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Abstract
Most of the complex research problems can be formulated as optimization problems. Emergence of big data technologies
have also commenced the generation of complex optimization problems with large size. The high computational cost of these
problems has rendered the development of optimization algorithms with parallelization. Particle swarm optimization (PSO)
algorithm is one of the most popular swarm intelligence-based algorithm, which is enriched with robustness, simplicity and
global search capabilities. However, one of the major hindrance with PSO is its susceptibility of getting entrapped in local
optima and; alike other evolutionary algorithms the performance of PSO gets deteriorated as soon as the dimension of the
problem increases. Hence, several efforts are made to enhance its performance that includes the parallelization of PSO. The
basic architecture of PSO inherits a natural parallelism, and receptiveness of fast processing machines has made this task
pretty convenient. Therefore, parallelized PSO (PPSO) has emerged as a well-accepted algorithm by the research community.
Several studies have been performed on parallelizing PSO algorithm so far. Proposed work presents a comprehensive and
systematic survey of the studies on PPSO algorithms and variants along with their parallelization strategies and applications.

Keywords Particle swarm optimization · Parallel computing · Swarm intelligence-based algorithm · GPU · MPI · Large-size
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CPU Central processing unit
CUDA Compute unified device architecture
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DORPD Dynamic optimal reactive power dispatch
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FJSP Flexible job shop scheduling problem
FPGA Field programmable gate array
GA Genetic algorithm
GPU Graphics processing unit
HPF High-performance Fortran
HSI Hyper spectral images
JSSP Job shop scheduling problem
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MPI Message-passing interface
NMR Nuclear magnetic resonance
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SMP Symmetric multiprocessing
TPU Tensor processing unit
TSVD Truncated singular value decomposition
UAV Unmanned aerial vehicle
V2G Vehicle-to-grid

1 Introduction

Real-world optimization problems are usually complex,
large-scale and NP-hard. They not only contain the terms of
constraints, single/multiple objectives, but also their model-
ing gets continuously evolving. Their resolution and iterative
evaluation of objective functions require longCPU time. PSO
is a population-based metaheuristic that has proven itself to
be one of the most efficient nature-inspired algorithms to
deal with unconstrained and constrained global optimiza-
tion problems with one or many objectives. But the global
convergence is not assured with PSO algorithms due to the
constraint of particles to stay in a finite sampling space. By
virtue of this, it may bring premature convergence by dimin-
ishing the global search ability of the algorithm [1]. Hence,
many strategies are being proposed to improve its’ efficiency
that includes the parallelization of PSO. Since PSO algo-
rithms are population-based, they are intrinsically parallel.
Hence, PPSO has become one of the most popular parallel
metaheuristic [2].

Parallelization proposes an excellent path to enhance the
system performance. For parallelization, multi-core CPU
or GPU can be occupied. The noteworthy important issues
in parallelization are the operating system, communication
topologies, programming languages enriched with modules,
functions and libraries. The parallelization options include:
Hadoop MapReduce, CUDA, MATLAB parallel comput-
ing toolbox, R Parallel package, Julia: Parallel for and
MapReduce, OpenCL, OpenGL, Parallel computing mod-
ule in python, OpenMP with C++ and Rcpp, POSIX threads,
MPI, HPF, PVM, and Java threads on SMPmachines. More-
over, cloud computing services offer access to large servers
containing several CPUs and GPUs for providing massively
parallel programming [3,4]. A few of these services include:
Amazon elastic compute cloud and Google cloud compute
engine. Here, for the sake of ubiquity, themost popular paral-
lelization strategy and communication models are discussed
in next sections.

Present work is a chronological literature review of the
available PPSO versions, collected from various internet
sources. The PPSO versions include individual variants,
application-based, parallelization strategy based and num-
ber of problem objectives based variants. Initially, the text is
classified at the basis of CPU and GPU implementation.

Classification of the presented work is as follows: Sect. 2
presents the details of PSO and its parallelization strategies,

communication models and few conventional parallel PSO
algorithm variants; Sect. 3 is based on presenting the sum-
mary of the studies performed on PPSO so far, which is
classified at the basis of CPU- and GPU-based implementa-
tion. Finally, a comparative analysis on the basis of parallel
computing models and purpose of using PPSO is performed
in Sect. 4 along with the conclusion of the presented work in
Sect. 5.

2 Parallel Particle SwarmOptimization: An
Overview

2.1 Particle SwarmOptimization Algorithm

PSOalgorithmwas derived byKennedy andEberhart in 1995
for simulating the behavior of a bird flock or fish school [2].
They move in different directions while communicating to
each other, updating their positions and velocities for the bet-
ter position that may contribute toward optimal solution. The
objective function to be minimized (/maximized) is formu-
lated as:

min f (x) s.t . x ∈ S ⊆ RD (1)

where x is decision variable matrix, comprised of m vectors
with dimension D, defined as x = [−→x 1,

−→x 2 . . .
−→x m] in

feasible solution space S [5]. Previous velocity vi (t) and
position xi (t) are updated by:

vi (t + 1) = wvi (t) + c1r1[pbesti (t) − xi (t)]
+c2r2[gbest(t) − xi (t)] (2)

xi (t + 1) = xi (t) + vi (t + 1) with xi (0)∈ U(xmin, xmax) (3)

The velocity vi lies between lower and upper bound, i.e.,
[vmin, vmax], where vmin = −vmax;w is inertia weight lying
between 0 and 1, the scaling factor over the previous velocity;
c1 and c2 are cognitive and social acceleration coefficients,
respectively; r1 and r2 are uniform random numbers in range
[0 1]. Particles personal best pbest at iteration (t+1) and best
of the positions, i.e., gbest(t) are updated as follows:

pbesti (t +1) =
{
pbesti (t) if f (xi (t + 1)) ≥ f (pbesti (t))

xi (t + 1) if f (xi (t + 1)) < f (pbesti (t))

(4)

gbest(t + 1) = xk ∈ {
pbest1(t + 1), pbest2(t + 1), . . .

pbestm(t + 1)
}

where f (xk) = min
{
f (pbest1(t + 1)), f (pbest2(t + 1)),

. . . f (pbestm(t + 1))
} (5)
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Twokinds of parallelisms are implemented inPSO tobuild
PPSO algorithms: data parallelism and task parallelism. In
data parallelism, same function/task is simultaneously exe-
cuted on multiple processors/cores with distribution of the
elements of a data set.Whereas, task parallelism is simultane-
ous execution of many different functions/tasks on multiple
processors/cores for the same (or different) data sets. The
parallelization depends upon the user’s choice, i.e., whether
the datasize is large or there are multiple number of tasks. In
parallel version of PSO algorithms, different data sets in form
of particles can be processed over multiple processors. Also,
single data set could be taken for multi-objective or multi-
task problems on the different processors with individual
PSO algorithm implementations. Moreover, the implemen-
tation of PPSO could be in both the ways: synchronous and
asynchronous. If every particle performs function evaluation
in parallel and maintains synchronism with each other for
all the iterations, the PPSO algorithm remains synchronous.
Hence, the velocity and position of each particle is updated
by the end of every iteration, whereas, in asynchronous PPSO
algorithm, the particles do not synchronize with each other.
Hence, position and velocity are updated continuously, based
upon the available information. The details of parallel PSO
are provided in Sect. 2.4.

