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Abstract: Artificial bee colony (ABC) optimisation algorithm is relatively  
a recent and simple population-based probabilistic approach for global 
optimisation over continuous and discrete spaces. It has reportedly 
outperformed a few evolutionary algorithms (EAs) and other search heuristics 
when tested over both benchmark and real world problems. ABC, like other 
probabilistic optimisation algorithms, has inherent drawback of premature 
convergence or stagnation that leads to the loss of exploration and exploitation 
capability of ABC. Therefore, in order to find a trade-off between exploration 
and exploitation capability of ABC algorithm two modifications are proposed 
in this paper. First, a new control parameter namely, cognitive learning factor 
(CLF) is introduced in the employed bees phase and onlooker bees phase. 
Cognitive learning is a powerful mechanism that adjusts the current position of 
candidate solution by a means of some specified knowledge. Second, the range 
of ABC control parameter φ is modified. The proposed strategy named as 
balanced artificial bee colony (BABC) algorithm, balances the exploration and 
exploitation capability of the ABC. To prove efficiency of the algorithm, it is 
tested over 24 benchmark problems of different complexities and compared 
with the basic ABC. 
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1 Introduction 

Swarm intelligence is a meta-heuristic approach in the field of nature inspired techniques 
that is used to solve optimisation problems. It is based on the collective behaviour of 
social creatures. Social creatures utilises their ability of social learning to solve complex 
tasks. Researchers have analysed such behaviours and designed algorithms that can be 
used to solve non-linear, non-convex, or combinatorial optimisation problems in many 
science and engineering domains. Previous research (Dorigo and Stutzle, 2004; Kennedy  
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and Eberhart, 1995; Price et al., 2005; Vesterstrom and Thomsen, 2004) have shown that
algorithms based on swarm intelligence have great potential to find a solution of real
world optimisation problem. The algorithms that have emerged in recent years include
ant colony optimisation (ACO) (Dorigo and Stutzle, 2004), particle swarm optimisation
(PSO) (Kennedy and Eberhart, 1995), bacterial foraging optimisation (BFO) (Passino,
2002), artificial bee colony (ABC) optimisation (Karaboga, 2005), etc. Exploration and
exploitation are the important mechanisms in a robust search process. While exploration
process is related to the independent search for an optimal solution, exploitation uses
existing knowledge to bias the search. In the recent years, there are few algorithms
based on bee foraging behaviour developed to improve both exploration and exploitation
capability for solving the numerical optimisation problems (Haijun and Qingxian, 2008;
Banharnsakun et al., 2010b; Gao and Liu, 2011). The ABC algorithm introduced by
Karaboga (2005) is one approach that has been used to find an optimal solution of
numerical optimisation problems. This algorithm is inspired by the behaviour of honey
bees when seeking a quality food source. ABC scheme is relatively a simple, fast and
population-based stochastic search technique.

A lot of developments, comparative studies and applications of ABC have been
carried out in recent years. Performance of the ABC algorithm has been compared
with genetic algorithm (GA) (Goldberg, 1989), differential evolution (DE) (Storn and
Price, 1995; Price, 1996; Price et al., 2005), particle swarm inspired evolutionary
algorithm (PS-EA) (Karaboga and Basturk, 2007), PSO and evolutionary algorithm
(EA) (Karaboga and Basturk, 2008). ABC, DE and PSO algorithms were studied
for measuring the effect of search space scaling in Akay and Karaboga (2008). In
Karaboga and Basturk (2007), Karaboga presented an extended version of ABC for
constrained optimisation problems. He applied it to train neural networks (Karaboga
et al., 2007), to medical pattern classification and clustering problems (Akay et al.,
2008) and to solve TSP problems (Xing et al., 2007). Banharnsakun et al. (2010a)
applied the ABC algorithm on distributed environments. Comparative performance
analysis of ABC algorithm for automatic voltage regulator (AVR) system are carried
out by Taplamacioglu and Gozden (2011). Singh (2009) applied the ABC algorithm
on the leaf-constrained minimum spanning tree (LCMST) problem (ABC-LCMST)
further he compared the approach with ACO and GA. In Singh (2009), comparison
of ABC-LCMST is carried out, in terms of the best, average objective function value
and computational time is carried out. It was observed that ABC-LCMST outperforms
the other approaches. Mala et al. (2010) applied the ABC optimisation-based approach
in automated software test optimisation framework. Dahiya et al. (2010) show the
application of ABC algorithm in software testing. Rao et al. (2008) used the ABC
algorithm to solve network reconfiguration problem in a radial distribution system.
Furthermore they compared, the results obtained by ABC algorithm with the other
methods and found that ABC outperformed in terms of quality of the objective value
and computational efficiency. Bendeş and Özkan (2008) applied the ABC algorithm
for solving direct linear transformation (DLT) and results are compared against those
of the DE algorithm. DLT is a camera calibration method which establishes a relation
between 3D object coordinate and 2D image plane linearly. Linh and Anh (2010)
used the ABC for determining the sectionalising switch to be operated in order to
solve the distribution system loss minimisation problem. Karaboga (2009) applied the
ABC algorithm in the signal processing area for designing digital IIR filters. Horng
and Jiang (2011) solved the image vector quantisation problem via honey bee mating
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optimisation strategy. The results were compared with the other three methods that are
Linde-Buzo-Gray (LBG), PSO-LBG and quantum PSO LBG algorithms. In order to
improve the global search ability of ABC, Xing et al. (2007) worked in the control
mechanism of local optimal solution. Ma et al. (2011) show the synthetic aperture
radar (SAR) image segmentation based on ABC algorithm. Pawar et al. (2008) applied
the ABC algorithm in mechanical engineering problems, including multi-objective
optimisation of electro-chemical machining process parameters, optimisation of process
parameters of the abrasive flow machining process and the milling process.

