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Abstract

The Grey wolf optimizer (GWO) is a recently introduced popular swarm-
intelligence-based metaheuristic algorithm, compared to other algorithms, it
has shown competitive performance. Despite its popularity, the conventional
GWO suffers from slow convergence rate and tendency to stuck in local
optima. Therefore, there is a chance of improvement in the search mechanism
of the GWO through different operators. To improve the performance of the
GWO, this paper proposes a new variant of the GWO called Mutation-driven
Modified Grey wolf optimizer and denoted by MDM-GWO. The MDM-
GWO combines a new update search mechanism, modified control parameter,
mutation-driven scheme, and greedy approach of selection in the search
procedure of the GWO. The performance of the proposed MDM-GWO is
evaluated on 23 well-known standard benchmark problems of wide varieties of
complexities and four real-world engineering design problems. The numerical
results, statistical tests, convergence, and diversity curves, and comparisons
among several algorithms show the superiority of the proposed MDM-GWO.

Keywords: Grey wolf optimizer; Exploration and Exploitation; Mutation;
Swarm Intelligence.

1. Introduction

Over the past decade, various metaheuristic algorithms have been
developed and applied in several fields of science and engineering applications
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to test their ability to find the optimal solution. In the field of different
applications such as machine learning, signal processing, neural networks,
industry, medical applications, chemistry and artificial intelligence (Tharwat,
2019; Russell and Norvig, 2002; Li et al., 2015; Anitha et al., 2007;
Tharwat et al., 2017; Liu et al., 2011). These problems cannot be
solved by traditional optimization methods because of discontinuity, non-
differentiability, convexity, high dimensions and complicated interaction
among variables. Some traditional optimization methods are random walk
method, steepest descent method, conjugate gradient method, quasi-Newton
method, and others. In order to takle these types of problems, many
metaheuristics are developed. Simple framework, easy implementation, and
derivative-free mechanism are the special features of these methods that have
attracted great research interests and have been widely applied to practical
problems. In the literature, metaheuristic algorithms have the capacity to
solve several real-life applications (Abbassi et al., 2020; Ridha et al., 2020;
Peraza et al., 2020; Carreon et al., 2020).

Some of the well-known meta-heuristic algorithms are Genetic algorithm
(GA) (Holland, 1975), Particle swarm optimization (PSO) (Kennedy
and Eberhart, 1995), Ant colony optimization (ACO) algorithm (Dorigo
and Stützle, 2019), Artificial bee colony (ABC) algorithm (Karaboga
and Basturk, 2007), Gravitational search algorithm (GSA) (Rashedi
et al., 2009), Spider monkey optimization (SMO) (Bansal et al., 2014),
Biogeography-based optimization (BBO) (Simon, 2008), Teaching-learning
based optimization (TLBO) (Rao et al., 2011) and many more. Some of the
other algorithms which are recently developed such as Grey wolf optimizer
(GWO) (Mirjalili et al., 2014), Harris hawks optimizer (HHO) (Heidari et al.,
2019), Sine cosine algorithm (SCA) (Mirjalili, 2016), Arithmetic optimization
algorithm (AOA) (Abualigah et al., 2021), Golden eagle optimizer (GEO)
(Mohammadi-Balani et al., 2021), etc.

GWO is a recently developed meta-heuristic algorithm (Mirjalili et al.,
2014). It is inspired by the leadership and hunting behavior of the grey
wolves in nature. The aim of adopting GWO for the study is its different
search mechanism based on the leadership behavior of grey wolves. In
GWO, throughout the iterations, the search direction of the GWO is decided
by the leading wolves (alpha, beta, and delta), which helps to ensure a
fast convergence speed. Hence, the multiple solution-based guided search
scheme of GWO provides an exploration and exploitation towards elite
and promising areas of the search space so that a better balance between