2.2 Parallelization Strategies

Parallel computing is the simultaneous use of multiple
computing resources to solve a computational problem by
breaking it into discrete parts. This computation may occur
on a single machine as well as on multiple machines. Single
machine processing includes computers utilizing multi-core,
multiprocessor, and GPUwith multiple processing elements.
Multiple machine examples include clusters, grids, and
clouds [6]. Further, the parallelization strategies can be clas-
sified on the basis of their implementation platform [7] as
described below:

2.2.1 CPU-Based Parallelization Strategies

These strategies take the advantage of accessing the multiple
cores that may be physical or virtual with one or more CPUs.
These approaches include:

• Hadoop MapReduce
MapReduce programming model was established by
Google for processing of large-sized data, which entails
parallelization on each CPU (or single CPU) with distri-
bution of different data. The implementation performs the
operations of data distribution, parallelization, load bal-
ancing and fault tolerance as an inside process, whereas
the user needs to perform only straightforward opera-
tions. Mapper requires an input pair and yields interme-

diate key/value pairs. Then, all the intermediate values
containing the same intermediate key are grouped by the
MapReduce library and sent to the reducer. The reducer
then combines the corresponding values associated with
the intermediate key to merge the set of values [8].

• MATLAB parallel computing toolbox
MATLAB has provided the easiest parallel programming
avenue by producing parallel computing toolbox. It is
genuinely user-friendly, but incurs high cost upon pur-
chase. In the parallel pool, the variables are accessible
by any worker, so the basic task remains to initialize the
parallel pool of workers and mentioning the ‘for loop’
that is required to be parallelized [9].

• R Parallel package
R is an excellent open-source language with statistical
and graphics competence. Developers have designed sev-
eral parallel computing packages in R, out of which
‘foreach’ and ‘doParallel’ are extensively employed.
Besides, C++ codes are embedded in R for executing
parallel computing resulting Rcpp package [10].

• Julia: Parallel for and MapReduce
Julia is an open-source programming language which is
modern, functional, and expressive, and has remarkable
abstraction andmetaprogramming capabilities. Julia was
designed with the aim of contributing toward powerful
parallelization. If every parallel iteration requires few
evaluations, then ‘@parallel for’ from Julia is most suit-
able. It is basically created for the assignment of small
tasks to each worker. But, for several control variables
or for the models with multiple discrete choices ‘@par-
allel for’ reduces the speed. Then, MapReduce function
in Julia can be an excellent approach. It accepts inputs in
form of function and vector of values for evaluating that
function [11].

• Parallel Computing module in Python
Python is a flexible open-source, interpreted, general-
purpose language containing multiple modules. Out of
which, Parallel function, a map-like function from the
Joblib module, is very popular. In the parallel pool, all
the declared variables are globally observable and mod-
ifiable by the workers [12].

• OpenMP with C++
C++ is a compiled language with remarkably excel-
lent speed, enriched with robustness and flexibility [13].
OpenMP is one of the simplest tools in C++ to perform
parallel computing on multi-core/multiprocessor shared
memory systems [14].

• MPI
The parallel processes executed on distributed sys-
tems includingmulti-core/many-core processors perform
communication via MPI. MPI is a library with a set of
function calls and portable codes for supporting the per-
formance optimization [15].
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2.2.2 GPU-Based Parallelization Strategies

Last ten years have witnessed the increasing popularity of
GPU-based parallelization. GPU has thousands of cores
installed and strength of multiple CPUs in one processor.
Any CPU-based parallelization strategy can be implemented
in GPU as well. Themost popular GPU-based parallelization
schemes are:

• CUDA
CUDA is a parallel computing model that allows parallel
computing pursuit on the GPU of the computer for C,
C++, Fortran, and Python. In November 2006, general-
purpose parallel computing architecture called CUDATM

was introduced by nVIDIATM [16], which is suitable for
massively parallel computation too. To develop the paral-
lel programs, a compatible GPU and the CUDATM SDK
are sufficient. User firstly needs to define the functions
that are required to be run on the GPU followed by the
memory allocation of the variables. Then, the process
begins, starting from the initialization [17].

• OpenACC
OpenACC has the analogous architecture to that of
OpenMP, although it is yet at the development stage. It
is built by just adding some code to the serial codes. The
code is portable for GPU, CPU or their hybrid, hence
can perform like OpenMP, MPI as well as GPU-based
computation [18].

Besides these approaches, a few approaches that are inter-
mediate options beyond CPU and GPU, i.e., Intel Xeon Phi
bootable host processors; TPU [19]; andFPGA[20].MPI and
OpenACC approaches can easily adapt the implementation
of IntelXeonPhi. TPU is at an early stage of development and
FPGA are not cost effective. Hence, these three approaches
are not much popular.

2.3 ParallelizationModels

The processors included in parallel computing cannot simul-
taneously perform interaction and exchange information.
They communicate via specific strategies known as ‘par-
allel models’ based on network topologies as shown by
Fig. 1. These parallel models are classified into four main
communication strategies [21,22]: (i) Master-slave; (i i)
Coarse-grained (island model); (i i i) Fine-grained (cellular
model) and; (iv) Hybrid.

The master-slave model works like the star topology. Fit-
ness evaluations work in parallel on the slave processors, and
the master processor controls the operations and generations
of all n slave processors as shown in Fig. 1a. Coarse-grained

Fig. 1 Parallel models in PPSO a Master-slave, b coarse-grained, c
fine-grained

and fine-grained models explore some neighborhood restric-
tions for communications’ between processors. Fine-grained
models are also known as cellular models, master-slave
models are also known as star topology and coarse-grained
models are also knownas islandmodels or ring topology.This
makes the corresponding algorithmmore robust and efficient.
In the coarse-grained model, whole population is divided
into n mutually independent sub-populations that represent
a processor unit, called ‘island’ as shown in Fig. 1b. Some
individuals are exchanged among islands according to some
migration strategy (exchange of individuals is called migra-
tion). This communication model is controlled by several
parameters like: migration strategy, migration population,
and size of sub-populations. In a fine-grainedmodel, individ-
uals are arranged in a 2D grid in which each individual has 4
neighbors as shown inFig. 1c.Communication between these
neighborhoods may occur in several ways; hence, informa-
tion exchange is delayed between non-neighbor processors.
Hybrid models are the hybridization of two or more above-
discussed models.
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2.4 Conventional Parallel PSO Algorithms

PSO is enriched with inherent parallelism. The particles in a
swarmproceed in parallel, but the interactions of the particles
remain non-simultaneous. This interaction determines the
gbest and pbest positions for velocity and position update.
During this procedure, the communication could be within
the complete swarm or between the sub-groups of particles
within swarmnamedas sub-swarms.Thewayof communica-
tion between the sub-swarms/nodes provides four basic types
of PPSO variants, that include: (i) Star PPSO (ii) Migration
PPSO (iii) Diffusion PPSO (iv) Broadcast PPSO. For mul-
tiprocessor parallelization, these variants are presented by
Fig. 2a–d. Each processor represents a sub-swarm of PPSO.