There are two fundamental processes which drive the swarm to update in ABC: the
variation process, which enables exploring different areas of the search space, and the
selection process, which ensures the exploitation of the previous experience. However,
it has been shown that ABC may occasionally stop proceeding toward the global
optimum even though the population has not converged to a local optimum (Karaboga
and Akay, 2009). Therefore, to maintain the proper balance between exploration and
exploitation behaviour of ABC, a new control parameter called cognitive learning factor
(CLF ) is introduced in ABC and the range of ABC control parameter ϕij (used in
ABC’s food position update equation) is modified. ABC with these modifications is
named as balanced artificial bee colony (BABC). In terminology of social science,
Cognitive Learning is about enabling people to learn by using their reason, intuition
and perception. This technique is often used to change people’s behaviour. The same
phenomenon is also applied in BABC. In BABC, a weight factor (CLF ) is associated
with the individual’s experience in the position update process of employed bees phase
and onlooker bees phase of ABC. Furthermore, the range of control parameter ϕij is
also varied from [–1, 1] to [–0.25, 0.25]. By varying this weight (CLF ) and range of
ϕij , the exploration and exploitation capabilities of ABC or any modified version of
ABC may be modified.

Rest of the paper is organised as follows: Section 2 describes brief overview of
basic ABC algorithm. In Section 3, some basic Improvements on ABC algorithm are
briefly reviewed. BABC algorithm is proposed and tested in Section 4. In Section 5,
BABC concept is applied to a recent variant of ABC called best-so-far in ABC and a
comparative study has been carried out. Finally, in Section 6, paper is concluded.

2 Brief overview of ABC algorithm

Swarm-based optimisation algorithms find solution by collaborative trial and error. Peer
to peer learning behaviour of social colonies is the main driving force behind the
development of many efficient swarm-based optimisation algorithms. ABC optimisation
algorithm is a recent addition in this category. Like any other population-based
optimisation algorithm, ABC consists of a population of potential solutions. With
reference to ABC, the potential solutions are food sources of honey bees. The fitness is
determined in terms of the quality (nectar amount) of the food source. The total number
of bees in the colony are divided into three groups: onlooker bees, employed bees and
scout bees. Number of employed bees or onlooker bees are equal to the food sources.
Employed bees are associated with food sources while onlooker bees are those bees that
stay in the hive and use the information gathered from employed bees to decide the
food source. Scout bee searches the new food sources randomly.
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Similar to the other population-based algorithms, ABC is an iterative process.
ABC process requires cycles of four phases: initialisation phase, employed bees phase,
onlooker bees phase and scout bee phase. Each of the phase is explained as follows.