2



exploitation and exploration can be established. Although it demonstrates
its capacity of balancing exploitation and exploration, in some complex
optimization problems, it experiences improper balance between exploitation
and exploration and towards local optima during the search procedure. In the
last few years, GWO has become quite popular. In the literature, significant
growth in the application of GWO is observed for solving different real-life
application problems such as economic dispatch problem (Jayakumar et al.,
2016; Kamboj et al., 2016), feature selection (Emary et al., 2016), parameter
estimation in surface waves (Song et al., 2015), scheduling problem (Komaki
and Kayvanfar, 2015), training of q-Gaussian radial basis (Muangkote et al.,
2014), wind speed forecasting (Song et al., 2018), power dispatch problem
(Sulaiman et al., 2015), and many others. Although the application of GWO
demonstrates its sufficient ability in terms of exploration and exploitation,
but still in some cases, it suffers the issue of stagnation at local optima
and inappropriate balance between exploration and exploitation. Therefore,
in the literature, several attempts have been made to improve the search
mechanism of GWO. Mittal et al. (2016) proposed a modified version of the
GWO by adopting a non-linear transition control parameter strategy. This
modification aimed to achieve an appropriate balance between exploration
and exploitation. Experimental results in the paper illustrate that the
proposed strategy has improved the search performance of the original GWO
but is still unable to provide near optimal solutions for multimodal problems.
In order to enhance the exploration skills of the GWO, Long et al. (2018)
proposed exploration-enhanced GWO (EEGWO). In this algorithm, a new
modified position update equation is used to explore more areas of the
search space. In addition to this, a non-linear control parameter strategy
is also embedded in the EEGWO to balance the diversity and convergence
speed. Yu et al. (2021) proposed OGWO that combines the GWO with
OBL and nonlinear control parameter to improve the performance of the
original GWO. This variant has performed well on the considered benchmark
problem, but it suffers from the problem of skipping true solutions during
the search process on multimodal problems. A beetle antenna strategy in the
GWO algorithm is integrated by Fan et al. (2021a) to enhance exploration
capability and to reduce unnecessary searches. This variant cannot increase
the exploitation skills, and therefore, the results on unimodal problems are
not good enough. Another improved GWO algorithm, named LGWO, was
proposed by Heidari and Pahlavani (2017). They have integrated greedy
selection and Levy flight strategies with a modified hunting phase to alleviate
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the stagnation problem in GWO. In order to increase the convergence rate,
exploration, and exploitation abilities, Bansal and Singh (2020) proposed
IGWO. This improvement is conducted using the explorative equation and
opposition-based learning (OBL). These strategies are effective in cases
where the optima are far from the current state of solution. A group-
based synchronous–asynchronous GWO is developed by Rodríguez et al.
(2021), where asynchronous–asynchronous processing scheme is incorporated
to increase the diversity of the GWO population. Dhargupta et al. (2020)
used Spearman’s correlation coefficient to determine the position of omega
wolves. Moreover, in this proposed method, OBL is combined with GWO,
but instead of opposing all the dimensions of the wolves, only a few of them
are obtained using OBL. This helps in avoiding unnecessary exploration and
achieving fast convergence. Gupta and Deep (2020) proposed mGWO by
modifying the GWO search mechanism based on the personal best history
of wolves, crossover, and greedy selection. These strategies have improved
the global exploration and local exploitation abilities of the original GWO.
Furthermore, in order to strike a good balance between exploration and
exploitation, GWO is hybridized with other metaheuristics. For example,
Gaidhane and Nigam (2018) proposed a hybrid version of GWO and ABC
called GWO-ABC. In this algorithm, the information sharing strategy of
employed bee from ABC is integrated with the leadership behavior of the
GWO to boost exploration ability. In (Singh and Singh, 2017), search
strategies of GWO and SCA are combined, and a new hybrid method called
GWO-SCA is proposed. The aim of this hybridization is to utilize the
exploitation nature of the GWO and the explorative nature of the SCA.
By adding the principle of survival of the fittest (SOF), biological evolution,
and differential evolution algorithm, a new hybrid method called IGWO is
proposed to avoid the situation of falling into local optima and to accelerates
the convergence speed of the GWO (Wang and Li, 2019).

In this study, four different strategies are explored to enhance the
performance of the conventional GWO. These components are the modified
search mechanism of the GWO, modified control parameter, mutation-driven
search scheme, and greedy approach. The modified search mechanism
and mutation-driven search scheme increase the exploration strength and
enhance the capability to jump out from local optima, respectively. In the
mutation-driven scheme, Levy flight strategy distributed random numbers
are used due to the specific nature of this distribution, which infrequently
generates large numbers and helps avoid the prone towards local optima. The
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modified control parameter, which is used for transition from exploration to
exploitation in GWO, is modified to adopt the non-linear nature of search
and increase exploitation capability. Meanwhile, to avoid high exploration
during the search procedure, a greedy search approach is also used between
the newly obtained position and previous position. All these strategies are
merged in the GWO, and the paper proposes a new algorithm called MDM-
GWO.

The main structure of this paper is as follows: The introduction and
literature of the GWO is summarized in Section 1. Briefly describe the theory
of conventional GWO and steps of the algorithm in Section 2. The major
contribution i.e. our proposed method is discussed in Section 3. Simulation
results of the proposed algorithm and four engineering design problems are
presented in Section 4. Finally, Section 5 concludes this paper and suggests
some future ideas.

2. Conventional Grey Wolf Optimizer

GWO is a new meta-heuristic optimization algorithm introduced in 2014
by Mirjalili et al. (Mirjalili et al., 2014). It is based on the leadership level
and hunting activities of wolves in nature. In nature, Grey wolves always
prefer to live in a group. In this group, the number of grey wolves is 5-
12 on average. Wolves are divided into four categories, namely- alpha, beta,
delta, and omega wolves. First is the alpha wolf which is called the dominant
wolf in the group, and all the decisions in the group are taken by him/her.
The secondary wolf is the beta wolf which plays the role of the advisor in
the absence of the alpha wolf. The third wolf is the delta wolf which is
the caretaker of the group. Fourth, wolves (remaining wolves) are omega
wolves that are allowed to eat in the end. Like other swarm-intelligence-
based metaheuristic algorithms, GWO initializes the population. Then, the
wolves update their position in the solution space around the prey.

