600) 20.00  22.61 (1200,1200)  0.4356 17.11
(800,1600) 15.28 30.97 (200,800) 1998  50.19  (1200,800) 0.000  60.00  (1400,600) 20.00 50.83
(800,800) 16.13 23.51 (1000,800) 1990 3422  (400,1400) 1.377 53.21 (600,600) 17.41 18.18
(1200,1200) 15.14 3946  (800,600) 19.98 2234 (600,1200) 4513 60.00  (400,800) 19.83 23.48

(400,1200) 1628  52.68  (1200,400) 19.86  50.08  (600,1000) 0.000  44.75 (1600,1800) 19.91 34.96
(1800,200) 17.19  32.02  (1000,600) 19.62 2853 (200,1800) 0.000  60.00  (1200,1000) 18.96 33.51

(200,1600) 13.42  54.03 (1400,1000) 19.86  33.68 (1400,1800)  20.00  60.00  (600,400) 0.000 59.83
(1600,1800)  8.403 35.41 (200,400) 19.98 3255  (1400,800) 0.000  4.199  (1400,1400)  20.00 36.07
(200,1800) 11.43 13.76  (1600,600) 19.99 3048  (200,1400) 6914  60.00  (1200,200) 20.00 22.08
(1600,200) 1538  22.06  (800,400) 18.91 57.87  (1800,1400)  20.00  51.66  (200,1800) 20.00 33.01
(1200,800) 2.013 4638  (1600,400) 19.65 4544  (800,400) 20.00 5552  (1800,400) 17.75 59.50
(1000,1000) 14.67  47.16  (1200,200) 1920  20.14  (600,800) 6.924  60.00  (400,200) 0.000 60.00
(1200,600) 18.67  40.55 (800,200) 19.54 2947  (1000,1800)  20.00 4895  (200,1000) 20.00 60.00
(400,1800) 4.450 13.03 (400,1200) 19.99 5111 (1400,1000)  0.000  3.931 (1200,1600) 18.52 60.00
(1200,400) 16.15  50.48 (1800,1400) 19.43 4259  (1800,600) 18.32  33.23 (800,200) 19.87 60.00
(1400,1600) 18.33 37.88 (1400,400) 19.88 4353  (400,1800) 20.00  60.00  (400,1600) 20.00 44.54
(1000,400) 8.695 31.38  (1000,200) 1995  55.83 (1800,1200)  0.000  60.00  (600,800) 20.00 52.53

(1600,800) 8396  46.99  (1800,1200) 1998  39.23 (1200,1600)  20.00  49.29  (1400,200) 20.00 22.00
(1600,1200) 1528 2378  (1800,1000) 1993 2751 (1200,1600)  20.00  34.17 (1000,1000)  20.00 53.66
(400,1000) 1829  47.57  (400,800) 19.35 3534 (1000,200) 20.00  43.21 (400,1200) 19.91 59.90
(1600,600) 16.10 2337  (400,200) 19.71 4439 (1200,800) 20.00  60.00  (1000,600) 20.00 50.09
(1800,1800) 11.40 5583 (1600,200) 1996 4347  (1600,200) 20.00  60.00  (1600,1000)  20.00 51.26
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Table 13 Optimal positions, hub heights, and rotor radii obtained by GWO, MGWO, RWGWO, and the proposed EC-GWO for 30 turbines