2.1 Initialisation of the population

Initially, ABC generates a uniformly distributed initial population of SN solutions where
each solution xi(i = 1, 2, ..., SN) is a D-dimensional vector. Here D is the number
of variables in the optimisation problem and xi represent the ith food source in the
population. Each food source is generated as follows:.

xij = xminj + rand[0, 1](xmaxj − xminj) (1)

where xminj and xmaxj are bounds of xi in jth direction and rand[0, 1] is a uniformly
distributed random number in the range [0, 1]

2.2 Employed bee phase

In employed bee phase, employed bees modify the current solution based on the
information of individual experience and the fitness value of the new solution
(nectar amount). If the fitness value of the new source is higher than that of the old
source, the bee updates her position with the new one and discards the old one. The
position update equation for ith candidate in this phase is

vij = xij + ϕij(xij − xkj) (2)

where k ∈ {1, 2, ..., SN} and j ∈ {1, 2, ..., D} are randomly chosen indices. k must be
different from i. ϕij is a random number between [–1, 1].

2.3 Onlooker bees phase

After completion of the employed bees phase, the onlooker bees phase starts. In
onlooker bees phase, all the employed bees share the new fitness information (nectar)
of the new solutions (food sources) and their position information with the onlooker
bees in the hive. Onlooker bees analyse the available information and select a solution
with a probability, pi, related to its fitness. The probability pi may be calculated using
following expression (there may be some other but must be a function of fitness):

pi =
fiti∑SN
i=1 fiti

(3)

where fiti is the fitness value of the solution i. As in the case of the employed bee,
she produces a modification on the position in her memory and checks the fitness of the
candidate source. If the fitness is higher than that of the previous one, the bee memorises
the new position and forgets the old one.
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2.4 Scout bees phase

If the position of a food source is not updated up to predetermined number of cycles,
then the food source is assumed to be abandoned and scout bees phase starts. In this
phase the bee associated with the abandoned food source becomes scout bee and the
food source is replaced by a randomly chosen food source within the search space. In
ABC, predetermined number of cycles is a crucial control parameter which is called
limit for abandonment.

Assume that the abandoned source is xi. The scout bee replaces this food source by
a randomly chosen food source which is generated as follows

xij = xminj + rand[0, 1](xmaxj − xminj), for j ∈ {1, 2, ..., D} (4)

where xminj and xmaxj are bounds of xi in jth direction.

2.5 Main steps of the ABC algorithm

It is clear from the above discussion that there are three control parameters in ABC
search process: The number of food sources SN (equal to number of onlooker or
employed bees), the value of limit and the maximum number of cycles MCN .

In the ABC algorithm, the exploitation process is carried out by onlooker and
employed bees and exploration process is carried out by scout bees in the search space.
The pseudo-code of the ABC algorithm is shown in Algorithm 1 (Karaboga and Akay,
2009):

Algorithm 1 ABC algorithm

-.)*)$%)/0 *+0 1'12%$*)'. '3 /'%2*)'./4 xi(i = 1, 2, ...;SN) 56 2/).& 789:
;6;%0 < 8:

*'%!+ ;6;%0 <> =#> ,#

?('@2;0 .0A /'%2*)'./ vi 3'( *+0 0,1%'60@ 500/ 2/).& 7B9 $.@ 0C$%2$*0 *+0,:

!11%6 *+0 &(00@6 /0%0;*)'. 1(';0// 3'( *+0 0,1%'60@ 500/:
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3 Brief review on basic improvements in ABC algorithm

Often real world provides some complex optimisation problems that can not be easily
dealt with available mathematical optimisation methods. If the user is not very conscious
about the exact solution of the problem in hand then intelligence emerged from social
behaviour of social colony members may be used to solve these kind of problems.
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Honey bees are in the category of social insects. The foraging behaviour of honey
bees produces an intelligent social behaviour, called as swarm intelligence. This swarm
intelligence is simulated and an intelligent search algorithm namely, ABC algorithm is
established by Karaboga (2005). Since its inception, a lot of research has been carried
out to make ABC more and more efficient and to apply ABC for different types of
problems.

In order to get rid of the drawbacks of basic ABC, researchers have improved ABC
in many ways. The potentials where ABC can be improved may be broadly classified
into three categories:

• fine tuning of ABC control parameters SN, ϕij , limit

• hybridisation of ABC with other population-based probabilistic or deterministic
algorithms

• introducing new control parameters.

This paper concentrates on the third area of ABC research, i.e., the paper introduces a
new control parameter, namely, CLF in ABC process.