2.1. Mathematical model
In this section, we described the leadership behavior, encircling, and

hunting behavior mathematically in the following manner:

2.1.1. leadership behavior
In this subsection, the top three fittest solutions are assumed as leader

wolves, alpha (α), beta (β), and delta (δ), and remaining wolves are omega
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(ω) wolves. These follower wolves (ω wolves) update their states by the
guidance of leading wolves (α, β, and δ).

2.1.2. Encircling behavior
The encircling behavior can be modelled in the following mathematical

way:
D = |C ×X t

l.w −X t
w| (1)

X(t+1)
w = X t

l.w − A×D (2)

where t indicates the current iteration number. X t
l.w is the position of leading

wolves (α, β and δ) at tth iteration and X(t+1)
w is the position of grey wolves

in next iteration. The coefficient vectors A and C are defined in equations
(3) and (4). D is the difference vector between the grey wolf and the leader
wolves.

A = 2× a× rand1 − a (3)

C = 2× rand2 (4)

rand1 and rand2 are uniformly random numbers in the interval [0, 1]. a is
linearly decremented from 2 to 0 with the number of iterations and defined
in equation (5).

a = 2− 2

(
t

Maxiter

)
(5)

where, Maxiter is the maximum iterations number.

2.1.3. Hunting behavior
During the hunting process, it is considered that all the leading wolves

have better knowledge about the prey’s location. In this manner, each wolf
updated their positions based on the positions of leading wolves using the
following equations are:

Dα = |C1 ×X t
α.w −X t

w| (6)

Dβ = |C2 ×X t
β.w −X t

w| (7)
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Dδ = |C3 ×X t
δ.w −X t

w| (8)

where, X t
α.w, X t

β.w and X t
δ.w are the position of α, β and δ wolves at tth

iteration. C1, C2 and C3 are coefficient vectors as defined in equation (4).
After obtaining the difference vectors Dα, Dβ and Dδ, the new position of
the grey wolf at (t+ 1)th is calculated as follows:

X(t+1)
w =

X t
w1 +X t

w2 +X t
w3

3
(9)

where,
X t
w1 = X t

α.w − A1 ×Dα (10)

X t
w2 = X t

β.w − A2 ×Dβ (11)

X t
w3 = X t

δ.w − A3 ×Dδ (12)

the coefficient vectors A1, A2 and A3 are defined in equation (3).
The exploration and exploitation behavior balance is determined by random
and adaptive vectors A and C. If |A| > 1 and C > 1, the grey wolves
population expands its search scope and turns towards exploration. The
wolf exploits the search space when |A| < 1 and C < 1. Therefore, the
parameters A and C play key roles in the GWO algorithm. Algorithm 1
shows pseudo code of the conventional GWO.

3. Proposed Mutation-driven Grey Wolf Optimizer with Modified
Search Mechanism

The conventional GWO converges quickly into local optima. However,
this fast convergence comes at the cost, chances of getting stuck to the
local optima when dealing with complex optimization problems or when
the dimension of the problem increases. The reason for this degraded
performance is the low exploration capability of the conventional GWO
(Mirjalili et al., 2014). Hence, increasing the exploration capability of the
algorithm may provide a better version of the conventional GWO. However,
increasing the exploration capability directly affects the exploitation
capability of the conventional GWO, which may result an increased error
in the obtained solution. Thus, to improve the overall performance of
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Algorithm 1 Grey Wolf Optimizer (GWO) algorithm
Initialize the parameters
Initialize the grey wolves positions say Xw(w = 1, 2, . . . N)
Evaluate the fitness say f(Xw) at Xw

Select α, β, and δ wolves
initialize a, A and C
initialize t = 0
while Termination criteria is meet do
for for each wolf do
update the position of wolves using equation (9)

end for
update a, A and C
update α, β, and δ wolves
t=t+1

end while
Return α wolf

the conventional GWO, it is necessary that the work not only exploration
capability but also over exploitation capability of the conventional GWO.
Therefore, in this paper, we have combined four different strategies: modified
search mechanism, modified non-linear control parameter, mutation-driven
search scheme, and the greedy selection approach. Altogether, these
strategies are expected to enhance the exploration ability of the algorithm
while maintaining the exploration capability of the conventional GWO. The
description of each embedded strategy is as follows:

3.1. Modified Search Mechanism
The guidance provided by α, β, and δ wolves is an important factor

when updating the position of ω wolves. In the conventional GWO, the
average of the estimated positions of the three best search agents (α, β,
and δ) are considered to obtain the new position of the wolves. Logically,
the conventional GWO provides a new position at the centroid of a convex
region surrounded by the resulting direction points obtained using α, β, and δ
wolves. Hence the new position of a wolf lies in the neighborhood of positions
which are obtained in the direction of the estimated positions of the α, β,
and δ wolves. This logic does not work efficiently when these leading wolves
are either stuck in local optima or very far from the optima. Hence, instead
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of taking the centroid position of a convex region, we have chosen an affine
combination of the estimated positions of the three best search agents (α, β,
and δ) with coefficient value in the range (−1, 3) (explained below). For
exploring the large area around the positions obtained in the direction of α,
β, and δ wolves and to decrease the possibility of stucking into local optima.
Mathematically, this new search mechanism can be expressed by:

Y (t+1)
w = R1 ×X t

w1 +R2 ×X t
w2 +R3 ×X t

w3 (13)

where, Y (t+1)
w is the position of grey wolf in the (t + 1)th iteration and

X t
w1, X t

w2 and X t
w3 are obtained by equations (10), (11) and (12) in the

tth iteration, respectively. Initially, R1, R2 and R3 are uniformly distributed
random numbers in the interval (0, 1) and they are recalculated further as
follows:

Rk = 4× Rk∑3
i=1Ri

− 1, k = 1, 2, 3. (14)

Equation (14) is inspired by a novel multi-parent crossover operator which
is proposed by Zeng et al (Zeng et al., 2007). This new update search
mechanism randomly contributes the effects of α, β and δ guidance in
the search procedure and therefore useful in enhancing the capability of
exploration.

3.2. Modified Control Parameter
As discussed in the literature shows, the conventional GWO suggests a

balance between exploitation and exploration through the control parameter
a, which is linear in iteration counter t (Mirjalili et al., 2014; Heidari and
Pahlavani, 2017; Ibrahim et al., 2018; Zhang et al., 2018). Therefore, a
modification in this parameter may vary the exploitation and exploration
capabilities of the algorithm. Also, to mimic the non-linear search procedure
of the GWO, this control parameter can be transformed to a non-linear
function (Long et al., 2019), which is given by:

a = (astart − aend)× E + aend (15)

where,

E = exp
(
− t2

(K ×Maxiter)2

)
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and t indicates the current iteration, Maxiter indicates the maximum
number of iterations, K is the non-linear modulation index, and astart and
aend are the initial and final values of parameter a, respectively. In order to
accomplish our goal of achieving better exploitation, we have fixed the value
of K to 0.3, and the value of astart and aend are 2 and 0, respectively. The
comparison between the linear and the proposed non-linear control parameter
is demonstrated in Figure 1. In Figure 1, the linear behavior of the control
parameter indicates 50% global exploration and 50% local exploitation, and
the proposed non-linear behavior of the control parameter indicates 25%
global exploration and 75% local exploitation. Therefore, the utilization
of the non-linear control parameter places more emphasis on exploitation,
thereby enhancing the local search ability and reducing the chance to skip
true solutions during the search procedure. This is required as a modified
search mechanism increases the exploration is going to affect the exploitation
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Figure 1: Linearly and non-linearly decreasing curve for parameter a

3.3. Mutation-driven Search Scheme
In this scheme, we adopted the Levy-flight based mutation scheme to

enhance the global search ability. This mutation allows mutating the wolves
to avoid the chance of falling into local optima and provides a move to jump
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out from that local optima. In our proposed algorithm, this mutation scheme
is applied based on a mutation probability pm. A larger probability allows
a high chance to mutate the wolves, and that sometimes harmful and skips
the true solutions. Therefore, we have fixed it to 0.1 to keep the effect of the
modified search mechanism. The following equation can express the proposed
mutation scheme.

Zt+1
w = X t

w + E × L(θ) (16)

where, E is a scalar value that controls the mutation step size which is
explained in the above formula.

In equation (16), L(θ) is a Levy-flight distributed random number. Levy-
flight is a random walk in which the step lengths determine the steps, and
the jumps conform to a Levy distribution. In this paper, for generating step
lengths, Mantegna algorithm (Leccardi, 2005; Soneji and Sanghvi, 2012) is
used. Mantegna algorithm performs several small steps and occasionally a
big step which helps avoid the chance of falling into local optima and provides
a move to jump out from that local optima. Using the Mantegna algorithm,
50 step sizes have been drawn to form a consecutive 50 steps of 2D Lévy
flight distribution, shown in Figure 2. Mathematically, steps are calculated
as follows:

L(θ) =
u

|v| 1θ
(17)

where u and v parameters in the above equation have normal distributions
and are obtained as follows:

u ∼ N(0, σ2
u), v ∼ N(0, σ2

v),
σu and σv are defined by the following formula:

σu =
(

Γ(1+θ)·sin(πθ/2)

Γ[(1+θ)/2]·θ·2(θ−1)/2

)1/θ

σv = 1.
For |s| ≥ |s0|, this distribution (for s) obeys the expected Levy

distribution. s0 is the smallest step length (Yang and Deb, 2010) and Γ (.) is
the Gamma function and calculated as follows:

Γ (1 + θ) =

∞∫
0

tθe−tdt (18)

In a special case, when θ is an integer, then we have Γ (1 + θ) = θ!. In this
work, the value of θ is fixed as 1.
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Figure 2: A sequence of 50 consecutive steps of Levy flights

3.4. Greedy Selection Approach
The greedy selection approach is used to decide whether the newly

updated individual is to be accepted in the subsequent stage of evolution
or not. It is an approach of picking one best solution between two available
solutions based on their fitness values. This approach is used to perform
the search with better solutions instead of poor ones. This greedy nature
helps increase the algorithm’s exploitation capability and perform the search
in the elite direction obtained so far. In our proposed MDM-GWO, this
greedy selection is applied at two different places, one is when the positions
are obtained from the modified search mechanism, and another is when the
mutation-driven scheme is applied. For a minimization problem, one way of
selecting one solution between two solutions X and Y , using greedy selection
approach, can be defined as follows:

Z =

{
X if f(X) ≤ f(Y )
Y if f(X) > f(Y )

(19)

All the above described strategies are embedded into the conventional
GWO to proposed a new variant of GWO called MDM-GWO. The
pseudocode for MDM-GWO with all of the proposed strategies is presented
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in Algorithm 2.