2.4.1 Star PPSO

This variant of PPSO is also known as PPSO_star. Star PPSO
is based upon master-slave topology. As can be observed by
Fig. 2a, the communication occurs in a star shape, i.e., one
sub-swarm named as ‘master’ (lying at the middle of the
star) communicates the information between all the remain-
ing sub-swarms named as ‘slaves’ (lying at the edges of the
star). No direct communication between the slaves occurs in
this process. The Star PPSO variant works as follows:

Step 1: The master determines and shares all the algo-
rithm parameters to the slaves. These parameters include
number of iterations, inertia weight, communication
period, population size and the acceleration coefficients.
Step 2: Each sub-swarm evolves separately and obtains
its pbest and gbest .
Step 3: Then, all the other sub-swarms called slaves com-
municate their pbest information to the master node.
This process occurs at a certain communication period.
Step 4: The master determines the gbest and communi-
cates this information to all the slaves.
Step 5: Each sub-swarm updates its velocity and position.
Step 6: Again each slave communicates the information
about its pbest to the master and the master determines
the new gbest .
Step 7: The process continues until the termination cri-
teria is achieved.

2.4.2 Migration PPSO

Also known as circle_PPSO and ring_PPSO, this variant
assumes that each sub-swarm can communicate with its
neighboring sub-swarms in the circular area only, as pre-
sented by Fig. 2b. Hence, the information of a sub-swarm can
be conveyed to the sub-swarms of the circle existing at the left
and right positions. The process is similar to the process of

coarse-grained parallel models in previous subsection. The
process of migration PPSO is as follows:

Step 1: All algorithm parameters are predetermined.
Step 2: Each sub-swarm evolves separately and obtains
its pbest and gbest .
Step 3: The best particle of each sub-swarm ismigrated to
the neighboring sub-swarm at a certain communication
period to replace the worst particle of the sub-swarm.
gbest is also updated with each communication.
Step 4: Sub-swarms update their positions and velocities
with updated pbest and gbest .
Step 5: Repeat Step 3.
Step 6: The process continues until the termination cri-
teria is achieved.

2.4.3 Broadcast PPSO

Also known as share_PPSO, it allows all the sub-swarms to
communicate with all the other sub-swarms, as presented in
Fig. 2c. As the name suggests, all the sub-swarms communi-
cate and execute in parallel. Each information is broadcasted
to all the sub-swarms. Steps 1 and 2 of this variant remain
same as in migration PPSO. The remaining process works as
follows:

Step 3: Then, all the sub-swarms share their pbest posi-
tion information to obtain gbest of the swarm at a certain
communication period.
Step 4: With updated pbest and gbest , sub-swarms
update their positions and velocities.
Step 5: Step 3 is repeated.
Step 6: The process continues until the termination cri-
teria is achieved.

2.4.4 Diffusion PPSO

Based on the fine-grained topology, diffusion PPSO is basi-
cally similar to the migration PPSO, except the number of
communicating neighbors. As shown by Fig. 2d, the num-
ber of neighbors in the communication of each sub-swarm
becomes four in place of two, that is the sub-swarms existing
at left, right, up and down positions. Remaining sub-swarms
at the corners of the rectangle are not included into the com-
munication to the sub-swarm at the middle. Rest complete
process remains same as that in migration PPSO.

3 Comprehensive Survey on Parallel PSO

This section presents the concise review of all the studies
performed on PPSO so far. The summary of all these studies
is provided in Table 1. The studies are classified on the basis
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Fig. 2 Conventional PPSO
variants a star PPSO, b
migration PPSO, c broadcast
PPSO, d diffusion PPSO

of: PSO variant developed/adopted; year of publication; type
of parallelization along with parallelization model; the area
for which the variant is applied and the objective of the study.
All the abbreviated terms of the table related to PPSO ver-
sion are provided in expanded form in the corresponding text,
whereas the basic abbreviations are provided after abstract.
The work is classified on the basis of CPU-based paralleliza-
tion and GPU-based parallelization. The implementations of
PPSO algorithms parallelized on CPU and GPU are further
classified at five criteria that include:

• Algorithmic approaches, i.e., the implementation has
basically developed PPSO variant.

• Application-based approaches, i.e., the parallel version
of well-known sequential PSO algorithms is proposed,
along with its implementation on complex applications.

• Communication topologies and parameters setting based
approaches, i.e., the work is basically dedicated for test-
ing over communication topologies and optimal settings
of parameters.

• Hybridizedapproaches, i.e., the approaches are hybridized
to obtain an enhanced parallel PSO algorithm.

• Formulti-objective problems, i.e., the algorithm is specif-
ically developed to solve multi-objective problem.

3.1 CPU-Based Parallelization

3.1.1 Algorithmic Approaches

Thefirst implementation in this category is byGies andYahya
[23] in 2003. They implemented the algorithm containing a
swarm with 10 agents, hence on 10 independent nodes of
a Beowulf cluster. The algorithm converged the solution 8
times faster than their serial implementation. Further, Schutte
et al. [24] implemented master-slave communication model,
in which the master node exclusively performs the algo-
rithm operations. The slave nodes perform the particle fitness
evaluation on the design configurations received via MPI.
The information exchange between master and slave nodes
regarding the fitness and particle positions is performed at
the end of a swarm movement cycle. The same group of
authors with Reinbolt, evaluated parallel PSO in the very
next year (Schutte et al. [25]) for two kinds of optimization
problems for acquiring multiple local minima: large-scale
analytical test problems and; medium-scale biomechanical
system identification problems. They aimed to evaluate the
improvement in algorithms’ performance and convergence,
due to the parallelization and increase in population size.
In the very next year, Cui and Weile [26] designed syn-
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chronous PSO as a parallel version of asynchronous PSO.
In this scheme, all the particles update their position syn-
chronously and then communicate each other for the current
global best position. Now, they again synchronously update
their position and velocity based on their own best position
and global best position.

On the contrary, few asynchronous versions of parallel
PSO were also suggested that includes an asynchronous par-
allel PSO by Venter and Sobieszczanski [27]. They aimed
to improve the performance of previously proposed syn-
chronous PSO. Synchronous PSO may lead to poor parallel
speedup whenever: number of particles is not an integer mul-
tiple of the number of processors; the parallel environment is
heterogeneous or; the analysis time increases with respect to
the design point being analyzed. In synchronous implemen-
tation, each particle in the parallel process waits for all the
particles to complete the process before moving to the next
iteration. But, in asynchronous implementation, no particle
waits for others to complete the process; hence, no idle pro-
cessors are left during the process. The parallel efficiency
gets greatly improved. Similar kind of synchronous PSO
was proposed by Chusanapiputt et al. [28], as a synchronous
implementation accompanied by the relative velocity updat-
ing based parallel relative PSO (PRPSO). In this strategy,
after exploring all the neighborhood, the slave sends its best
position and corresponding velocity to the master. A sub-
set of the best velocities (that is providing best solutions)
is selected by the master, and the next move is decided
accordingly. Further, in this trend,Koh et al. [29] added point-
to-point communication strategy in parallel asynchronous
PSO (PAPSO) algorithm implemented in homogeneous and
heterogeneous computing environments. The results of asyn-
chronous version were compared with synchronous version,
in which results over robustness and convergence rate were
comparable for both, whereas in parallel performance asyn-
chronous version was significantly better than synchronous
version. As an unique implementation, McNabb et al. [30]
developed PSO as MapReduce (MRPSO) parallel program-
ming model in Hadoop. In the mapping phase, particle is
mapped and obtains updated velocity, position and pbest .
Further, in the reduce phase, all the information is collected
for the swarm and gbest gets updated.