Karaboga (2005) have observed that the value of ϕij should be in the range of
[–1, 1]. The value of limit should be SN ×D, where, SN is the number of solutions
and D is the dimension of the problem.

Gao and Liu (2011) proposed an improved solution search equation in ABC,
which is based on the fact that bee searches only around the best solution of the
previous iteration to improve the exploitation. Banharnsakun et al. (2010b) introduced
a new variant of ABC namely the best-so-far selection in ABC algorithm. To
enhance the exploitation and exploration processes, they propose to make three major
changes by introducing the best-so-far method, an adjustable search radius, and an
objective-value-based comparison method in DE.

Haijun and Qingxian (2008) proposed a modification in the initialisation scheme
by making the initial group symmetrical, and the Boltzmann selection mechanism was
employed instead of roulette wheel selection for improving the convergence ability of
the ABC algorithm.

In order to maximise the exploitation capacity of the onlooker stage, Tsai et al.
(2009) introduced the Newtonian law of universal gravitation in the onlooker phase of
the basic ABC algorithm in which onlookers are selected based on a roulette wheel
(interactive ABC, IABC). Baykasoglu et al. (2007) incorporated the ABC algorithm
with shift neighbourhood searches and greedy randomised adaptive search heuristic and
applied it to the generalised assignment problem.

Furthermore, a modified versions of the ABC algorithm are introduced and applied
for efficiently solving real-parameter optimisation problems by Akay and Karaboga
(2012). In the proposed work, effects of the perturbation rate that controls the frequency
of parameter change, the scaling factor (step size) that determines the magnitude
of change in parameters while producing a neighbouring solution, and the limit
parameter on the performance of the ABC algorithm are investigated on real-parameter
optimisation.
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4 Balanced ABC

4.1 A few drawbacks of ABC

The inherent drawback with most of the population-based stochastic algorithms is
premature convergence. ABC is not an exception. Any population-based algorithm is
regarded as an efficient algorithm if it is fast in convergence and able to explore the
maximum area of the search space. In other words, if a population-based algorithm is
capable of balancing between exploration and exploitation of the search space, then the
algorithm is regarded as an efficient algorithm. From this point of view, basic ABC
is not an efficient algorithm (Karaboga and Akay, 2009). Karaboga and Akay (2009)
compared the different variants of ABC for global optimisation and found that ABC
shows a poor performance and remains inefficient in exploring the search space. The
problems of premature convergence and stagnation is a matter of serious consideration
for designing a comparatively efficient1 ABC algorithm.

4.2 Motivation for BABC

This section proposes a new control parameter, CLF as well as modified range of ϕ in
ABC algorithm.

4.2.1 Effect of CLF and ϕij in ABC

Exploration of the whole search space and exploitation of the near optimal solution
region may be balanced by maintaining the diversity in early and later iterations for any
random number-based search algorithm. Position update equation (2) in employed bees
phase and onlooker bees phase in ABC may be seen in the following way:

vij = A× xij +B × (xij − xkj) (5)

i.e., modified position vij is the weighted sum of the food source position xij and the
difference (xij − xkj) of two food source positions. Here, A is the weight to target food
source and B is the weight to the difference of random food source and target food
source. In basic ABC, A is set to be 1, while B is a uniformly distributed real random
number (ϕij) in the range [–1, 1]. Studies have been carried out with varying (ϕij) for
better exploration and exploitation mechanism (Akay and Karaboga, 2012). In this paper,
experiments are performed over 24 benchmark problems to find an optimal strategy to
set the weight A and B. Here, A named as CLF and denoted by ‘C’ (for this paper)
and B is represented by ϕij as usual. CLF is the weight to individual’s current position
or in other words, this is the weight to self confidence and therefore, it is named so.

Hence, the modified position update equation in employed bees phase and onlooker
bees phase of cognitive learning ABC becomes:

vij = C × xij + ϕij(xij − xkj) (6)

Symbols have their usual meanings. In the proposed strategy, value of C is linearly
increased (0.1 to 1) while the range of control parameter ϕij is linearly decreased
([–1, 1] to [–0.25, 0.25]) by iterations. It is clear from equation (6) that low value of C
and high value of ϕij , increase the exploration capability as the weight for current food
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position is low whereas weight for variation is high. Furthermore, high value of C and
low value of ϕij , increase exploitation capability as in this case, weight to current food
position is high whereas weight to variation of food source position is low. Therefore,
by linearly increasing (0.1 to 1) CLF and linearly decreasing ϕij ([–1, 1] to [–0.25,
0.25]), diversity will be relatively high in early iterations and will keep on reducing in
successive iterations while convergence rate behaviour is expected to be opposite of the
diversity. So, it is expected that these modifications should improve the results.