Algorithm 2 Mutation-driven Grey Wolf Optimizer with Modified Search
Mechanism (MDM-GWO) algorithm

Initialize the positions of grey wolves Xw(w = 1, 2, . . . N)
Evaluate the function values f(Xw) at Xw

Select α, β, and δ wolves
Initalize a, A and C
Initialize t = 0 and FES = 0
while (t < Maxiter and FES < maxfes) do
update parameter a using equation (15)
for each wolf do
update the position of wolves using equation (13) say Yw
if f(Yw) ≤ f(Xw) then
replace the position Xw by Yw

end if
if rand() < pm then
obtain a new position Zw using equation (16)
if f(Zw) ≤ f(Xw) then
replace the position Xw by Zw

end if
end if

end for
t=t+1

end while
Return α wolf

4. Experimental environment and results

There are many well-defined and well-analyzed benchmark sets of
optimization problems to evaluate the newly designed optimization
algorithms’ performance. GECCO (Škvorc et al., 2019b; Molina et al., 2018;
Hansen et al., 2010), CEC (Škvorc et al., 2019a; García et al., 2009; Molina
et al., 2018) and 23 benchmark problems (Yao et al., 1999; Fogel, 1991;
Mirjalili et al., 2014; Mirjalili and Lewis, 2016; Törn and Zilinskas, 1989;
Bäck and Schwefel, 1993) etc. is a non-exhaustive list of such benchmark
sets. In this paper, we have used 23 benchmark problems to evaluate the
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performance of the proposed MDM-GWO. In the literature, this problem
set has been used widely to evaluate the performance of the population-
based optimization algorithms (Bansal and Singh, 2020; Rachapudi and Devi,
2019; Zhang et al., 2020; Ibrahim et al., 2018; Dhargupta et al., 2020; Bujok,
2018b; Poláková et al., 2015; Bujok, 2018a; Wu et al., 2017). The benchmark
set is representative consisting of variety of problems including unimodal,
multimodal, scalable, and non-scalable problems. The description and details
of these benchmark problems are presented in Table 1. 2D versions of some
selected benchmark problems P1, P3, P5, P8, P9, P10, P13, P14, P15,
and P22 are shown in Figure 3 (Mirjalili et al., 2014) to understand the
complexities of the problems. In Table 1, the benchmark problems include
7 unimodal problems (P1-P7), 6 multimodal problems (P8-P13), and 10
multimodal problems with fixed dimensions (P14-P23). The Dimension (n)
denotes the number of decision variables and Range refers the boundary of
the decision variables. In Table 1, the optimal value corresponding to each
well-known benchmark problem is given. The unimodal problems are to
evaluate a unique feature of the algorithm called exploitation. Unlike the
unimodal problems, the multimodal problems have many local optima that
increase with the dimension. These problems allow testing the algorithm
for its exploration ability and getting out of local optima. Another class
of multimodal problems with fixed dimensions is known to be convenient in
certifying exploration and exploitation ability at the same time.

In this paper, the experiments are organized in a very comprehensive
manner. The experiments are carried out in three steps: First, the proposed
MDM-GWO is compared with a conventional GWO and variants of GWO
on 30-dimensional test problems. In the second step, a comparison between
the proposed MDM-GWO, conventional GWO, and variants of GWO is
performed over 50, 100, 500, and 1000-dimensional scalable test problems
P1-P13. In the third step, the proposed MDM-GWO is compared with other
popular metaheuristic algorithms. All these experiments are carried out
under the same environment (parameter setting), using 50 search agents to
conduct 5×104 function evaluations. During the experiments, each algorithm
is independently tested 30 times on each benchmark test problem to reduce
the effect of randomness. All the parameter settings and PC details are
shown in Table 2 and Table 3, respectively. The experimental results are
analyzed based on two criteria: 1) average (Average) and standard deviation
(Std.) values of best results obtained over 30 trials of algorithm, and 2)
statistical analysis through Wilcoxon rank-sum test, Friedman test and post
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hoc test (Holms and Hochberg). Furthermore, to analyze and compare the
convergence rate and diversity, convergence curves and diversity curves are
plotted in Figures 4− 6.
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Table 1: Benchmark problems