Alike other synchronous PSO versions, PPSO from Liu
et al. [31] provided parallelization between particles, nam-
ing position and velocity updation as a sub-process. The
optimal particle of each sub-process, i.e., slave, moves to
the main process, i.e., master. Then the main process deter-
mines optimal particle and broadcasts the information to each
sub-process. Hence, proposed two-phase PPSO (TP_PPSO)
divides the search into two-phase optimization. In the first
phase, individual orientation factor function uses exploration
search area. In the second phase, overall orientation fac-
tor function uses expanded search area. Further, Han et al.

[32] included constraint handling in the proposed version
for motion parameter estimation. They included the con-
straints into the objective functions and further solved them
for the combination that provides best possible solution.
An asynchronous version entitled parallel multi-population
PSO (PMPSO) is proposed by Wang et al. [33]. PMPSO
gets randomly initialized alike other versions. The parti-
cles get ranked as per their performance evaluated at the
fitness function, and then, the sub-populations are created.
The best position in population, as well as in the sub-
population, is considered for position and velocity updating.
Jeong et al. [34] proposed a PPSO model for PC-cluster
that exchanges the information between the sub-populations
one by one, i.e., with coarse grain topology. In order to
maintain the swarm diversity and to avoid premature conver-
gence, Lihua et al. [35] applied client-server system-based
parallel computation software system for distributed cas-
cade optimization dispatching. The communication remains
asynchronous and algorithms takes migration strategy into
consideration so as to choose appropriate individual for
exchange and migration. This implementation reports more
accurate results, speed up in calculations and improvement in
the convergence performance. The prospect of utilizing mul-
tiple swarms in n-dimensional design spaces concurrently in
parallel computing environments was investigated by Kali-
varapu et al. [36], through developing PSO variant with
digital pheromones. With the increase in problem dimen-
sion, the speedup and parallel efficiency of the algorithm
gets significantly improved. Singhal et al. [37] simply imple-
mented asynchronous PSO viaMPI commands/functions on
the multiple processes. The algorithm derives the process of
splitting particles in the finest way for every number of pro-
cessors, and then, the processor with best results becomes
the root processor at the end of each cycle.

An approach similar to the master-slave strategy con-
taining two kinds of agents was proposed by Lorion et al.
[38]. They adapted agent-based structure for distributing and
managing a particle swarm on multiple interconnected pro-
cessors. Agent-based parallel PSO (APPSO) includes one
coordination agent that coordinates between swarms and
other multiple swarm agents. Further, Farmahini-Farahani
[39] presented a hardware pipelined PSO (PPSO core) for
performing computational operations of the algorithm for
numerous types of discrete optimization problems with
the notion of system-on-a-programmable-chip. The paral-
lel asynchronous PSO implementation followed the process
alike in [27]. They employed a non-chip multiprocessing
architecture for evaluating the fitness in parallel by utilizing
multiple embedded processors. For hiding the communica-
tion latency, Li and Wada [40] proposed globally synchro-
nized parallel PSO (GSP PSO) with delayed exchange paral-
lelization (DEP). The algorithm extracts inherent parallelism
of PSO, by overlapping communication with computation.
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DEP helped in alleviating temporal dependencies, existing
in the iterations of the algorithm; hence, GSP PSO became
tolerant to network delays. Basically, the algorithm delays
the partial best fitness exchange to one loop later.

As an Hadoop implementation, Aljarah and Ludwig [41]
proposed MapReduce-based parallel PSO clustering algo-
rithm (MRCPSO) for data-intensive applications, tested on
different sized large-scale synthetic data sets. The algo-
rithm aimed at optimal clustering in three sub-modules.
First sub-module updates, the particle swarm centroids in
MapReduce. In second sub-module, the fitness gets evalu-
ated for the new particle centroids. In the third module, the
merging occurs for all the updated fitness values along with
the updating in the personal best and global best centroids.
Parsopoulos [42] presented parallel cooperative micro-PSO
(PCOMPSO), established upon the disintegration of the orig-
inal search space in subspaces of smaller dimension. Two
types of computer systems were engaged, i.e., academic
cluster and desktop multi-core system for evaluating the
approach. The solution is claimed to achieve quality in results
as well as superior runtime. Gulcu and Kodaz [43] proposed
parallel comprehensive learning PSO (PCLPSO) algorithm
which has the characteristics of having multiple swarms that
work cooperatively and concurrently. The local best parti-
cles of the swarm gets exchanged in every migration process
so as to maintain the diversity of the solutions. For obtain-
ing higher solution quality from PPSO, Zhang et al. [44]
implemented the local model PSO (LPSO), global model
PSO (GPSO), comprehensive learning PSO (CLPSO) and
the bare bone PSO (BPSO) on different slave processors.
Further, an in-depth investigation and evaluation of the par-
allel design and pursuit of a parallel PSO-back-propagation
(BP) neural network algorithm was conducted by Cao et al.
[45]. The work optimizes the initial weights and thresholds
for the BP neural network. The performance is assessed on
image repository from the SUNdatabase scene image library.
Tian et al. [46] presented a parallel co-evolution structure of
quantum-behaved PSO (PC_QPSO) with a revised differ-
ential grouping approach to break up the high-dimensional
problems into sub-problems. The sub-problems get opti-
mized individually with intermittent communication that
enhances the resulting quality without hiatus in the connec-
tion between interacted variables.

For evaluation at many and multi-core architecture, Ned-
jah et al. [47] presented fine-grained parallel PSO (FGP-
PSO), implemented over both the architectures (many-core
and multi-core), along with testing on a serial implemen-
tation. The termination criteria was taken as leaning upon
the acceptability of the solution. The effect of fine-grained
parallelism on the convergence time of high-dimensional
optimization was also studied. Atashpendar et al. [48] pro-
posed cooperative co-evolutionary speed-constrained multi-
objective PSO (CCSMPSO) along with scalability analysis.

The scalability analysis performed on Intel Xeon L5640
contained two studies: tendency of scale of the algorithms
with varying problem size; scalability as a function of par-
allelization. Lai and Zhou [49] proposed parallel PSO based
on osmosis (PPBO), implemented on numerical optimiza-
tion problems. The algorithm is capable to obtain three
parameters, i.e., migration interval, migration direction, and
migration rate which are helpful to determine when, from
which sub-population to which sub-population, and how
many particles will be migrated.