The BABC algorithm is similar to the basic ABC algorithm except the position
update process of employed bees as well as onlooker bees. The pseudo-code of the
BABC algorithm is shown in Algorithm 2.

Algorithm 2 Balanced artificial bee colony
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4.3 Control parameters in BABC

As stated by Karaboga (2005) and Akay and Karaboga (2012), ABC performance is
very sensitive to the choice of ϕij and limit. Some settings of control parameters are
suggested by Karaboga (2005):

• ϕij = rand[−1, 1]

• limit should be SN ×D

• SN should be equal to the number of employed bees or onlooker bees.

BABC introduces one new parameter ‘C’ named CLF, therefore, now there are four
controlling parameters (ϕij , limit, SN,C) in BABC. CLF C is an important parameter
in BABC as it is responsible for better balance between the exploration and exploitation
capabilities of the algorithm. C is linearly increased from 0.1 to 1 as follows:

Ci+1 = Ci +
(1− 0.1)

N
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where N is the total number of iterations. The range of ϕij also modified and vary
from [–1, 1] to [–0.25, 0.25]. This scheme is expected to produce more diversity and
slow convergence in initial iterations and fast convergence to a good solution in later
iterations. In the next two sections BABC is tested over 24 benchmark problems.

Table 1 Test problems

S. no. Test problem Objective function Search space
1 Sphere f(x) =

∑n
i=1 x

2
i [–5.12 5.12]

2 De Jong f4 f(x) =
∑n

i=1 i.(xi)
4 [–5.12 5.12]

3 Griewank f(x) = 1 + 1
4,000

∑n
i=1 x

2
i −

∏n
i=1 cos(

xi√
i
) [–600 600]

4 Rosenbrock f(x) =
∑n

i=1(100(xi+1 − x2)2 + (xi − 1)2) [–30 30]
5 Rastrigin f(x) = 10n+

∑n
i=1[x

2
i − 10 cos(2πxi)] [–5.12 5.12]

6 Ackley f(x) = −20 + e+ exp(− 0.2
n

√∑n
i=1 xi

3) [–1 1]
− exp

(
1
n

∑n
i=1 cos (2π.xi)xi

)
7 DropWave f(x) = − 1+cos( 12

√∑n
i=1 xi

2)
1
2

∑n
i=1 xi

2+2
[–5.12 5.12]

8 Alpine f(x) =
∑n

i=1 |xisin xi + 0.1xi| [–10 10]
9 Michalewicz f(x) = −

∑n
i=1 sin xi(sin ( i.xi

2

π
)) [0π]

10 Cosine mixture f(x) =
∑n

i=1 xi
2 [–1 1]

− 0.1(
∑n

i=1 cos 5.π.xi) + 0.1n
11 Exponential f(x) = −(exp(−0.5

∑n
i=1 xi

2)) + 1 [–1 1]
12 Zakharov f(x) =

∑n
i=1 xi

2 + (
∑n

i=1
ixi
2
)
2 [–5.12 5.12]

+
(∑n

i=1
ix1
2

)4
13 Cigar f(x) = x0

2 + 100, 000
∑n

i=1 xi
2 [–10 10]

14 brown3 f(x) =
∑n−1

i=1 (xi
2xi+1

2+1
+ xi+1

2xi
2+1

) [–1 4]
15 Schwefel f(x) =

∑n
i=1 |xi|+

∏n
i=1 |xi| [–10 10]

16 Salomon problem f(x) = 1− cos
(
2π

√∑n
i=1 x

2
i

)
[–100 100]

(SAL) + 0.1
(√∑n

i=1 x
2
i

)
17 Axis parallel f(x) =

∑n
i=1 i.x

2
i [–5.12 5.12]

hyper-ellipsoid function
18 Pathological function f(x) [–100 100]

=
∑n−1

i=1

(
0.5 +

sin2
√

(100x2
i+x2

i+1)−0.5

1+0.001(x2
i−2xixi+1+x2

i+1)
2

)
19 Sum of different powers f(x) =

∑n
i=1 |xi|i+1 [–1 1]