GWO MGWO RWGWO EC-GWO

OP RR HH OoP RR HH opP RR HH OP RR HH
(1600,1600) 18.86 50.10 (200, 1200) 14.82 47.94  (1000,400) 1990  48.84  (600,1600) 20.00  60.00
(1400,800) 19.84 30.68 (1400, 1000) 19.16 3095  (200,1800) 20.00  37.35 (200,800) 20.00  60.00
(200,1200) 20.00 44.80 (1400, 1400) 19.61 5323  (600,600) 19.60  48.48  (1600,1400)  20.00  60.00
(1200,400) 19.70 3547 (400, 1200) 19.70 60.00  (200,800) 20.00  40.02  (1800,800) 20.00  60.00
(600, 1400) 20.00 48.76 (1000, 200) 20.00 54.55  (1600,1800)  20.00  49.59  (1600,1000)  20.00  60.00
(1000,1400) 19.57 34.06 (1400, 200) 17.47 2326  (1600,800) 20.00  33.09  (1000,1600)  20.00  60.00
(200,1000) 18.77 32.06 (1800, 1800)  0.000 45.21 (1800,1800) 18.68  31.80  (1200,1000)  20.00  60.00
(1400,600) 0.7639 2534 (800, 1200) 19.42 30.72  (200,600) 19.79  30.24  (1000,1200)  20.00  60.00
(1200,1000)  5.810 20.54 (600, 400) 19.15 25.26  (800,400) 18.37  48.33  (400,1800) 20.00  60.00
(200,400) 18.53 47.67 (1400, 1600) 18.97 28.74  (600,600) 19.63  50.95  (1200,400) 20.00  60.00
(1800,1200) 19.13 31.37 (1000, 200) 20.00 25.59  (400,600) 19.36 3351 (1200,1600)  20.00  60.00
(1800,1200) 18.98 35.70 (1200, 1800) 19.10 22.38  (600,600) 20.00  39.17  (1400,800) 20.00  60.00
(1800,400) 14.97 43.72 (1400, 1600)  20.00 36.88  (1200,200) 18.24 3445  (1400,200) 20.00  60.00
(1000,1000)  20.00 27.92 (800, 800) 0.7677 19.87  (400,600) 19.13  55.36  (1800,400) 20.00  60.00
(1000,600) 20.00 56.26 (800, 400) 19.95 49.77  (400,400) 19.23 2694  (200,600) 20.00  60.00
(800,1400) 20.00 34.51 (1200, 1800)  20.00 41.02  (600,200) 20.00  39.21 (1200,200) 20.00  60.00
(1400,200) 19.73 4048 (1600, 800) 20.00 51.46  (1600,400) 18.70 3898  (200,400) 20.00  60.00
(1600,1200) 19.99 2272 (1600, 400) 19.56 50.55  (1000,200) 19.88  46.46  (1600,200) 20.00  60.00
(600, 1400) 18.49 39.08 (200, 1200) 19.43 20.16  (1000,200) 19.63  54.53 (1000,800) 20.00  60.00
(1200,1800) 16.38 27.69 (1000, 1800)  20.00 53.04  (800,200) 20.00 2934  (600,1000) 20.00  60.00
(200,400) 18.52 42.17 (1200, 1000) 19.86 50.90  (1800,1600) 19.24 5230  (200,200) 20.00  60.00
(1000,1200) 18.66 39.97 (1000, 1800)  20.00 50.76  (1600,1800) 17.02  58.54  (800,200) 20.00  60.00
(1800,1600) 18.36 41.94 (1600, 1800)  20.00 25.67  (400,400) 18.74  35.56  (1000,400) 20.00  60.00
(1200,1600) 18.21 26.24 (400, 800) 16.95 23.67  (600,200) 19.44  24.86  (1000,200) 20.00  60.00
(400,1000) 20.00 31.04 (1400, 200) 18.99 2490  (1800,400) 19.57 2396  (400,1600) 20.00  60.00
(600, 1400) 16.93 35.64 (1400, 200) 19.38 41.77  (1800,1000) 1845  56.36  (200,1800) 20.00  60.00
(1400,800) 20.00 22.13 (400, 600) 20.00 29.61 (1000,1800) 18.74  22.62  (1800,200) 20.00  60.00
(800,400) 20.00 36.34 (200, 600) 19.06 28.86  (1600,400) 1227 5343  (600,400) 20.00  60.00
(1600,1000)  20.00 2536 (200, 200) 19.26 46.84  (200,600) 19.26  57.38  (400,1400) 20.00  60.00
(1400,200) 20.00 59.26 (1600, 1800) 16.33 51.02  (1000,1000) 19.22  48.61 (400,1200) 17.83  38.53

OP: best position of turbines obtained by algorithms, RR: rotor radius, HH: hub height
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Fig. 9 Optimal configurations of 30 wind turbines
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Fig. 10 Convergence curves for

WFLOP with 30 turbines
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5 Conclusion

This paper proposes a modified grey wolf optimizer,
namely an enhanced chaotic grey wolf optimizer (EC-
GWO), for the solution of the wind farm layout optimi-
zation problem. The EC-GWO is combined with four
different strategies, including a modified GWO search
mechanism, modified control parameter, chaotic search,
and adaptive re-initialization of poor solutions. The modi-
fied control parameter is used to enhance the exploitation
ability of the proposed EC-GWO algorithm, and chaotic
search and adaptive re-initialization strategies have been
combined with the EC-GWO to improve the exploration
ability of the algorithm. The remaining strategy is the
modification of the search scheme of the GWO, which
includes the weighted average vector as a base vector
for the search process. This strategy helps to provide a
better transition from the exploration to the exploitation
phase. The proposed algorithm EC-GWO, together with
all these strategies, is validated on a well-known bench-
mark set of 23 numerical optimization problems. This set
contains the problems of various difficulty levels such
as unimodal, multimodal, and low-dimensional multi-
modal, which have verified that the proposed EC-GWO
has an appropriate efficiency to manage and balance the
exploration and exploitation levels during the optimiza-
tion process. By confirming its efficiency through these
benchmarks, it is applied to solve the wind farm layout
optimization problem with a square wind farm of 2 km
X 2 km. The numerical results for two cases with 26 and
30 turbines are obtained and compared with that of other
meta-heuristic algorithms. From the obtained results, it

@ Springer
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can be concluded that the proposed EC-GWO is not only
a better optimizer for WFLOP but also performs best on
test problems. Thus, the proposed EC-GWO is recom-
mended as an efficient solver for the WFLOP. The utility
of EC-GWO can further be explored for other real-world
problems.
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