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Abstract Artificial bee colony (ABC) optimization

algorithm is relatively a simple and recent population based

probabilistic approach for global optimization. ABC has

been outperformed over some Nature Inspired Algorithms

(NIAs) when tested over benchmark as well as real world

optimization problems. The solution search equation of

ABC is significantly influenced by a random quantity

which helps in exploration at the cost of exploitation of the

search space. In the solution search equation of ABC, there

is a enough chance to skip the true solution due to large

step size. In order to balance between diversity and con-

vergence capability of the ABC, a new local search phase

is integrated with the basic ABC to exploit the search space

identified by the best individual in the swarm. In the pro-

posed phase, ABC works as a local search algorithm in

which, the step size that is required to update the best

solution, is controlled by Golden Section Search approach.

The proposed strategy is named as Memetic ABC

(MeABC). In MeABC, new solutions are generated around

the best solution and it helps to enhance the exploitation

capability of ABC. MeABC is established as a modified

ABC algorithm through experiments over 20 test problems

of different complexities and 4 well known engineering

optimization problems.

Keywords Artificial bee colony � Swarm intelligence �
Exploration-exploitation � Memetic algorithm

1 Introduction

Swarm Intelligence has become an emerging and interest-

ing area in the field of nature inspired techniques that is

used to solve optimization problems during the past dec-

ade. It is based on the collective behavior of social crea-

tures. Swarm based optimization algorithms find solution

by collaborative trial and error. Social creatures utilize

their ability of social learning to solve complex tasks. Peer

to peer learning behavior of social colonies is the main

driving force behind the development of many efficient

swarm based optimization algorithms. Researchers have

analyzed such behaviors and designed algorithms that can

be used to solve nonlinear, nonconvex or discrete optimi-

zation problems. Previous research (Dorigo and Di Caro

1999; Kennedy and Eberhart 1995; Price et al. 2005;

Vesterstrom and Thomsen 2004) have shown that algo-

rithms based on swarm intelligence have great potential to

find solutions of real world optimization problems. The

algorithms that have emerged in recent years include ant

colony optimization (ACO) (Dorigo and Di Caro 1999),

particle swarm optimization (PSO) (Kennedy and Eberhart

1995), bacterial foraging optimization (BFO) (Passino

2002) etc.
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Artificial bee colony (ABC) optimization algorithm

introduced by Karaboga (2005) is a recent addition in this

category. This algorithm is inspired by the behavior of

honey bees when seeking a quality food source. Like any

other population based optimization algorithm, ABC con-

sists of a population of potential solutions. The potential

solutions are food sources of honey bees. The fitness is

determined in terms of the quality (nectar amount) of the

food source. ABC is relatively a simple, fast and popula-

tion based stochastic search technique in the field of nature

inspired algorithms.

There are two fundamental processes which drive the

swarm to update in ABC: the variation process, which

enables exploring different areas of the search space, and

the selection process, which ensures the exploitation of the

previous experience. However, it has been shown that the

ABC may occasionally stop proceeding toward the global

optimum even though the population has not converged to

a local optimum (Karaboga and Akay 2009). It can be

observed that the solution search equation of ABC algo-

rithm is good at exploration but poor at exploitation (Zhu

and Kwong 2010). Therefore, to maintain the proper bal-

ance between exploration and exploitation behavior of

ABC, it is highly required to develop a local search

approach in the basic ABC to exploit the search region.

In this paper, a new local search strategy has been

integrated with the basic ABC. In the proposed local search

strategy, ABC’s position update process is modified to

exploit the search space in the vicinity of the best solution

of the current swarm. The step size of the position update

process in ABC is iteratively reduced and controlled by the

Golden Section Search (GSS) (Kiefer 1953) strategy.

In past, GSS strategy has been incorporated as a local

search strategy with many nature inspired algorithms like

differential evolution algorithm (DE), PSO etc. Mininno

and Neri proposed a memetic differential evolution algo-

rithm in noisy optimization in which they integrated the

GSS strategy with the basic DE algorithm (Mininno and

Neri 2010). Oh and Hori develop an optimization strategy

named, Golden Section Search driven PSO (Oh and Hori

2006) in which at a time only one particle is updated using

the GSS strategy. But in the proposed strategy, GSS is not

applied as a local search strategy but applied to fine tune

the control parameter / of the ABC’s position update

process (refer Sect. 3) during the local search phase.

Rest of the paper is organized as follows: Sect. 2

describes brief review on memetic approach. The ABC

algorithm is explained in Sect. 3. Memetic ABC (MeABC)

is proposed and tested in Sect. 4. In Sect. 5, performance of

the proposed strategy is analyzed. The superiority of

MeABC over other considered algorithms is verified

through its application to various engineering optimization

problems in Sect. 6. Finally, in Sect. 7, paper is concluded.

2 Brief review on memetic approach

In the field of optimization, memetic computing is an

interesting approach to solve the complex problems (Ong

et al. 2010). Memetic is synonymous to memes which can

be described as ‘‘instructions for carrying out behavior,

stored in brains’’ (Susan 1999). Memetic computing is

defined as ‘‘... a paradigm that uses the notion of memes as

units of information encoded in computational representa-

tions for the purpose of problem solving’’ (Ong et al.

2010). Memetic Computing can be seen then as a subject

which studies complex structures composed of simple

modules (memes) which interact and evolve adapting to the

problem in order to solve it (Neri et al. 2012). A good

survey on Memetic Computing can be found in (Ong et al.

2010; Neri et al. 2012, Chen et al. 2011). Memetic Algo-

rithms can be seen as an aspect of the realization or con-

dition based subset of Memetic computing (Chen et al.

2011). The term ‘‘Memetic Algorithm’’ (MA) was first

presented by Moscato in (Moscato 1989) as a population

based algorithm having local improvement strategy for

search of solution. MAs are hybrid search methods that are

based on the population-based search framework (Fogel

and Michalewicz 1997; Eiben and Smith 2003) and

neighbourhood-based local search framework (LS) (Hoos

and Stützle 2005). Popular examples of population-based

methods include Genetic Algorithms and other Evolution-

ary Algorithms while Tabu Search and Simulated

Annealing (SA) are two prominent local search represen-

tatives. The main role of memetic algorithm in evolution-

ary computing is to provide a local search to establish

exploitation of the search space. Local search algorithms

can be categorized as (Neri et al. 2012):

– stochastic or deterministic behavior

– single solution or multi-solution based search

– steepest descent or greedy approach based selection.