20 Step function f(x) =
∑n

i=1 (⌊xi + 0.5⌋)2 [–100 100]
21 Quartic function, f(x) =

∑n
i=1 i.x

4
i + random[0, 1) [–1.28 1.28]

i.e., noise
22 Inverted cosine wave f(x) [–5 5]

function = −
∑n−1

i=1

(
exp

(
−(x2

i+x2
i+1+0.5xixi+1)

8

)
× I

)
where I = cos

(
4
√

x2
i + x2

i+1 + 0.5xixi+1

)
23 Neumaier 3 f(x) =

∑n
i=1 (xi − 1)2 −

∑n
i=2 xixi−1 [D2D2]

problem (NF3)
24 Rotated hyper-ellipsoid f(x) =

∑n
i=1

∑i
j=1 x

2
j [–65.536

function 65.536]



232 J.C. Bansal et al.

5 Experimental results and discussion

5.1 Test problems under consideration

In order to see the effect of CLF on ABC, 24 scalable (the number of decision
variables may be varied as per user’s choice) test problems of optimisation are selected
(listed in Table 1). These are continuous optimisation problems and have different
degrees of complexity and multimodality. For this study, number of decision variables
is set to 30.

5.2 Experimental setting

To test ABC and ABC variants over test problems, following experimental setting is
adopted:

• colony size SN=100

• ϕij = rand[−1, 1] and for BABC range of ϕij is linearly decreased from [−1, 1]
to [–0.25, 0.25]

• number of food sources SN/2

• limit = 1,500

• the stopping criteria is either maximum number of iterations (which is set to be
1,000) is reached or the objective function value ≤ 0.0000001

• the number of simulations/run = 100

• the number of decision variables in scalable test problems D = 30.

5.3 Comparison of BABC with ABC

Numerical results with experimental setting of Section 5.2 are given in Table 2. In
Table 2, success rate (SR) (a simulation is said to be successful if the objective
function value is ≤ 0.0000001 in iterations up to 1,000), mean objective function value
(MOFV ), average function evaluations (AFE), and standard deviation (SD) are
reported. Table 2 shows that most of the time inclusion of CLF and fine tuning of ϕij

in ABC improves the reliability, efficiency and accuracy.
Further, Figure 1 shows the convergence characteristics in terms of the error of

the median run of each algorithm for functions on which both the algorithms achieved
100% success rate within the specified maximum function evaluations (to carry out fair
comparison of convergence rate). It can be observed that the convergence of BABC is
relatively better than the basic ABC.

Some more intensive statistical analyses based on t test and boxplots have been
carried out for results of the basic ABC and BABC.
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Table 2 Comparison of the results of test problems

Test problem Algorithm MOFV SD AFE SR
Sphere ABC 8.02E-08 2.01E-08 53,396 100

BABC 7.45E-08 2.15E-08 22,469 100
De Jong ABC 5.58E-08 3.04E-08 22,540 100

BABC 4.74E-08 3.18E-08 9,934 100
Griewank ABC 9.30E-08 1.10E-07 85,687 90

BABC 6.49E-08 2.67E-08 33,203 100
Rosenbrock ABC 7.53E-01 7.22E-01 100,000 0

BABC 2.54E+01 1.27E+00 100,000 0
Rastrigin ABC 3.05E-02 1.70E-01 94,389 67

BABC 6.51E-08 2.64E-08 32,728 100
Ackley ABC 4.46E-06 2.54E-06 100,000 0

BABC 8.10E-08 1.85E-08 49,182 100
DropWave ABC 3.06E-08 2.75E-08 379 100

BABC 3.29E-08 2.83E-08 451 100
Alpine ABC 1.62E-04 1.30E-04 100,000 0

BABC 8.37E-08 1.77E-08 53,531 100
Michalewicz ABC 7.01E-07 8.06E-07 93,437.4 17

BABC 5.78E-08 3.94E-08 63,528.12 96
Cosine mixture ABC 7.55E-08 2.23E-08 55,176 100