3.1.2 Application-Based Approaches

In application-based approaches, PPSO has been imple-
mented on miscellaneous problem areas. Ying et al. [50]
addressed DORPD problem by proposing PPSO algorithm
that divides the problem into sub-problems as concurrent pro-
cesses. The algorithm is evaluated on test cases of IEEE
power systems, containing reactive power sources, time-
varying loads with tap position of transformers, and control
over generator terminal voltages. Further, Subbaraj et al.
[51] solved extensive ED problems by modified stochas-
tic acceleration factors (PSO-MSAF). PSO-MSAF is based
upon macro evolution, i.e., creation by multiple populations,
whereas, conventional PSO is based upon micro evolution,
i.e., creation by single population. Further, the six learn-
ing parameters of PSO (i.e., c1, c2, upper and lower limit
for random cognitive and social learning parameters) are
uniquely determined for each swarm. Further, Li and Chen
[52] proposed a parallel PSO color quantization algorithm
to determine the most superior palette and to quantize color
mapping of every pixel. They implemented parallelization
on all the ’for’ loops.

Moving in the same trend, Prasain et al. [53] conceptu-
alized PSO for the option pricing problem and composed
a sequential PSO algorithm followed by parallel PSO for
shared memory machine employing OpenMP, distributed
memory machine adopting MPI and homogeneous multi-
core architecture running hybrid of MPI/OpenMP. Similarly,
Qi et al. [54] adopted data parallelization in PSO to solve
one-dimensional inverse heat conduction problem by using
implicit difference method. Drias [55] designed two novel
PSOalgorithms (sequential and parallel) forweb information
retrieval (IR) with direct search method. They implemented
PSO modeling that considers the documents identifiers for
obtaining the particles positions, except for the evaluation
process, which requires the content of document identifiers.
The indexing in the documents is performed by the vector
spacemodel. Torres andCastro [56] implemented Local PSO
(LPSO) in the parallel environment with DC network model
for Garver and IEEE 24-bus networks. This local version of
PSO is aimed to take advantage of exploration capability of
the algorithm. In this approach, each particle communicates
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its best position only to the neighboring particles, not to the
swarm. Omkar et al. [57] proposed a parallel version of the
VEPSO based on the peer-to-peer architecture for the opti-
mized design of laminated composite plates, a combinatorial
explosive constrained nonlinear optimization problem. The
parallel approach shows accelerate for adequate numbers of
processors and scalable for an enlarged number of particle
size and populations.

For achieving better prediction of the stock price trend,
Wang et al. [58] presented time-variant PSO (TVPSO) algo-
rithmand considered the complex performance-based reward
strategy (PRS) for trading. Satapathy et al. [59] stimulated
convergence rate by taking communication of particles, fault
tolerance, and load balance into consideration. The server is
treated as the nucleus of data interchange for dealing with
agents and managing the partaking of global best position
among the distinctive clients. Further, Xu et al. [60] proposed
parallel adaptive PSO for optimizing the parameters and
selecting the features of support vector machine (PTVPSO-
SVM). The approach designs the objective function with
weights on the average accuracy rates, number of support
vectors and the selected features. The implementation con-
tains features like: adaptive control parameters with time
changing acceleration coefficients; inertia weight to regulate
the local and global search; mutation operators to overcome
the problem of premature convergence. In a similar way,
Mohana [61] proposed position balanced parallel PSO (PB-
PPSO) for resources allocation with profit maximization and
increased user satisfaction level in the cloud computing envi-
ronment. The algorithm is claimed to overcome the issues of
machine learning methods SVM and ANN for the addressed
problem. Chen et al. [62] proposed a method, to simulta-
neously include the number of support vectors, the number
of features in objective function and the average classifica-
tion accuracy rates to achieve the maximum generalization
capability of SVM. Gou et al. [63] proposed multi-swarm
parallel multi-mutation PSO (MsP-MmPSO) for the parallel
derivation of association rules. Also, they found a reduc-
tion in computation time of the algorithm by implementing a
good task allocation method in multi-CPU parallel computa-
tion environment. Govindarajan et al. [64] designed a PPSO
clustering algorithm for learning analytics platform, along
with experiments on real-time data. The learner’s data man-
ifested as big data have accuracy, efficiency, and an ability
for understanding the learner’s competence. Fukuyama [65]
evaluates fast computation by parallelization and dependabil-
ity of parallel PSO for Volt/Var Control. Volt/Var Control is
needed to trim the control interval and work with larger-scale
power systems.

For solving conditional nonlinear optimal perturbation
(CNOP), Yuan et al. [66] proposed sensitive area selection-
based PSO (SASPSO). CNOP are the problems with high-
dimensional complex numerical models, useful in climate

prediction and studying the predictability of numerical
weather. SASPSO was implemented on Zebiak-Cane (ZC)
numerical model. Kumar et al. [67] used heterogeneous mul-
tiprocessor systems for: minimizing schedule length with
constraint of energy consumption and minimizing energy
consumption with the constraint of schedule length. PPSO
was implemented for obtaining an energy efficient schedule
and optimal power supply. Further, Moraes et al. [68] pro-
posed an asynchronous and immediate update parallel PSO
(AIU-PPSO) by revisiting the asynchronous parallelization
of PSOwith pseudo-flight andweightedmean position based
stop criterion. Itwas successful in solving an actual parameter
estimation problem of a population balance model, enriched
with a high-cost objective function and 81 parameters for
estimating. Kusetogullari et al. [69] proposed parallel binary
PSO (PBPSO) algorithm for developing a robust to illu-
mination changes, unsupervised satellite change-detection
method.Multiple BPSO algorithms were run simultaneously
on different processors for finding the final change detec-
tion mask. Parallel mutation PSO (MPSO) was proposed by
Jia and Chi [70] for optimizing the soil parameters of the
Malutang II concrete face rockfill dam. A parallel finite ele-
ment method was implemented for the fitness evaluation of
the particle swarm. The objective remained to minimize the
deviation between the prototype monitoring values and to
compute earth-rockfill dam displacements. Fukuyama [71]
investigated the dependability of PPSO-based voltage reac-
tive power control on IEEE 14, 30, and 57 bus systems.
The method was found to maintain the quality of solutions,
despite large fault probability when a pertinent number of
maximum iteration is used for temporary faults. To distribute
the workload of a parameter estimation algorithm to paral-
lel connected computing devices, Ma et al. [72] proposed
PSO-based parameter estimation algorithm. Parallel PSO
was found outperforming to the sequential PSO. Hossain et
al. [73] proposed parallel clustered PSO (PCPSO) and k-
means-based PSO (kPSO) to optimize service composition
process. Five QoS attributes were considered in objective
function, i.e., reliability, availability, reputation, computation
time and computation cost.