A local search is thought of as an algorithmic structure

converging to the closest local optimum while the global

search should have the potential of detecting the global

optimum. Therefore, to maintain the proper balance

between exploration and exploitation behavior of an

algorithm, it is highly required to incorporate a local

search approach in the basic population based algorithm to

exploit the search region.

Generally, population based search algorithms like

genetic algorithm (GA) (Goldberg 1989), evolution strat-

egy (ES) (Beyer and Schwefel 2002), differential evolution

(DE) (Price et al. 2005), ant colony optimization (ACO)

(Dorigo and Di Caro 1999), particle swarm optimization

(PSO) (Kennedy 2006), artificial immune system (Das-

gupta 2006), artificial bee colony (Karaboga 2005) etc. are

stochastic in nature (Yang 2011). In recent years,
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researchers are hybridizing the local search procedures

with the population based algorithms to improve the

exploitation capability of the population based algorithms

(Neri and Tirronen 2009; Caponio et al. 2009; Mininno and

Neri 2010; Wang et al. 2009; Valenzuela and Smith 2002;

Ishibuchi et al. 2003; Ong et al. 2003). Further, MAs have

been successfully applied to solve a wide range of complex

optimization problems like multiobjective optimization

(Tan 2005; Knowles et al. 2008; Goh et al. 2009), con-

tinuous optimization (Ong et al. 2003; Ong and Keane

2004), combinatorial optimization (Ishibuchi et al. 2003;

Tang et al. 2009; Repoussis et al. 2009), bioinformatics

(Richer et al. 2009; Gallo et al. 2009), flow shop sched-

uling (Ishibuchi et al. 2003), scheduling and routing (Brest

et al. 2006), machine learning (Ishibuchi and Yamamoto

2004; Caponio et al. 2007; Ruiz-Torrubiano and Suárez

2010), etc.

Ong and Keane (Ong and Keane 2004) introduced

strategies for MAs control that decide at runtime which

local search method is to be chosen for the local refine-

ment of the solution. Further, they proposed multiple local

search procedures during a MA search in the sprit of

Lamarckian learning. Further, Ong et al. (2006) described

a classification of memes adaptation in adaptive MAs on

the basis of the mechanism used and the level of historical

knowledge on the memes employed. Then the asymptotic

convergence properties of the adaptive MAs are analyzed

according to the classification. Nguyen et al. (2009) pre-

sented a novel probabilistic memetic framework that

models MAs as a process involving the decision of

embracing the separate actions of evolution or individual

learning and analyzed the probability of each process in

locating the global optimum. Further, the framework

balances evolution and individual learning by governing

the learning intensity of each individual according to the

theoretical upper bound derived while the search

progresses.

In past, very few efforts have been done to incorporate

a local search with ABC. Kang et al. (2011) proposed a

Hooke Jeeves Artificial Bee Colony algorithm (HJABC)

for numerical optimization. In HJABC, authors incorpo-

rated a local search technique which is based on Hooke

Jeeves method (HJ) (Hooke and Jeeves 1961) with the

basic ABC. Further, Mezura-Montes and Velez-Koeppel

(2010) introduced a variant of the basic ABC named

Elitist Artificial Bee Colony. In their work, the authors

integrated two local search strategies. The first local

search strategy is used when 30, 40, 50, 60, 70, 80, 90, 95

and 97% of function evaluations have been completed.

The purpose of this is to improve the best solution

achieved so far by generating a set of 1000 new food

sources in its neighbourhood. The other local search

works when 45, 50, 55, 80, 82, 84, 86, 88, 90, 91,92, 93,

94, 95, 96, 97, 98, and 99 % of function evaluations have

been reached.

Fister et al. (2012) proposed a memetic ABC for Large-

Scale Global Optimization. In the proposed approach, ABC

is hybridized with two local search heuristics: the Nelder-

Mead algorithm (NMA) (Rao and Rao 2009) and the ran-

dom walk with direction exploitation (RWDE) (Rao and

Rao 2009). The former is attended more towards explora-

tion, while the latter more towards exploitation of the

search space. The stochastic adaptive rule as specified by

Neri (Cotta and Neri 2012) is applied for balancing the

exploration and exploitation.

Fei Kang et al. (2011) presented a novel hybrid Hooke

Jeeves ABC (HJABC) algorithm with intensification

search based on the Hooke Jeeves pattern search and the

ABC. In the HJABC, two modification are proposed, one

is the fitness (fiti) calculation function of basic ABC is

changed and calculated by Eq. (1) and another is that a

Hooke Jeeves local search is incorporated with the basic

ABC.

fiti ¼ 2� SPþ 2ðSP� 1Þðpi � 1Þ
NP� 1

; ð1Þ

here pi is the position of the solution in the whole popu-

lation after ranking, SP 2 ½1:0; 2:0� is the selection pres-

sure. A medium value of SP = 1.5 can be a good choice

and NP is the number of solutions.

Neri et al. (2011) proposed an unconventional memetic

computing strategy for solving continuous optimization

problems characterized by memory limitations. The pro-

posed algorithm, unlike employing an explorative evolu-

tionary framework and a set of local search algorithms,

employs multiple exploitative search within the main

framework and performs a multiple step global search. The

proposed local memetic approach is based on a compact

evolutionary framework. Iacca et al. (2012) proposed a

counter-tendency approach for algorithmic design for

memetic computing algorithms. Further Kang et al. (2011)

described a Rosenbrock ABC (RABC) that combines

Rosenbrock’s rotational direction method with ABC for

accurate numerical optimization. In RABC, exploitation

phase is introduced in the ABC using Rosenbrock’s rota-

tional direction method.

3 Artificial bee colony (ABC) algorithm

The ABC algorithm is relatively recent swarm intelligence

based algorithm. The algorithm is inspired by the intelli-

gent food foraging behavior of honey bees. In ABC, each

solution of the problem is called food source of honey bees.
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The fitness is determined in terms of the quality of the food

source. In ABC, honey bees are classified into three groups

namely employed bees, onlooker bees and scout bees. The

numbers of employed bees are equal to the onlooker bees.

The employed bees are the bees which searches the food

source and gather the information about the quality of the

food source. Onlooker bees which stay in the hive and

search the food sources on the basis of the information

gathered by the employed bees. The scout bee searches

new food sources randomly in places of the abandoned

foods sources. Similar to the other population-based algo-

rithms, ABC solution search process is an iterative process.