BABC 7.07E-08 2.54E-08 22,662 100
Exponential ABC 7.57E-08 2.28E-08 44,511 100

BABC 7.07E-08 2.27E-08 19,288 100
Zakharov ABC 1.20E+02 1.59E+01 100,000 0

BABC 1.03E+02 1.47E+01 100,000 0
Cigar ABC 7.51E-08 2.30E-08 83,412 100

BABC 7.75E-08 2.20E-08 35,993 100
brown3 ABC 7.61E-08 2.14E-08 55,410 100

BABC 7.00E-08 2.16E-08 22,698 100
Schwefel ABC 2.31E-07 1.29E-07 99,903 10

BABC 8.69E-08 1.53E-08 45,473 100
Salomon problem ABC 1.59E+00 2.02E-01 100,000 0

BABC 9.02E-01 1.27E-01 100,000.08 0
Axis parallel ABC 7.89E-08 1.98E-08 58,400 100
hyper-ellipsoid function BABC 7.68E-08 2.22E-08 25,099 100
Pathological function ABC 4.15E+00 3.25E-01 100,000 0

BABC 1.25E+00 4.70E-01 100,000 0
Sum of different powers ABC 5.85E-08 2.73E-08 49,387 100

BABC 5.06E-08 2.77E-08 21,132 100
Step function ABC 0.00E+00 0.00E+00 20,837 100

BABC 0.00E+00 0.00E+00 8,494 100
Quartic function ABC 1.23E+01 5.57E-01 100,003.92 0

BABC 9.94E+00 4.18E-01 100,008.07 0
Inverted cosine ABC 5.17E-08 2.97E-08 6,121 100
wave function BABC 5.37E-08 3.15E-08 7,745 100
Neumaier 3 problem ABC –4.22E+01 2.47E+02 61,774 95

BABC –4.18E+01 6.00E+01 22,917 100
Rotated hyper-ellipsoid function ABC 7.78E-08 2.23E-08 71,014 100

BABC 7.66E-08 2.00E-08 30,269 100
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Figure 1 Convergence characteristics of ABC and BABC for functions, (a) sphere
(b) De Jong’s (c) dropwave (d) cosine mixture (e) exponential (f) cigar (g) brown3
(h) axis parallel hyperellipsoid (i) sum of different powers (j) step function
(k) inverted cosine wave function (l) rotated hyper-ellipsoid (see online version
for colours)
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Figure 1 Convergence characteristics of ABC and BABC for functions, (a) sphere
(b) De Jong’s (c) dropwave (d) cosine mixture (e) exponential (f) cigar (g) brown3
(h) axis parallel hyperellipsoid (i) sum of different powers (j) step function
(k) inverted cosine wave function (l) rotated hyper-ellipsoid (continued)
(see online version for colours)
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5.3.1 Statistical analysis

In order to extract the best strategy of setting range of control parameter ϕ and CLF
in ABC, a comparative analysis is done for ABC and BABC. Statistical comparisons
have been carried out using t-test and boxplots.

The t-test is quite popular among researchers in the field of evolutionary
computation. In this pape,r students t-test is applied according to the description given
in Croarkin and Tobias (2010) for a confidence level of 0.95. Table 3 shows the results
of the t-test for the null hypothesis that there is no difference in the mean number of
function evaluations of 100 runs using the basic ABC and BABC. Note that here ‘+’
indicates the significant difference (or the null hypothesis is rejected) at a 0.05 level
of significance, ‘–’ implies that there is no significant difference while ‘=’ indicates
that comparison is not possible. In Table 3, BABC is compared with the ABC. It is
observed that significant differences observed in 23 comparisons out of 24 comparisons.
Therefore, it can be concluded that the results of BABC is significantly better than the
basic ABC.

For the purpose of comparison in terms of consolidated performance, boxplot
analysis is carried out. The empirical distribution of data is efficiently represented
graphically by the boxplot analysis tool (Williamson et al., 1989). The boxplots for
ABC and BABC are shown in Figure 2. It is clear from this figure that BABC is
better than the basic ABC as Interquartile Range and Median are low for BABC.



236 J.C. Bansal et al.

Table 3 Results of the student’s t test

S. no. Test problem ABC S. no. Test problem ABC
1 Sphere + 13 Cigar +
2 De Jong f4 + 14 brown3 +
3 Griewank + 15 Schwefel +
4 Rosenbrock + 16 Salomon problem (SAL) +
5 Rastrigin + 17 Axis parallel hyper-ellipsoid function +
6 Ackley + 18 Pathological function +
7 DropWave + 19 Sum of different powers +
8 Alpine + 20 Step function +
9 Michalewicz – 21 Quartic function, i.e., noise +
10 Cosine mixture + 22 Inverted cosine wave function +
11 Exponential + 23 Neumaier 3 problem (NF3) +
12 Zakharov + 24 Rotated hyper-ellipsoid function +

Figure 2 Boxplot graph for average function evaluation (see online version for colours)
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5.4 BSFABC and GABC with same modifications

It is obvious from Section 5.3 that the BABC performs better with the linearly
increasing CLF and linearly decreasing range of ϕ. The experimental findings support
our theoretical suggestions that these modifications in ABC should produce relatively
better results.