To elaborate andmodel the batch culture of glycerol to 1,3-
propanediol by Klebsiella pneumoniae, Yuan et al. [74] pre-
sented nonlinear switched systemwhich is enzyme-catalytic,
time-delayed and contains switching times, unknown state-
delays, and system parameters. The process contains state
inequality constraints and parameter constraints accompa-
nied by calibrated biological robustness as a cost function.
To extract and estimate the parameters of the PV cell model,
Ting et al. [75] proposed parallel swarm algorithm (PSA)
that minimizes root-mean-square error that seeks the dif-
ference between determined and computed current value.
They coded the fitness functions in OpenCL kernel and exe-
cuted it on multi-core CPU and GPUs. Further, Liao et al.
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[76] proposed multi-core PPSO (MPPSO) for improving
the computational efficiency of system operations of long-
term optimal hydropower for solving the issue of speedily
growing size and complexity of hydropower systems. The
algorithm claims to achieve high-quality schedules for per-
tinent operations of the hydropower system. Li et al. [77]
used parallel multi-population PSO with a constriction fac-
tor (PPSO) algorithm to optimize the design for the excavator
working device. They authenticated kinematic and dynamic
analysis models for the hydraulic excavator. Luu et al. [78]
proposed a competitive PSO (CPSO) to improve algorithm
performance w.r .t . stagnation problem and diversity. They
used travel time tomography algorithm and tested it on real
3D data set in the context of induced seismicity on four Intel
Xeon Platinum 8164 CPU. Nouiri et al. [79] implemented
two multi-agent PSO models, i.e., MAPSO1 and MAPSO2
to solve FJSP. The benchmark data for testing were taken
frompartial FJSP and total FJSP.Yoshida andFukuyama [80]
presented parallel multi-population differential evolution-
ary PSO (DEEPSO) for voltage and reactive power control
(VQC), tested on IEEE bus systems. The problem formu-
lation was done as a mixed integer nonlinear optimization
problem with upper & lower limits on bus voltage and upper
limit on line power flow.

3.1.3 Communication Topologies and Parameters Setting
Based Approaches

Inspired by parallelism for the data, Chu and Pan [81] pre-
sented three communication strategies in PPSO that are based
on the strength of the correlation of parameters, i.e., for
loosely and strongly correlated parameters and for unknown
parameters. First strategy migrates the best particle to each
group and mutates it for replacing the poorer particles in spe-
cific number of iterations, whereas second strategy migrates
the best particle to its neighboring group for replacing
the poorer particles in specific number of iterations and
third strategy divides the group into two subgroups. Then
applies first communication strategy to first subgroup and
second communication strategy to second subgroup in spe-
cific number of iterations. Waintraub et al. [82] simulated
multiple processors and evaluated communication strate-
gies in multiprocessor architectures for two intricate and
time-consuming nuclear engineering problems. Further, they
proposed neighborhood-Island PPSO (N-Isl-PPSO) (based
on ring and grid topology), and the island models (based
on ring and island topology) as the communication strat-
egy tested over several benchmark functions. The outcome
of communication strategies based PPSO was evaluated
in terms of speedup and optimization outcomes. Sivanan-
dam and Visalakshi [83] proposed parallel orthogonal PSO
(POPSO) along with versions like: PSO with fixed & incon-
stant inertia, MPSO, PPSO, elitism enabled PSO, hybrid

PSO, orthogonal PSO (OPSO) and parallel OPSO (POPSO)
for scheduling heterogeneous processors for heterogeneous
tasks using dynamic task scheduling. They implemented data
parallelism as well as task parallelism. In data parallelism,
the data splitted into smaller chunks are operated in parallel,
whereas, in task parallelism, different tasks are run in paral-
lel. As an extension on the communication topologies, Tu and
Liang [84] developed a PSO model whose particles concur-
rently communicatewith each other. The particles in a swarm
are separated into several subgroups that communicate other
subgroups by parallel computation models based on network
topologies, i.e., broadcast, star, migration, and diffusion. The
results of sequential and parallelization enabled different net-
work topologies got compared. To simplify and save the cost
of parallelization, multiple threads were used for concurrent
communication of particles.

3.1.4 Hybridized Approaches

Zhang et al. [85] developed hybrid moving boundary PSO
(hmPSO), a hybrid of effectiveness of NelderMead (NM)
methods and basic PSO for local and global searching respec-
tively. NM methods directly evaluate the objective function
atmultiple pointswithin the search space. The parallel imple-
mentation was performed on linux cluster ‘Hamilton’ with
96 dual-processor dual-core Opteron. Roberge et al. [86]
hybridized GA and PSO to manage the complexity of the
UAVs with dynamic properties and evaluate the trajecto-
ries in a complex 3D environment that are feasible and
quasi-optimal for fixed wing. The cost function is formed
by penalization of longer paths, and also by the penalization
of the paths, with greater average altitude, undergo danger
zones, bumping with the ground, necessitating for additional
fuel than the available in UAV at beginning, demanding
further power than the maximum power at hand and the
paths that cannot be smoothed using circular arcs. Jin and
Rahmat-Samii [87] combined PSO and the finite-difference
time-domain (PSO/FDTD) with master-slave strategy. The
master node tracks the particles, updates their position and
velocities, and collects the simulation results, whereas each
slave node contain a particle that performsFDTDfitness eval-
uation. Han et al. [88] implemented PPSO for PID controller
tuning in the application position of high real-time necessity
and control accuracy.

A hybrid of variable neighborhood search and PSO was
proposed by Chen et al. [89] as VNPSO. The formu-
lated problem of multi-stage hybrid flow shop scheduling
is a mixed integer linear programming problem. The work
addresses both sequence-independent as well as sequence-
dependent setup time. Soares et al. [90] proposed scheduling
of V2G in smart grids considering an aggregator with dif-
ferent resources, emphasizing on distributed generation and
V2G, and also adding the opinion of the electric vehi-
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cles (EVs) possessor. They considered a case study of the
33-bus distribution network that contains 32 loads, 1800
EVs, 66 distributed generation plants and 10 energy sup-
pliers. Yuan [91] performed advancement in PSO with
tabu search algorithm and then parallelized cooperative co-
evolution based PSO (PCCPSO) in Zebiak-Cane model for
solving CNOP problem. Cao et al. [92] proposed paral-
lel cooperative co-evolution PSO (PCCPSO) for solving
high-dimensional problems in parallel. They combined the
probability distribution functions, i.e., Gaussian distribution,
Cauchy distribution and Levy distribution. They also com-
bined global and local versions of PSO for space exploration
and for speeding up the convergence. Hence obtained hybrid
algorithm was implemented in Spark platform. Long et al.
[93] employed local search and global search neighborhood
search strategies into quantum-behaved PSO and introduced
parallel quantum-behaved PSO with neighborhood search
(PNSQPSO), to increase the diversity of the population;
and parallel technique for reducing the runtime of the algo-
rithm. Peng et al. [94] proposed three multi-core PPSO
algorithms, i.e., PPSO_star, PPSO_ring, and PPSO_share,
based on Fork/Join framework with concurrency in Java.
Proposed algorithm can interchange information between
the threads (sub-swarms). Fork/Join framework assigns
threads to different CPU cores, whereas synchronization-
and-communication mechanisms are employed for exchang-
ing information among the threads.