Problem Types Dimension (n) Range Optimal value

P1(x)=
∑n
i=1 x

2
i Unimodal 30,50,100,500,1000 [−100,100] 0

P2(x)=
∑n
i=1 |x2i |+

∏n
i=1 |xi| Unimodal 30,50,100,500,1000 [−10,10] 0

P3(x)=
∑n
i=1

(∑i
j−1 xj

)2
Unimodal 30,50,100,500,1000 [−100,100] 0

P4(x)=maxi {|xi|, 1 ≤ i ≤ n} Unimodal 30,50,100,500,1000 [−100,100] 0

P5(x)=
∑n−1
i=1

[
100

(
xi+1 − x2i

)2
+ (xi − 1)2

]
Unimodal 30,50,100,500,1000 [−30,30] 0

P6(x)=
∑n
i=1 ([xi + 0.5])2 Unimodal 30,50,100,500,1000 [−100,100] 0

P7(x)=
∑n
i=1 ix

4
i + random[0, 1) Unimodal 30,50,100,500,1000 [−1.28,1.28] 0

P8(x)=
∑n
i=1−xi sin

(√
|xi|
)

Multimodal 30,50,100,500,1000 [−500,500] -418.9829×D

P9(x)=
∑n
i=1

[
x2i − 10 cos (2πxi) + 10

]
Multimodal 30,50,100,500,1000 [−5.12,5.12] 0

P10(x)=−20 exp(−0.2
√

1
n

∑n
i=1 x

2
i )− exp

(
1
n

∑n
i=1 cos (2πxi)

)
+ 20 + e Multimodal 30,50,100,500,1000 [-32,32] 0

P11(x)= 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)
+ 1 Multimodal 30,50,100,500,1000 [−600,600] 0

P12(x)=π
n

{
10 sin (πy1) +

∑n−1
i=1 (yi − 1)2

[
1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+
∑n
i=1 u(xi, 10, 100, 4) Multimodal 30,50,100,500,1000 [−50,50] 0

yi = 1 + xi+1
4

u(xi, a, k,m) =


k(xi − a)m xi > a

0 −a < xi < a

k(−xi − a)m xi < −a

P13(x)=0.1
{

sin2(3πx1) +
∑n
i=1 (xi − 1)2

[
1 + sin2(3πxi + 1)

]
+ (xn − 1)2

[
1 + sin2(2πxn)

]}
+ Multimodal 30,50,100,500,1000 [−50,50] 0∑n

i=1 u(xi, 5, 100, 4)

P14(x)=
(

1
500

+
∑25
j=1

1

j+
∑2

i=1(xi−aij)6

)−1

Fixed-dimensional multimodal 2 [−65, 65] 0.998

P15(x)=
∑11
i=1

[
ai −

x1(b2i+bix2)
b2i+bix3+x4

]2
Fixed-dimensional multimodal 4 [−5, 5] 0.00030

P16(x)=4x21 − 2.1x41 + 1
3
x61 + x1x2 − 4x22 + 4x42 Fixed-dimensional multimodal 2 [−5, 5] −1.0316

P17(x)=
(
x2 − 5.1

4π2 x
2
1 + 5

π
x1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10 Fixed-dimensional multimodal 2 [−5, 5] 0.398

P18(x)=
[
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22

)]
Fixed-dimensional multimodal 2 [−2, 2] 3[

30 + (2x1 − 3x2)2
(
18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22

)]
P19(x)=−

∑4
i=1 ci exp

(
−
∑3
j=1 aij (xj − pij)2

)
Fixed-dimensional multimodal 3 [1, 3] −3.86

P20(x)=−
∑4
i=1 ci exp

(
−
∑6
j=1 aij (xj − pij)2

)
Fixed-dimensional multimodal 6 [0, 1] −3.32

P21(x)=−
∑5
i=1

[
(X − ai) (X − ai)T + ci

]−1
Fixed-dimensional multimodal 4 [0, 10] −10.1532

P22(x)=−
∑7
i=1

[
(X − ai) (X − ai)T + ci

]−1
Fixed-dimensional multimodal 4 [0, 10] −10.4028

P23(x)=−
∑10
i=1

[
(X − ai) (X − ai)T + ci

]−1
Fixed-dimensional multimodal 4 [0.10] −10.5363
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Table 2: Parameter setting of the various algorithms

S.No Algorithms Parameter setting

1 GWO a = [2, 0]
2 OGWO
3 RW-GWO
4 MGWO User defined parameters selected from the original papers
5 GWO-XOBL
6 WF-GWO
7 BBO I = 1, E = 1, mmax = 0.005, keep = 2
8 PSO c1 and c2=2, vmax=ub, vmin=lb

inertia weight is linearly decreasing from 0.9 to 0.4
9 GSA gravitational constant G = 100, decreasing coefficient β = 20
10 SSA c1 = 2× e−( 4l