After, initialization of the ABC parameters and swarm, it

requires the repetitive iterations of the three phases namely

employed bee phase, onlooker bee phase and scout bee

phase. Each of the phase is described as follows:

3.1 Initialization of the swarm

The parameters for the ABC are the numbers of food

sources, the number trials after which a food source is

considered to be abandoned and the termination criteria. In

the basic ABC, the numbers of food sources are equal to

the employed bees or onlooker bees. Initially, a uniformly

distributed initial swarm of SN food sources, where each

food source xi (i = 1, 2, ..., SN) is a D-dimensional vector,

generated. Here D is the number of variables in the opti-

mization problem and xi represent the ith food source in the

swarm. Each food source is generated as follows:

xij ¼ xminj þ rand½0; 1�ðxmaxj � xminjÞ ð2Þ

where xminj and x maxj are bounds of xi in jth direction and

rand [0,1] is a uniformly distributed random number in the

range [0, 1].

3.2 Employed bee phase

In employed bee phase, employed bees modify the current

solution (food source) based on the information of indi-

vidual experience and the fitness value of the new solution.

If the fitness value of the new solution is higher than that of

the old solution, the bee updates her position with the new

one and discards the old one. The position update equation

for ith candidate in this phase is

x0ij ¼ xij þ /ijðxij � xkjÞ ð3Þ

where k 2 f1; 2; :::; SNg and j 2 f1; 2; :::;Dg are randomly

chosen indices. k must be different from i. /ij is a random

number between [-1, 1].

3.3 Onlooker bees phase

After completion of the employed bees phase, the

onlooker bees phase starts. In onlooker bees phase, all the

employed bees share the new fitness information (nectar)

of the new solutions (food sources) and their position

information with the onlooker bees in the hive. Onlooker

bees analyze the available information and select a solu-

tion with a probability, probi, related to its fitness. The

probability probi may be calculated using following

expression (there may be some other but must be a

function of fitness):

probi ¼
fitnessi

PSN
i¼1 fitnessi

ð4Þ

where fitnessi is the fitness value of the solution i. As in the

case of the employed bee, it produces a modification on the

position in its memory and checks the fitness of the can-

didate source. If the fitness is higher than that of the pre-

vious one, the bee memorizes the new position and forgets

the old one.

3.4 Scout bees phase

If the position of a food source is not updated up to pre-

determined number of cycles, then the food source is

assumed to be abandoned and scout bees phase starts. In

this phase, the bee associated with the abandoned food

source becomes scout bee and the food source is replaced

by a randomly chosen food source within the search

space. In ABC, predetermined number of cycles is a

crucial control parameter which is called limit for

abandonment.

Assume that the abandoned source is xi. The scout bee

replaces this food source by a randomly chosen food source

which is generated as follows

xij ¼ xminj þ rand½0; 1�ðxmaxj � xminjÞ; for j 2 f1; 2; :::;Dg
ð5Þ

where xminj and xmaxj are bounds of xi in jth direction.

3.5 Main steps of the ABC algorithm

Based on the above explanation, it is clear that there are

three control parameters in ABC search process: the

number of food sources SN (equal to number of onlooker or

employed bees), the value of limit and the maximum

number of iterations. The pseudo-code of the ABC is

shown in Algorithm 1 (Karaboga and Akay 2009):
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4 Memetic artificial bee colony algorithm

Dervis Karaboga and Bahriye Akay (Karaboga and Akay

2009) compared the different variants of ABC for global

optimization and found that the ABC shows poor per-

formance and remains inefficient in exploring the search

space. Exploration of the large area of search space and

exploitation of the near optimal solution region may be

balanced by maintaining the diversity in early and later

iterations for any random number based search algo-

rithm. In ABC, any potential solution updates itself using

the information provided by a randomly selected poten-

tial solution within the current swarm. In this process, a

step size, which is a linear combination of a random

number /ij 2 ½�1; 1�; current solution and a randomly

selected solution, are used. Now the quality of the

updated solution highly depends upon this step size. If

the step size is too large, which may occur if the dif-

ference of current solution and randomly selected solu-

tion is large with high absolute value of /ij, then updated

solution can surpass the true solution and if this step size

is too small then the convergence rate of ABC may

significantly decrease. A proper balance of this step size

can enhance the exploration and exploitation capability

of the ABC simultaneously. But, since this step size

consists of random component so the balance can not be

done manually.

The another way of avoiding the situation of skipping

true solution while maintaining the speed of convergence is

the incorporation of some memetic search into the basic

ABC process. The memetic search algorithm, in case of

large step sizes, can search within the area that is jumped

by the basic ABC. During the iterations, memetic algo-

rithm exhibits very strong exploitation capability due to

executing efficient local search on solutions (Wang et al.

2009).

In this paper, a new local search phase is introduced

within the ABC. In the proposed phase, ABC algorithm

works as a local search algorithm in which only the best

individual of the current swarm updates itself in its

neighbourhood. The proposed strategy in ABC is hereby,

named as Memetic Search Phase (MSP) and the entire

algorithm is named as Memetic ABC (MeABC). In MSP,

the step size, required to update the best individual in the

current swarm is controlled by the Golden Section Search

(GSS) approach (Kiefer 1953).

It is clear from the position update Eq. (3) of ABC that

the step size of an individual depends upon the random

component / and the difference between the individual and

a randomly selected individual. Therefore, the random

component / is an important parameter which decides

direction and step size of an individual. In the MSP, the

GSS strategy is used to fine tune the value of / dynami-

cally and iteratively, in order to exploit the region nearby

best solution.

Original GSS approach finds the optima of a unimodal

continuous function without using any gradient information

of the function. GSS processes the interval [a = -1.2,

b = 1.2] and generates two intermediate points:

F1 ¼ b� ðb� aÞ � w; ð6Þ
F2 ¼ aþ ðb� aÞ � w; ð7Þ

where w = 0.618 is the golden ratio. The pseudo-code of

GSS algorithm is shown in Algorithm 2:
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In this paper, MSP is applied in each iteration as a local

search technique to find the best suitable value of ABC

parameter /ij corresponding to the best food position.