3.1.5 For Multi-objective Problems

Vlachogiannis and Lee [95] implemented synchronous PSO
enriched with vector evaluated version, i.e., VEPSO for
multi-objective optimization problems. This variant contains
the number of objective functions equal to the number of
swarms, working in parallel. Fan and Chang [96] added
a remarkable progress in the PPSO implementations, by
proposing parallel particle swarm multi-objective evolution-
ary algorithm (PPS-MOEA). PPS-MOEA was established
upon the idea of Pareto dominance and state-of-the-art par-
allel computing for improving algorithmic effectiveness and
efficiency. In this multi-swarm algorithm, after basic PSO
operations, each swarmshares afixednumber of less crowded
members after specific migration period. External archive
keeps on getting updated after each cycle for a fixed num-
ber of non-dominated solutions. Vlachogiannis and Lee
[97] implemented parallel vector evaluated PSO (parallel
VEPSO) and applied it to compute reactive power control
by formulating aMOP. The number of swarms is taken equal
to the number of objectives and each swarm works to opti-
mize corresponding single objective. Li et al. [98] proposed
decomposition based multi-objective PSO (MOPSO/D) that
uses bothMPI andOpenMP to implement the algorithmwith
a hybrid of distributed and shared memory programming

models. Borges et al. [99] implemented PSO to a large-scale
nonlinear multi-objective combinatorial resources schedul-
ing problem of distributed energy, including a case study of
a 201-bus distribution real Spanish electric network from
Zaragoza. Single objective function was formed by the
weighted sum of two objectives, i.e., to maximize the profit
and minimize CO2 emission.

3.2 GPU-Based Parallelization

3.2.1 Algorithmic Approaches

A fine-grained parallel PSO (FGPSO) was proposed by Li
et al. [100] in 2007 for maintaining population diversity,
inhibiting premature solutions and keeping the utmost par-
allelism. The algorithm basically maps FGPSO algorithm to
texture-rendering on consumer-level graphics cards. Further
approach is found from 2009 that includes implementation
of standard PSO on GPU, i.e., GPU-SPSO by Zhou and
Tan [101]. They executed SPSO on both GPU and CPU.
The running time was found greatly shortened and running
speed became 11 times faster in comparison with SPSO on
CPU (CPU-SPSO). Further, Hung andWang [102] proposed
GPU-accelerated PSO (GPSO) by implementing a thread
pool model with GPSO on a GPU, aimed to accelerate PSO
search operation for higher dimension problems with large
number of particles. The authors focused on addressing the
box-constrained, load-balanced optimization problems by
parallelization on GPU.

Further, Zhu et al. [103] proposed a parallel version of
Euclidean PSO (pEPSO) for better convergence and accel-
erating the process, since EPSO requires long processing
time in massive calculations. The algorithm employed fine-
grained data parallelism to calculate fitness with GPU.
Kumar et al. [104] presented a study that finds a remark-
able reduction in execution time of C-CUDA implementation
over sequential C. The algorithm divides the population into
one-dimensional sub-populations and then individual vec-
tor tries to optimize corresponding sub-population. Calazan
et al. [105] proposed parallel dimension PSO (PDPSO) for
GPU implementation, where each particle gets implemented
as a block of threads and each dimension get mapped onto
a distinct thread. The allotment of the computational tasks
becomes at a finer degree of granularity. Shenghui [106] pro-
posed an algorithm that expedites the rate of convergence of
the particle swarm by employing a large amount of GPU
threads to deal with each particle. The algorithm applies CA
logic to the PSO; hence, a particle is considered as a CA
model. The number of threads in GPU remains equal to the
number of particles. Independent calculation space is pro-
vided for each particle on respective thread. Further, Li et
al. [107] implemented PPSO algorithm on CUDA in AWS
that can be employed on any network connected computer.
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They run all the processes in parallel: evaluation of the fitness
values and update process (of the current position, velocity,
particle best fitness and global best fitness).

Use of coalescing memory access, for a standard PSO
(SPSO) on a GPU, based on the CUDA architecture was
performed by Hussain et al. [108]. The implementation on
GPU was found 46 times faster than CPU serial implemen-
tation. In coalescing memory access, video RAMmemory is
used, which is quite efficient in simultaneous memory access
by threads in a warp. Wachowiak et al. [109] adapted PSO
for difficult, high-dimensional problems and proposed adap-
tive PSO (APSO) for parallelization on already accessible
heterogeneous parallel computational hardware that contain
multi-core technologies speeded up by GPU and Intel Xeon
Phi co-processors expeditedwith vectorization. Task-parallel
elements are carried out with multi-core parallelism, while
data-parallel components get executed via co-processing by
GPUs or vectorization.

3.2.2 Application-Based Approaches

A PPSO-based parallel band selection approach for HSI
was proposed by Chang et al. [110]. GPU-CUDA, MPI and
OpenMP were used to take advantage of the parallelism of
PPSO and to constitute a set of near-optimal greedy modu-
lar Eigenspaces (GME) modules on all parallel nodes. The
outperformance of PPSO was judged on land cover classifi-
cation simulator MODIS/ASTER airborne (MASTER) HSI.
Mussi et al. [111] proposed PPSO-based road sign detec-
tion approach that detects road sign shape and color. The
algorithm simultaneously detects whether a sign belongs to a
certain category and estimates its ideal location in accordance
with the camera reference frame. Each GPU thread contains
corresponding position and velocity of a particle. Similarly,
Liera et al. [112] designed PPSO for low-cost architecture,
i.e., general-purpose GPU (GPGPU). Each thread runs its
own function evaluation simultaneous to the other threads.
Similarly, other implementations are found in this category.
Roberge and Tarbouchi [113] proposed parallel CUDA-PSO
for minimization of harmonics in multilevel inverters by
utilizing the computational potential of GPU attached with
the parallelism for real-time calculation of most favorable
switching angles. Rabinovich et al. [114] introduced a tool
that is able to solve the complex optimization problems with
discontinuities, nonlinearity, or high dimensionality. Pro-
posed powerful tool parallel gaming PSO (GPSO) can be
implemented effectively on a GPU. Datta et al. [115] imple-
mented CUDA version of PSO (CUDA PSO) for inverting
self-potential, magnetic and resistivity data of a geophys-
ical problem. The results of CUDA PSO were compared
to CPU PSO, and a significant speedup was obtained from
CUDA PSO compared to a CPU only version, maintain-
ing the same quality of results. Dali and Bouamama [116]

proposed a solution to the maximal constraint satisfaction
problems (Max-CSPs) by introducing parallel versions for
GPU, i.e., parallel GPU-PSO for Max-CSPs (GPU-PSO) as
well as GPU distributed PSO for Max-CSPs (GPU-DPSO).
CSP solution should be a complete set of values that satisfy
all the constraints, which is considered an NP-hard problem.
Further, serial PSO for graph drawing (SPGD) and parallel
PSO for graph drawing at vertex level (V-PGD)was proposed
byQu et al. [117].A force-directedmethodwas used for posi-
tioning the vertices, in which each particle corresponds to a
layout of the graph. Since the energy contribution is the sum
of attractive and repulsive forces, so it will be low if adjacent
vertices in the original graph are close to each other. Lorenzo
et al. [118] proposed PPSO algorithm for hyper-parameter
optimization in DNNs. The particle population represents a
combination of hyper-parameter values. Training and testing
experiments are performed on MNIST data sets of hand-
written digits. Liao et al. [119] proposed distributive PSO
(DPSO) to address luminance control problem, formulated
as a constrained search problem. DPSO partitions the popu-
lation of particles into groups with employment in GPU and
Hadoop MapReduce. Zou et al. [20] proposed OpenMP and
CUDA based PPSO and parallel GA (PGA). The algorithms
were implemented on FPGA. Further, the implementation of
FPGA-based parallel SA was done for JSSP.