L
)2

11 CS Pa = 0.25 and κ = 1.5
12 HHO E0 ∈ [−1, 1]
13 CMA-ES alphamu = 2

Table 3: The detailed settings of the utilized system for experimentation

Name Setting

CPU Intel Core(TM) i5 processor
RAM 8 GB

Software MATLAB R2014a
Operating system Windows 10

4.1. Analysis of different strategies
In this subsection, to verify the impact of each strategy in the MDM-

GWO, four different combinations are added in the GWO algorithm such
as Strategy-1, Strategy-2, Strategy-3, and Strategy-4. In Strategy-1, only a
modified control parameter is added to the GWO algorithm. In Strategy-2,
the levy-flight mutation is added to the GWO algorithm, and In Strategy-3,
the combination of the modified control parameter and levy-flight mutation
is added to the GWO algorithm. Strategy-4 or MDM-GWO means that all
strategies are added to the GWO algorithm. Same benchmark problems (P1-
P23) have been used to verify the impact of each strategy. The parameter
settings are as same as in section 4, and each benchmark problem runs 30
times, individually. The specific experimental results are shown in Table 4.
Besides, the Average and standard deviation (Std.) values of the objective
functions and the statistical analysis through the Wilcoxon rank-sum test
are reported in Table 4. In Table 4, ‘+’ means that the proposed MDM-
GWO is better than Strategy-1, Strategy-2, and Strategy-3, ‘-’ indicates
that MDM-GWO is worse than Strategy-1, Strategy-2, and Strategy-3,
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Figure 3: 2D versions of some selected benchmark problems
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and ‘≈’ represents that MDM-GWO is the same as Strategy-1, Strategy-
2, and Strategy-3. In the first four unimodal benchmark problems, P1-
P4, the experimental results of Table 4 show that the proposed MDM-
GWO has performed better than other Strategy-1, Strategy-2, and Strategy-
3. Besides, Strategy-2 is the second-best optimizer in these benchmark
problems. In problem P6, Strategy-3 has performed better than other
strategies and MDM-GWO. The proposed MDM-GWO has performed better
in problems P7-P11. In the problem P9 and P11, the MDM-GWO achieves
the optima value (0) and outperforms Strategy-1, Strategy-2, and Strategy-
3. In problems P12-P18 and P22, Strategy-3 is better, and in problem P19,
Strategy-1, Strategy-2, Strategy-3, and MDM-GWO perform the same in
terms of average and standard deviation. Strategy-2 performs better for
problem P20, and for problem P23, Strategy-1 is a better optimizer. The
proposed MDM-GWO achieves optimal value for problem P21. From the
results reported in Table 4, it can be concluded that MDM-GWO outperforms
Strategy-1, Strategy-2, and Strategy-3. Hence, a modified search equation
effectively improves the results compared to using levy flight or modified
control parameter only.

4.2. Comparison with Conventional GWO and variants of GWO
In this subsection, the performance of the MDM-GWO is compared with

conventional GWO (Mirjalili et al., 2014) and the variants of the GWO such
as MGWO (Mittal et al., 2016), OGWO (Pradhan et al., 2018), RW-GWO
(Gupta and Deep, 2019), GWO-XOBL (Singh and Bansal, 2020) and WF-
GWO (Rodríguez et al., 2017). The parameter setting for the comparison
is taken the same, i.e., 50 population size and 5 × 104 function evaluations.
With this parameter setting, Table 5 reports the Average and Std. of the
best value obtained over 30 trials of all the algorithms. The best results are
highlighted in bold. Since the unimodal problems (P1-P7) possess unique
(global) optimal solutions, these functions verify the exploitation efficiency
of the proposed algorithm. From the results of Table 5, it is evident that
the Average and Std. of the proposed MDM-GWO are better than the
conventional GWO and the variants of the GWO for unimodal problems
P1 and P3-P7. In problem P1, GWO-XOBL and the proposed MDM-GWO
have achieved global optimal solution (0), and GWO-XOBL performs better
for problem P2. For multimodal problems P9-P13, the proposed MDM-GWO
performs significantly better than the conventional GWO and the variants of
the GWO algorithm. In P8, GWO-XOBL is better in terms of Average, and
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Table 4: Obtained results by Strategy-1, Strategy-2, Strategy-3, and Strategy-4 on 23
well-known benchmark problems

Problem Strategy-1 Strategy-2 Strategy-3 Strategy-4(MDM-GWO)

P1 Average 8.34E-37 1.74E-76 9.12E-37 7.07E-307
Std. 1.68E-36 4.68E-76 1.12E-36 0.00E+00

outcome + + +
P2 Average 8.13E-22 1.26E-44 9.84E-22 5.07E-152

Std. 5.15E-22 1.09E-44 5.15E-22 2.78E-151
outcome + + +

P3 Average 1.95E-07 3.64E-16 1.26E-07 1.74E-273
Std. 4.56E-07 1.90E-15 3.33E-07 0.00E+00

outcome + + +
P4 Average 4.41E-08 2.06E-16 2.79E-08 7.14E-149

Std. 9.58E-08 3.59E-16 3.01E-08 3.11E-148
outcome + + +

P5 Average 2.64E+01 2.25E+01 1.04E+01 1.62E+00
Std. 6.78E-01 7.32E+00 1.26E+01 1.22E+00