More specifically, in every cycle of the ABC, the best

solution updates its position until the step size is equal or

less than a predefined limit to avoid the stagnation and

loss of computational efficiency. Here, the step size is

controlled using the GSS, which iteratively decreases the

range of /ij for the best particle of the current swarm.

Here the local search in the space where /ij varies, may be

seen as the minimization of /ij over the variable F (= F1

or F2) of objective function f in the direction determined

by xbest (the best solution) and xk (a randomly selected

solution). At first the range of /ij is set to [a, b] where

a = -1.2 and b = 1.2, then it is reduced using the

Eqs. (6) and (7) iteratively. Therefore, the local search

attempts to solve the minimization problem given in

Eq. (8):

min f ð/Þ in ½a; b�; ð8Þ

Here, it is assumed that the optimization problem under

consideration is of minimization type. The pseudo-code of

the proposed memetic search strategy in ABC is shown in

Algorithm 3.

1916 J. C. Bansal et al.
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In Algorithm 3 and 4, � determines the termination of

local search. pr is a perturbation rate (a number between 0

and 1) which controls the amount of perturbation in the

best solution, U(0,1) is a uniformly distributed random

number between 0 and 1, D is the dimension of the prob-

lem and xk is a randomly selected solution within swarm.

See Sect. 5.2 for details of these parameter settings.

In MeABC, only the best solution of the current swarm

updates itself in its neighbourhood. Here, it should be noted

that GSS is not applied as a local search strategy but the

ABC position update process is modified by adjusting the

value of / for exploiting the neighboring area of the best

solution. Figures 1, 2 and 3 show the effect of memetic

search phase, used to update an individual in two dimen-

sional search space for Easom’s function (f19), refer

Table 1.

Figure 1 shows iterative change through iterations in the

range of /ij. Figure 2 shows position change behavior of

the best solution. Figure 3 shows iterative reduction of the

step size of the best solution.

The proposed MeABC consists of four phases: employed

bee phase, onlooker bee phase, scout bee phase and

memetic search phase out of which employed bee phase,

onlooker bee phase and scout bee phase are similar to the

basic ABC except the position update equation of an

individual. The position update equation of MeABC is

given in equation 9. The inspiration behind the develop-

ment of this position update is PSO (Kennedy and Eberhart

1995) and Gbest Guided ABC (GABC) (Zhu and Kwong

2010). Due to the insertion of best individual, now other

individuals are benefitted from the information of best

solution.

x0ij ¼ xij þ /ijðxij � xkjÞ þ wijðxbestj � xijÞ; ð9Þ

here, wij is a uniform random number in [0, C], where C is

a non-negative constant and a parameter in MeABC.

The working of the memetic search phase is explained

in Algorithm 3. The pseudo-code of the MeABC algorithm

is shown in Algorithm 5.
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5 Experimental results and discussion

5.1 Test problems under consideration

In order to analyze the performance of MeABC, 20 dif-

ferent global optimization problems (f1 to f20) are selected

(listed in Table 1). These are continuous optimization

problems and have different degrees of complexity and

multimodality. Test problems f1 - f11 and f18 - f20 are

taken from (Ali et al. 2005) and test problems f12 - f17 are

taken from (Suganthan et al. 2005) with the associated

offset values.

5.2 Experimental setting

To prove the efficiency of MeABC, it is compared with

ABC and some recent algorithms namely Gbest-guided

ABC (GABC) (Zhu and Kwong 2010), Best-So-Far ABC

(BSFABC) (Banharnsakun et al. 2011), Modified ABC

(MABC) (Akay et al. 2010), Hooke Jeeves ABC (HJABC)

(Kang et al. 2011), Opposition based lévy flight ABC

(OBLFABC) (Harish et al. 2012) and Scale factor local

search DE (SFLSDE) (Neri and Tirronen 2009). To test

MeABC, ABC, GABC, BSFABC, MABC, HJABC, OBLFABC

and SFLSDE over considered problems, following experi-

mental setting is adopted:

– Colony size NP = 50 (Diwold et al. 2011; El-Abd

2011),

– /ij = rand[-1, 1],

– Number of food sources SN = NP/2,

– limit = 1500 (Karaboga and Akay 2010; Akay et al.

2010),

– C = 1.5 (Zhu and Kwong 2010),

– The stopping criteria is either maximum number of

function evaluations (which is set to be 200,000) is

reached or the acceptable error (mentioned in Table 1)

has been achieved,

– The number of simulations/run =100,

– In order to investigate the effect of the parameter

pr, described by Algorithm 4 on the performance of

MeABC, its sensitivity with respect to different values

of pr in the range [0.1, 1], is examined in the Figure 4.

It is clear that the test problems are very sensitive

towards pr and value 0.4 gives comparatively better

results. Therefore pr = 0.4 is selected for the experi-

ments in this paper.

– Value of termination criteria in memetic search phase is

set to be � ¼ 0:01:

– Parameter settings for the algorithms GABC, BSFABC,

MABC, HJABC, OBLFABC and SFLSDE are similar to

their original research papers.

5.3 Results comparison

Numerical results with experimental settings of subsection 5.2

are given in Table 2. In Table 2, standard deviation

(SD), success rate (SR), mean error (ME) and average number

of function evaluations (AFE) are reported. Table 2 shows

that most of the time MeABC outperforms in terms of reli-

ability, efficiency and accuracy as compared to the other

considered algorithms. Some more intensive analyses based

on performance indices and boxplots have been carried out for

the results of MeABC and considered algorithms.

Figure 5 shows the convergence characteristics in terms

of the error of the median run of each algorithm for
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Table 2 Comparison of the results of test problems