Further, it will be interesting to investigate that whether linearly increasing CLF
and linearly decreasing range of ϕ improve the performance of some modified versions
of ABC. In this paper, these modifications are tested with best-so-far selection in
ABC algorithm (BSFABC) (Banharnsakun et al., 2010b) and gbest-guided ABC
(GABC) algorithm (Zhu and Kwong, 2010). The BSFABC and GABC algorithm,
with CLF and modified range of ϕ are denoted as balanced BSFABC (BBSFABC)
and balanced GABC (BGABC) respectively. The experimental results are shown
in Tables 4 and 5 respectively. The experiments are carried out on the same set
of benchmark optimisation functions on which authors of BSFABC and GABC
performed the experiments. It can be observed that except for Rosenbrock problem,
modifications improve the performance of both the algorithms.
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Table 4 Experimental results of BSFABC and BBSFABC
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Table 5 Experimental results of GABC and BGABC
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More intensive comparative analyses using statistical tools; t-test and boxplots between
BSFABC and BBSFABC, GABC and BGABC has also been carried out.
Tables 6 and 7 show the results of the t-test respectively. It can be observed
from Tables 6 and 7 that in 15 comparisons out of 16 comparisons BBSFABC
outperforms than the BSFABC and in 11 comparisons out of 18 comparisons
BGABC outperforms than the GABC. Therefore, it can be concluded that results of
BBSFABC and BGABC are significantly better than the BSFABC and GABC
respectively.

Table 6 Results of the student’s t test of BSFABC with BBSFABC

Test problem Dimension BSFABC Test problem Dimension BSFABC
Sphere 10 + Griewank 10 +

30 + 30 +
50 + 50 +

Rastrigin 10 + Ackley 10 +
30 + 30 +
50 + 50 +

Rosenbrock 10 + Schaffer 2 +
30 +
50 –

Table 7 Results of the student’s t test of GABC with BGABC

Test problem Dimension GABC Test problem Dimension GABC
Sphere 25 – Griewank 25 +

50 – 50 +
75 + 75 +

Rastrigin 25 – Ackley 25 +
50 + 50 +
75 + 75 +

Rosenbrock 25 – Schaffer 2 +
50 – 3 +
75 – 4 –

For the purpose of comparison in terms of consolidated performance, boxplot
analysis is carried out. Boxplots based on the average function evaluations of
BSFABC-BBSFABC and GABC-BGABC are shown in Figures 3 and 4
respectively.

It is observed by boxplot analysis that interquartile Range and Median of
BBSFABC is significantly less than that of BSFABC and Median of BGABC
is less than that of GABC. Hence, the performance of BSFABC and GABC is
significantly improved after incorporating CLF with the modify range of ϕ. Through
t-test and boxplots, we can say that the effect of the modifications is significant on the
performance of BSFABC and GABC algorithms.
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Figure 3 Boxplot graph for average function evaluation of BSFABC and BBSFABC
(see online version for colours)
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Figure 4 Boxplot graph foraverage function evaluation of GABC and BGABC (see online
version for colours)
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6 Conclusions

In this paper, basic ABC algorithm is improved by introducing a new control parameter
(CLF) in ABC search procedure and linearly decreasing range of control parameter ϕ
of position update equation from [–1, 1] to [–0.25, 0.25]. With the help of experiments
over test problems, it has been shown that the reliability (due to success rate), efficiency
(due to average number of function evaluations) and accuracy (due to mean objective
function value) of basic as well as modified versions of ABC, namely BSFABC and
GABC algorithms with these modifications are higher than that of its original versions.
The modified ABC so obtained is named as BABC.
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Based on this study, it is concluded that BABC is a better candidate in the field of
nature inspired algorithms for function optimisation. The future scope of this work is
the implementation of these modifications to other biologically inspired algorithms.
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