3.2.3 Communication Topologies and Parameters Setting
Based Approaches

A comparative study of parallel variants for PSO on a multi-
threading GPU was performed by Laguna-Sanchez et al.
[120]. Three communication strategies with four PSO vari-
ants were tested so as to obtain significant improvement in
performance of PSO. The communication strategies include:
master-slave, island and diffusion. The PSO variants include:
sequential, Globalev, Globalev+up and embedded variant. In
Globalev variant, the objective function evaluations get par-
allelized, whereas, in Globalev+up variant, all processes get
parallelized that include updation of: fitness function evalu-
ation, velocity, position, and inertia. The embedded variant
hybridizes both the variants and runs complete PSO on the
GPU, assuming it as a black box. Mussi et al. [121] dis-
cussed possible approaches to parallelize PSO on GPU, i.e.,
multi-kernel variant of PPSO with the global, random and
ring topology. In order to eliminate the dependence between
particles’ updates, synchronous PSO is implemented with
updation of global and local best at the end of generation.
RingPSO tries to relax the constraint of synchronization
and allows the load of computation get allocated over all
streaming multiprocessors. Altinoz et al. [122] presented a
comparison in the execution time of PPSO for successively
increasing population sizes and problem dimensions. They
compared the execution time of the proposed chaotic dis-
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tributed population-based version chaotic P-PSO (CP-PSO)
with uniformly distributed population-based version. Nedjah
et al. [123] discussed the impact of parallelization strategy
and characteristics of the exploited processors on the perfor-
mance of the algorithm. They proposed cooperative PPSO
(CPPSO) andmapped the optimization problem onto distinct
parallel high-performance multiprocessors, based on many-
core andmulti-core formation employed inMPICH,OpenM,
OpenMP with MPI and CUDA. Many-core GPGPU-based
parallel architecture was found most efficient among the
compared strategies. Wu [124] studied the effect of dimen-
sion, number of particles, size and interactions of the
thread-block in the GPU versus CPU, on the computational
time and accuracy.

3.2.4 Hybridized Approaches

Franz and Thulasiraman [125] parallelized the hybrid algo-
rithm of multi-swarm PSO (MPSO) and GA on a hybrid
multi-core computer with accelerated processing unit to
improve performance, by taking advantage of APU-provided
close coupling between CPU and GPU devices. Ge et al.
[126] presented a joint method to inverse the relaxation
time of longitudinal (T1)-transversal (T2) spectrum in a low
field NMR, so as to obtain an optimal truncated position.
The method is a combination of iterative TSVD and PPSO.
Jin and Lu [127] proposed PPSO with genetic migration
(PPSO_GM) so as to introduce a better converging algorithm
for ten 100-dimensional benchmark test functions. They
implemented selection, crossover and mutation operators
on the particles in sequence. After completion of migration
among swarms, new swarms run PSO independently.

3.2.5 For Multi-objective Problems

Zhou and Tan [128] parallelized VEPSO for GPU-based
MOP. The GPU-based parallel MOPSO versions have been
compared with CPU-based serial MOPSO. The work is an
extension of author’s previous work [101]. For proposed
algorithm they considered only the non-dominated solutions
of the final population, instead of the entire evolution process
that helps in reducing the data transfer time between GPU
and CPU, hence it speeds up the process. Similarly, Arun et
al. [129] implemented MOPSO on GPU using CUDA and
OpenCL. The performance is claimed to be improved by
90 % in comparison with sequential implementation. Use of
archiving technique further improves the speedup.

4 Results and Discussions

Proposed work is summarized in Table 1 and Figs. 3, 4, 5.
Figure 3 presents the publication analysis of PPSO based

on the parallelization strategy. As can be observed from the
figure, MPI is the most popular parallelization strategy with
34.64% share, whereas GPU has 28.18% share. The follower
strategies in descending order include multi-core (11.82%),
OpenMP (9.09%), Hadoop (6.36%) and MATLAB paral-
lel computing toolbox with 6.36%. The other paralleliza-
tion strategies with 4.55% share include PVM, CloudSim
with virtual machine, OpenCL and Multi-threading. More-
over, 7% approaches implemented multi-objective optimiza-
tion along with parallelization. Besides this, one study
(Wachowiak et al. [109]) has implemented Intel Xeon PhiTM

co-processors and 22 studies have employed Intel Xeon
processors with or without hybridizing with additional par-
allelization strategies. Figure 4 depicts the communication
model-based distribution of the literature. The approaches
withGPUormulti-core implementationwhich did not imple-
ment any communication strategies (due to the availability
of default strategy) were excluded from this distributive
analysis. As it can be observed that Master-slave approach
is the most popular parallelization approach with 53.23%
share, whereas coarse-grained approach has 27.42% and
fine-grained has 14.52% share. The hybrid approaches with
4.84% share, present the hybridization of two or more
communication models. Figure 5 presents the details of
increasing popularity of PPSO in last decade. Although,
nVIDIATM introduced CUDATM in 2006 [16] and MPI was
introduced in 1992 [15] and PSO in 1995 [2], but PPSO
got introduced to widespread research community 2009
onwards. As can be seen by the figure, the % of the pub-
lications on PSO before 2009 was merely 14% which got
increased to 86% (from 2009 onwards). This demonstrates
the growing reputation of PPSO.

5 Concluding Remarks and FutureWork

The accelerated emergence of large-size real-world com-
plex problems has raised the demand of parallel computing
techniques. This has encouraged the research on heuristic
optimization algorithms like PSO, a derivative-free prevalent
swarm intelligence-based algorithm, particularly suitable to
continuous variable problems, which is widely being applied
to real-world problems. Implementation of parallel PSOwith
numerous parallelization models and strategies for solving
complex applications has obtained significant attention by
researchers.

In this conjunction, this paper presents a chronological lit-
erature survey on parallel PSO algorithm, its developed vari-
ants, implementation platform and strategy, applied area and
the objective of addressed problem. Then, all the surveyed
articles are further evaluated for concluding the popular par-
allelization strategy and communication topology. Despite of
being user-friendly,GPU-based parallelization is very expen-
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Fig. 3 Parallelization strategy-based publication analysis on Parallel
PSO

Fig. 4 Communication model-based publication analysis on Parallel
PSO

Fig. 5 Publication scenario in last decade

sive at cost criteria; hence, MPI-based parallelization is until
now the most popular strategy. Similarly, master-slave topol-
ogy is still the most popular communication topology due
to its primitiveness. This article provides an overview of
parallelization strategies available for researchers and their
possible implementation pathways.

In future, the research on formulating the complex
problems in form of multi-objective (or many-objective)
optimization problem and then solving them with suitable
parallelization strategy could be an advantageous research
avenue. Similarly, for the problems with several variables or
for big data problems, parallelization can effectively enhance
the efficiency and performance of the implementation by
employing parallel versions of heuristics.
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