Test function Measure MeABC ABC GABC BSFABC MABC HJABC OBLFABC SFLSDE

f1 SD 5.10E-04 1.52E?01 1.89E?01 1.22E?01 1.02E-01 5.94E-02 1.70E?01 7.72E-04

ME 9.58E-03 9.73E?01 9.73E?01 8.49E?01 1.46E-01 8.94E-02 1.08E?02 9.11E-03

AFE 94564.52 200000 200000.01 200000 200005.52 198146 200030.9 131560.85

SR 100 0 0 0 0 4 0 100

f2 SD 3.28E-02 6.25E-02 3.38E-02 6.58E-02 3.46E-02 3.45E-02 4.62E-02 3.91E-02

ME 9.24E-01 9.56E-01 9.32E-01 9.53E-01 9.31E-01 9.12E-01 9.34E-01 9.23E-01

AFE 18209.52 149071.35 75922.34 184747.81 27739.5 20266.59 86086.26 23117.77

SR 100 68 98 74 100 100 94 100

f3 SD 2.99E-06 2.79E-06 2.73E-06 2.54E-06 1.99E-06 2.94E-06 2.94E-06 1.97E-06

ME 5.24E-06 5.84E-06 5.60E-06 5.92E-06 7.51E-06 5.44E-06 6.56E-06 7.20E-06

AFE 4738.72 15619.5 9290.5 14278 9422 4989.58 7693.7 8966.62

SR 100 100 100 100 100 100 100 100

f4 SD 4.02E-01 5.26E-01 6.08E-01 5.56E-01 4.35E-01 4.62E-01 5.14E-01 1.53E-01

ME 9.20E?00 1.17E?01 1.05E?01 9.96E?00 9.87E?00 9.01E?00 9.59E?00 1.51E?00

AFE 200017.89 200040.14 200020.76 200034.71 200013.78 200025.36 200030.13 199773.56

SR 0 0 0 0 0 0 0 0

f5 SD 2.05E-06 4.32E-05 2.58E-06 1.98E-01 1.61E-06 1.71E-06 1.74E-06 7.95E-01

ME 8.14E-06 1.10E-05 6.94E-06 6.16E-02 8.42E-06 8.61E-06 8.31E-06 6.78E-01

AFE 37002.11 74479.03 45459.4 124146.79 64730.3 79129.95 26016.21 125272

SR 100 99 100 80 100 99 100 47

f6 SD 9.50E-03 9.54E-01 1.75E?00 5.91E?00 9.57E-02 1.24E-02 1.27E-02 1.36E-02

ME 9.01E-02 1.08E?00 1.45E?00 4.67E?00 1.13E-01 8.59E-02 8.80E-02 8.49E-02

AFE 21903.53 198665.08 195087.89 200022.97 134358.49 48774.77 18549.06 22721.63

SR 100 4 8 0 97 100 100 100

f7 SD 7.97E-07 2.24E-06 1.99E-06 2.41E-06 7.37E-07 6.05E-07 1.58E-06 8.26E-07

ME 9.16E-06 7.21E-06 7.84E-06 6.98E-06 9.17E-06 9.24E-06 8.31E-06 9.13E-06

AFE 11770.12 19614.5 13030.5 26863 22548.5 19214.65 15241.73 21966.27

SR 100 100 100 100 100 100 100 100

f8 SD 7.56E-07 2.13E-06 1.83E-06 2.41E-06 8.14E-07 6.49E-07 1.78E-06 8.06E-07

ME 9.10E-06 7.35E-06 8.10E-06 7.13E-06 9.06E-06 9.18E-06 8.31E-06 9.17E-06

AFE 13031.58 22016 14283 28673.5 20985.5 17368.82 17270.74 24387.23

SR 100 100 100 100 100 100 100 100

f9 SD 2.90E-06 1.73E-06 2.92E-06 6.07E-05 3.06E-06 2.99E-06 2.83E-06 2.87E-06

ME 5.14E-06 8.58E-06 5.14E-06 2.19E-05 5.24E-06 4.76E-06 7.62E-06 5.02E-06

AFE 2688.15 15768.28 9344.1 50222.41 10082.84 4839.56 7022.41 3002.58

SR 100 100 100 92 100 100 100 100

f10 SD 2.42E-03 1.07E-01 1.24E-02 2.99E-02 7.72E-03 2.52E-03 1.60E-02 2.12E-03

ME 7.03E-03 1.67E-01 1.58E-02 2.18E-02 1.26E-02 7.14E-03 1.50E-02 6.82E-03

AFE 30813.41 198058.11 154523.83 155548.21 144033.7 43566.59 120442.76 9719.26

SR 100 2 42 47 54 100 69 100

f11 SD 2.03E-05 7.32E-05 3.57E-05 8.16E-05 6.84E-05 5.58E-05 9.67E-06 2.11E-04

ME 8.17E-05 1.69E-04 9.27E-05 1.45E-04 1.90E-04 1.18E-04 9.82E-05 5.48E-04

AFE 47100.43 178355.83 98389.57 140918.92 191449.61 127096.42 68245.49 171243.91

SR 100 23 90 51 10 58 97 17

f12 SD 7.83E-02 9.44E-01 7.56E-02 5.63E?00 9.67E-01 7.42E-01 2.87E?00 7.63E-01

ME 1.03E-01 6.79E-01 9.30E-02 2.96E?00 6.80E-01 5.79E-01 6.40E-01 2.48E-01

AFE 103949.03 175270.8 100594.41 185221.92 163969.65 151927.05 62464.38 62586.87

SR 97 24 93 13 39 46 88 96
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functions on which ABC and MeABC algorithms achieved

100 % success rate within the specified maximum function

evaluations (to carry out fair comparison of convergence

rate). It can be observed that the convergence of MeABC is

relatively better than ABC.

MeABC and the considered algorithms are compared

through SR, ME and AFE in Table 2. First SR is compared

for all these algorithms and if it is not possible to distin-

guish the algorithms based on SR then comparison is made

on the basis of AFE. ME is used for comparison if it is not

possible on the basis of SR and AFE both. Outcome of this

comparison is summarized in Table 3. In Table 3, ‘?’

indicates that the MeABC is better than the considered

algorithm and ‘-’ indicates that the proposed algorithm is

not better than considered algorithms. The last row of

Table 3 establishes the superiority of MeABC over the

considered algorithms.

For the purpose of comparison in terms of consolidated

performance, boxplot analyses have been carried out for all

the considered algorithms. The empirical distribution of

data is efficiently represented graphically by the boxplot

analysis tool (Williamson et al. 1989). The boxplots for

MeABC, ABC, GABC, BSFABC, MABC, HJABC, OBLFABC

and SFLSDE are shown in Fig. 6. It can be observed from

Fig. 6 that MeABC performs better than the basic ABC and the

considered algorithms as interquartile range and median are

low comparatively.

Further, to compare the considered algorithms, by

giving weighted importance to the success rate, the mean

error and the average number of function evaluations,

Table 2 continued

Test function Measure MeABC ABC GABC BSFABC MABC HJABC OBLFABC SFLSDE

f13 SD 1.92E-06 2.37E-06 2.02E-06 2.53E-06 1.72E-06 1.89E-06 2.29E-06 1.69E-06

ME 7.86E-06 6.87E-06 7.28E-06 6.99E-06 8.05E-06 7.62E-06 7.72E-06 7.95E-06

AFE 5535.34 9069 5586.5 18028 8731.5 7941.75 6718.35 12234.46

SR 100 100 100 100 100 100 100 100

f14 SD 1.24E?01 1.15E?01 1.02E?01 1.43E?01 9.16E?00 1.34E?01 1.16E?01 1.56E?01

ME 8.23E?01 8.67E?01 8.47E?01 1.22E?02 8.27E?01 8.47E?01 9.01E?01 1.14E?02

AFE 200012.07 200011.96 200007.18 200036.47 200015.62 200056.91 200031 199771.79

SR 0 0 0 0 0 0 0 0

f15 SD 3.33E?03 3.46E?03 3.48E?03 8.42E?03 2.88E?03 3.01E?03 3.07E?03 6.66E?03

ME 1.05E?04 1.10E?04 1.10E?04 2.69E?04 9.76E?03 1.01E?04 1.12E?04 2.27E?04

AFE 200025.38 200025.28 200018.02 200036.25 200015.8 200029.99 200032.45 199768.59

SR 0 0 0 0 0 0 0 0

f16 SD 7.35E-04 2.55E-03 9.15E-06 5.71E-03 1.89E-03 2.46E-06 2.86E-03 7.35E-04

ME 7.95E-05 8.38E-04 5.56E-06 4.22E-03 5.23E-04 7.48E-06 1.09E-03 8.20E-05

AFE 41069.37 80839.77 42393.56 112424.09 81447.47 63630.7 72268.18 43725.22

SR 99 90 99 62 93 100 86 99

f17 SD 1.28E-06 1.71E-06 1.48E-06 1.83E-06 1.02E-06 9.38E-07 1.50E-06 9.99E-07

ME 8.64E-06 7.96E-06 8.38E-06 8.03E-06 9.00E-06 8.88E-06 8.43E-06 8.79E-06

AFE 10010.84 16833 9353.5 31072.5 14167.57 15113.51 11605.06 18202.59

SR 100 100 100 100 100 100 100 100

f18 SD 4.38E-15 9.98E-07 4.37E-15 4.08E-15 4.06E-15 3.92E-15 4.40E-15 4.79E-14

ME 4.73E-15 2.36E-07 5.05E-15 6.60E-15 4.94E-15 4.34E-15 5.36E-15 5.68E-14

AFE 3001.46 102407.85 3862.8 13795.04 13702.76 12325.91 4188.2 116882.18

SR 100 71 100 100 100 100 100 43

f19 SD 7.75E-14 9.48E-05 3.79E-13 2.82E-14 1.18E-03 3.76E-05 3.30E-14 2.72E-14

ME 1.50E-14 2.26E-05 8.68E-14 3.86E-14 8.34E-04 9.02E-06 4.30E-14 5.01E-14

AFE 37595.23 190415.59 45276.99 4582.08 200024.99 186876.19 13219.66 8217.09

SR 100 10 99 100 0 15 100 100

f20 SD 2.72E-06 2.84E-06 2.83E-06 1.22E-05 2.84E-06 2.80E-06 2.88E-06 5.33E-04

ME 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.95E-03 1.16E-03

AFE 3228.44 25398.62 4168.08 20077.65 8489.06 5193.96 5652.2 595.98

SR 100 100 100 99 100 100 100 100
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performance indices (PI) are calculated (Thakur Deep

2007). The values of PI for the MeABC, ABC, GABC,

BSFABC, MABC, HJABC, OBLFABC and SFLSDE are

calculated by using following equations:

PI ¼ 1

Np

XNp

i¼1

ðk1a
i
1 þ k2a

i
2 þ k3a

i
3Þ

where ai
1 ¼ Sri

Tri ; ai
2 ¼

Mf i

Af i ; if Sri [ 0:

0; if Sri ¼ 0:

(

; and

ai
3 ¼ Moi

Aoi i ¼ 1; 2; :::;Np

– Sri = Successful simulations/runs of ith problem.

– Tri = Total simulations of ith problem.

– Mf i = Minimum of average number of function evalua-

tions used for obtaining the required solution of ith problem.
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Fig. 5 Convergence characteristics of ABC and MeABC for functions a f3, b f7, c f8, d f9, e f13, f f17, g f20
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– Afi = Average number of function evaluations used for

obtaining the required solution of ith problem.

– Moi = Minimum of mean error obtained for the ith

problem.

– Aoi = Mean error obtained by an algorithm for the ith

problem.

– Np = Total number of optimization problems

evaluated.

The weights assigned to the success rate, the average

number of function evaluations and the mean error are

represented by k1, k2 and k3 respectively where

k1 ? k2 ? k3 = 1 and 0 B k1, k2, k3 B 1. To calculate

the PIs, equal weights are assigned to two variables while

weight of the remaining variable vary from 0 to 1 as given

in (Thakur Deep 2007). Following are the resultant cases:

1. k1 ¼ W ; k2 ¼ k3 ¼ 1�W
2
; 0�W � 1;

2. k2 ¼ W ; k1 ¼ k3 ¼ 1�W
2
; 0�W � 1;

3. k3 ¼ W ; k1 ¼ k2 ¼ 1�W
2
; 0�W � 1

The graphs corresponding to each of the cases (1), (2) and

(3) for the considered algorithms are shown in Fig. 7a, b,

and c respectively. In these figures the weights k1, k2 and k3

are represented by horizontal axis while the PI is repre-

sented by the vertical axis.

In case (1), average number of function evaluations and

the mean error are given equal weights. PIs of the con-

sidered algorithms are superimposed in Fig. 7a for com-

parison of the performance. It is observed that PI of

MeABC is higher than the considered algorithms. In case

(2), equal weights are assigned to the success rate and

average number of function evaluations and in case (3),

equal weights are assigned to the success rate and the mean

Table 3 Summary of Table 2 outcome

Function MeABC Vs

ABC

MeABC Vs

GABC

MeABC Vs

VSFABC

MeABC Vs

MABC

MeABC Vs

HJABC

MeABC Vs

OBLFABC

MeABC Vs

SFLSDE

f1 ? ? ? ? ? ? ?

f2 ? ? ? ? ? ? ?

f3 ? ? ? ? - ? ?

f4 ? ? ? ? - ? -

f5 ? ? ? ? ? - ?

f6 ? ? ? ? ? - ?

f7 ? ? ? ? ? ? ?

f8 ? ? ? ? ? ? ?

f9 ? ? ? ? ? ? ?

f10 ? ? ? ? ? ? -

f11 ? ? ? ? ? ? ?

f12 ? ? ? ? ? ? ?

f13 ? - ? ? ? ? ?

f14 ? ? ? - ? ? ?

f15 ? ? ? - - ? ?

f16 ? ? ? ? - ? ?

f17 ? - ? ? ? ? ?

f18 ? ? ? ? ? ? ?

f19 ? ? - ? ? - -

f20 ? ? ? ? ? ? -

Total number of

? sign

20 18 19 18 16 17 16
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Fig. 6 Boxplots graphs for average number of function evaluation
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error. It is clear from Fig. 7b, c that the algorithms perform

same as in case (1).

6 Applications of MeABC to engineering optimization

problems

To see the robustness of the proposed strategy, four real

world engineering optimization problems, namely, Lennard-

Jones (Clerc M. List based pso for real problems.

http://clerc.maurice.free.fr/pso/ListBasedPSO/ListBased

PSO28PSOsite29.pdf and 16 2012), parameter estimation

for frequency-modulated (FM) sound waves (Das and

Suganthan 2010), Compression Spring (Onwubolu and Babu

2004; Sandgren 1990) and Welded beam design optimiza-

tion problem (Ragsdell and Phillips 1976; Mahdavi et al.

2010) are also solved. The considered engineering optimi-

zation problems are described as follows:

6.1 Lennard-Jones

The function to minimize is a kind of potential energy of a

set of N atoms. The position Xi of the atom i has three

coordinates, and therefore the dimension of the search

space is 3N. In practice, the coordinates of a point X are the

concatenation of the ones of the Xi. In short, we can write

X = (X1, X2, ..., XN), and we have then

E1ðXÞ ¼
XN�1

i¼1

XN

j¼iþ1

1

kXi � Xjk2a �
1

kXi � Xjka

 !

In this study N = 5, a = 6, and the search space is [2,2]

(Clerc M. List based pso for real problems. http://clerc.

maurice.free.fr/pso/ListBasedPSO/ListBasedPSO28PSOsite

29.pdf and 16 2012).

6.2 Frequency-modulated (FM) sound wave

Frequency-modulated (FM) sound wave synthesis has an

important role in several modern music systems. The

parameter optimization of an FM synthesizer is a six

dimensional optimization problem where the vector to be

optimized is X ¼ fa1;w1; a2;w2; a3;w3g of the sound wave

given in Eq. (10). The problem is to generate a sound (1)

similar to target (2). This problem is a highly complex

multimodal one having strong epistasis, with minimum

value f ðXsolÞ ¼ 0: This problem has been tackled using

genetic algorithms (GAs) in (Akay et al. 2010; Ali et al.

2005). The expressions for the estimated sound and the

target sound waves are given as:

yðtÞ ¼ a1sinðw1thþ a2sinðw2thþ a3sinðw3thÞÞÞ ð10Þ
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Fig. 7 Performance index for test problems; a for case (1), b for case (2) and c for case (3)
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y0ðtÞ ¼ ð1:0Þsinðð5:0Þth� ð1:5Þsinðð4:8Þth
þ ð2:0Þsinðð4:9ÞthÞÞÞ ð11Þ

respectively where h = 2p/100 and the parameters are

defined in the range [-6.4, 6.35]. The fitness function is the

summation of square errors between the estimated wave (1)

and the target wave (2) as follows:

E2ðXÞ ¼
X100

i¼0

ðyðtÞ � y0ðtÞÞ2

Acceptable error for this problem is 1.0E-05, i.e. an

algorithm is considered successful if it finds the error less

than acceptable error in a given number of generations.

6.3 Compression spring

The considered third engineering optimization application

is compression spring problem (Onwubolu and Babu 2004;

Sandgren 1990). This problem minimizes the weight of a

compression spring, subject to constraints of minimum

deflection, shear stress, surge frequency, and limits on

outside diameter and on design variables. There are three

design variables: the wire diameter x1, the mean coil

diameter x2, and the number of active coils x3. This is a

simplified version of a more difficult problem. The math-

ematical formulation of this problem is:

x1 2 f1; :::; 70g granularity1

x2 2 ½0:6; 3�
x3 2 ½0:207; 0:5� granularity 0:001

and four constraints

g1 :¼ 8Cf Fmaxx2

px3
3

� S� 0

g2 :¼ lf � lmax� 0

g3 :¼ rp � rpm� 0

g4 :¼ rw �
Fmax� Fp

K
� 0

with

Cf ¼ 1þ 0:75
x3

x2 � x3

þ 0:615
x3

x2

Fmax ¼ 1000

S ¼ 189000

lf ¼
Fmax

K
þ 1:05ðx1 þ 2Þx3

lmax ¼ 14

rp ¼
Fp

K
rpm ¼ 6

Fp ¼ 300

K ¼ 11:5� 106 x4
3

8x1x3
2

rw ¼ 1:25

and the function to be minimized is

E3ðXÞ ¼ p2 x2x2
3ðx1 þ 2Þ

4

The best known solution is (7, 1.386599591, 0.292), which

gives the fitness value f* = 2.6254. Acceptable error for this

problem is 1.0E-04.

6.4 Welded beam design optimization problem

The problem is to design a welded beam for minimum cost,

subject to some constraints (Ragsdell and Phillips 1976;

Mahdavi et al. 2007). The objective is to find the minimum

fabricating cost of the welded beam subject to constraints

Table 4 Comparison of the results of test problems

Test

function

Algorithm SD ME AFE SR

E1 MeABC 3.37E-04 9.09E-04 53,516.6 95

ABC 1.27E-04 8.59E-04 69,676.78 100

GABC 5.74E-04 1.10E-03 101,719.41 76

BSFABC 3.64E-04 9.78E-04 161,599.53 79

MABC 1.56E-01 4.74E-01 200,032.7 0

HJABC 1.28E-04 8.53E-04 60,196.31 90

OBLFABC 1.03E-04 9.08E-04 20,101.4 100

SFLSDE 4.27E-03 1.24E-03 128,146.36 68

E2 MeABC 2.43E?00 6.24E-01 131,494.58 79

ABC 5.38E?00 5.80E?00 198,284.91 1

GABC 4.96E?00 3.42E?00 186,455.4 18

BSFABC 4.96E?00 1.03E?01 200,028.93 0

MABC 2.83E?00 2.55E?00 200,023.02 0

HJABC 2.41E?00 1.14E?00 197,071.77 3

OBLFABC 3.79E?00 1.62E?00 159,614.82 45

SFLSDE 8.91E-01 8.75E?00 199,773.14 0

E3 MeABC 2.37E-03 1.71E-03 123,440.3 62

ABC 1.17E-02 1.36E-02 187,602.32 10

GABC 9.50E-03 8.64E-03 189,543.56 11

BSFABC 3.08E-03 3.02E-02 200,031.13 0

MABC 6.59E-03 5.28E-03 181,705.01 15

HJABC 1.53E-03 1.17E-03 109,737.22 70

OBLFABC 4.43E-03 3.27E-03 135,098 58

OBLFABC 4.43E-03 3.27E-03 135,098 58

SFLSDE 3.68E-01 5.36E-02 24,538.12 93

E4 MeABC 4.43E-03 9.51E-02 26966.28 100

ABC 8.75E-02 2.52E-01 200,017.84 1

GABC 9.22E-03 9.91E-02 116,903.66 68

BSFABC 5.12E-03 9.46E-02 53,885.62 98

MABC 4.91E-03 9.36E-02 32,049.47 100

HJABC 5.64E-03 9.34E-02 20,297.88 100

OBLFABC 1.90E-02 1.03E-01 96,331.12 80

SFLSDE 4.76E-03 9.36E-02 2,970 100
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on shear stress s, bending stress r, buckling load Pc, end

deflection d, and side constraint. There are four design

variables: x1, x2, x3 and x4. The mathematical formulation

of the objective function is described as follows:

E4ðxÞ ¼ 1:10471x2
1x2 þ 0:04811x3x4ð14:0þ x2Þ

subject to:

g1ðxÞ ¼ sðxÞ � smax� 0

g2ðxÞ ¼ rðxÞ � rmax� 0

g3ðxÞ ¼ x1 � x4� 0

g4ðxÞ ¼ dðxÞ � dmax� 0

g5ðx~Þ ¼ P� PcðxÞ� 0

0:125� x1� 5; 0:1� x2; x3� 10 and 0:1� x4� 5

where

sðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s02 � s0s00
x2

R
þ s002

r

;

s0 ¼ P
ffiffiffi
2
p

x1x2

; s00 ¼ MR

J
;M ¼ PðLþ x2

2
Þ;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2

4
þ x1 þ x3

2

� �2
r

;

J ¼ 2=
ffiffiffi
2
p

x1x2

x2
2

4
þ x1 þ x3

2

� �2
� �� �

;

rðxÞ ¼ 6PL

x4x3
2
; dðxÞ ¼ 6PL3

Ex4x3
2
;

PcðxÞ ¼
4:013Ex3x4

3

6L2
1� x3

2L

ffiffiffiffiffiffi
E

4G

r !

;

P ¼ 6; 000 lb; L ¼ 14 in:; dmax ¼ 0:25 in:;

rmax ¼ 30; 000 psi;

smax ¼ 13; 600 psi;E ¼ 30� 106 psi;G ¼ 12� 106 psi:

Table 5 Summary of Table 4 outcome

Function MeABC Vs

ABC

MeABC Vs

GABC

MeABC Vs

BSFABC

MeABC Vs

MABC

MeABC Vs

HJABC

MeABC Vs

OBLFABC

MeABC Vs

SFLSDE

E1 - ? ? ? ? - ?

E2 ? ? ? ? ? ? ?

E3 ? ? ? ? - ? -

E4 ? ? ? ? - ? -

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k
1
)

P
er

fo
rm

an
ce

 In
d

ex

 
MeABC
ABC
GABC
BSFABC
MABC
HJABC
OBLFABC
SFLSDE

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k
2
)

P
er

fo
rm

an
ce

 In
d

ex

 

 
MeABC
ABC
GABC
BSFABC
MABC
HJABC
OBLFABC
SFLSDE

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k
3
)

P
er

fo
rm

an
ce

 In
d

ex

 

 
MeABC
ABC
GABC
BSFABC
MABC
HJABC
OBLFABC
SFLSDE

(c)

Fig. 8 Performance index for engineering optimization problems; a for case (1), b for case (2) and c for case (3)
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The best known solution is (0.205730, 3.470489, 9.036624,

0.205729), which gives the function value 1.724852.

Acceptable error for this problem is 1.0E-01.

6.5 Experimental results

To solve the constraint optimization problems (E1 and E4),

a penalty function approach is used in the experiments. In

this approach the search is modified by converting the

original problem into an unconstrained optimization prob-

lem by adding a penalty term in case of constraints viola-

tion as shown below:

f ðxÞ ¼ f ðxÞ þ b

where, f(x) is the original function value and b is the

penalty term which is set to 103.

Table 4 shows the experimental results of the consid-

ered algorithms on the engineering optimization problems.

It is clear from Table 4 that the inclusion of memetic

strategy in the basic ABC performs better than the con-

sidered algorithms.

Further, the algorithms are compared through SR, ME

and AFE. On the basis of results shown in Table 4, the

results of comparison are given in Table 5. It is clear from

Table 5 that the MeABC performs better than the consid-

ered algorithms for the considered engineering optimiza-

tion problems.

The algorithms are also compared on the basis of per-

formance indices (PI). The PI are calculated same as

described in Sect. 5.3 and the results for each case are

shown in Fig. 8. It is observed from Fig. 8 that the inclu-

sion of the proposed approach enhance the performance of

the basic ABC significantly.

7 Conclusion

In this paper, a new phase, namely, memetic search phase is

introduced in ABC. The so obtained modified ABC is

named as Memetic search in ABC. In memetic search phase,

the ABC algorithm also works as a local search algorithm in

which Golden Section Search algorithm is used to fine tune

the control parameter /. In the memetic search phase new

solutions are generated in the neighbourhood of the best

solution depending upon a newly introduced parameter,

perturbation rate. With the help of experiments over test

problems and well known engineering optimization appli-

cations, it is shown that the inclusion of the proposed

strategy in the basic ABC, improves the reliability, effi-

ciency and accuracy as compare to their original versions.
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