outcome + + +
P6 Average 2.94E-01 5.23E-03 7.73E-09 8.98E-03

Std. 2.59E-01 5.98E-04 7.73E-09 2.39E-03
outcome + + -

P7 Average 1.29E-03 6.32E-04 1.31E-03 1.68E-04
Std. 5.83E-04 2.70E-04 7.34E-04 1.72E-04

outcome + + +
P8 Average -5.97E+03 -5.99E+03 -5.92E+03 -7.48E+03

Std. 1.23E+03 6.20E+02 1.13E+03 1.01E+03
outcome + + +

P9 Average 4.24E+00 5.20E+00 3.37E+00 0.00E+00
Std. 5.64E+00 7.31E+00 4.77E+00 0.00E+00

outcome + + +
P10 Average 1.97E-14 9.30E-15 8.11E-02 1.95E-15

Std. 3.86E-15 5.94E-15 4.44E-01 1.66E-15
outcome + + +

P11 Average 1.17E-03 3.27E-03 9.47E-04 0.00E+00
Std. 3.79E-03 6.41E-03 3.60E-03 0.00E+00

outcome + + +
P12 Average 2.15E-02 1.01E-03 1.07E-04 1.56E-03

Std. 1.07E-02 2.09E-03 4.41E-04 4.97E-04
outcome + - -

P13 Average 2.88E-01 2.70E-02 6.69E-03 2.50E-02
Std. 1.40E-01 5.06E-02 2.17E-02 1.49E-02

outcome + ≈ -
P14 Average 2.11E+00 2.83E+00 2.90E+00 9.98E-01

Std. 2.74E+00 2.85E+00 3.26E+00 2.36E-10
outcome + + +

P15 Average 3.77E-03 2.39E-03 3.06E-03 7.83E-04
Std. 7.55E-03 6.10E-03 6.91E-03 3.07E-04

outcome + + +
P16 Average -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00

Std. 1.21E-14 2.22E-07 9.63E-13 6.13E-08
outcome - + -

P17 Average 3.98E-01 3.98E-01 3.98E-01 3.98E-01
Std. 8.34E-13 1.21E-05 2.42E-11 2.60E-07

outcome - + - -
P18 Average 3.00E+00 3.00E+00 3.00E+00 3.00E+00

Std. 1.25E-05 3.23E-06 1.85E-08 2.33E-06
outcome + ≈ -

P19 Average -3.00E-01 -3.00E-01 -3.00E-01 -3.00E-01
Std. 2.26E-16 2.26E-16 2.26E-16 2.26E-16

outcome ≈ ≈ ≈
P20 Average -3.26E+00 -3.27E+00 -3.25E+00 -3.23E+00

Std. 6.76E-02 6.06E-02 6.74E-02 6.73E-02
outcome - - -

P21 Average -9.45E+00 -9.22E+00 -9.65E+00 -1.01E+01
Std. 1.83E+00 1.91E+00 1.54E+00 6.45E-03

outcome + + +
P22 Average -1.02E+01 -1.02E+01 -1.04E+01 -1.04E+01

Std. 9.70E-01 6.62E-01 9.91E-08 5.92E-03
outcome + + -

P23 Average -1.05E+01 -1.01E+01 -9.73E+00 -1.05E+01
Std. 2.20E-09 1.31E+00 2.14E+00 8.17E-03

outcome - + +
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OGWO is better in Std. For the multimodal with fixed-dimensional problems
(P14-P23), the proposed MDM-GWO performs better for P14, P16-P19, and
P21-P23. OGWO performs better in P15, and GWO-XOBL performs better
in P20.

The convergence rate in the proposed MDM-GWO is compared through
convergence curves for selected well-known benchmark problems P1, P3, P5,
P8, P9, P10, P13, P14, P15, and P22 plotted in Figure 4. The curves are
drawn for the best value of the objective function in each iteration in these
figures. The horizontal axis represents the maximum number of function
evaluations, and the vertical axis indicates the best value of the objective
function.

4.2.1. Diversity analysis
In this section, the proposed method, MDM-GWO, is evaluated for

its capability of diversified search. This is done by the radius of swarm
(Olorunda and Engelbrecht, 2008). The radius of the swarm is defined as the
maximum distance between the swarm center and any grey wolf position in
the swarm. The radius can be calculated by the following formula:

Rd = max
i∈[1,N ]


√√√√Dimension(n)∑

k=1

(Xi,k − X̄k)2


where, Xi,k is the kth dimension of the ith grey wolf position and X̄k is the
kth dimension of the swarm center position.

The obtained diversity curves for selected well-known classical problems
P1, P3, P5, P8, P9, P10, P13, P14, P15, and P22 are shown in Figure 5. From
these figures, it can be seen that at the initial stage, the maximum radius
is higher in the MDM-GWO than the conventional GWO, which shows that
the proposed MDM-GWO has a good exploration capability of search agent.
The reason for this enhanced diversity is the additional exploratory search
strategy based on new search equations and mutation strategies applied in
the MDM-GWO.

4.3. Computational Complexity
In these metaheuristic algorithms, the computational complexity

determines how long the method needs to figure out the final result. The
computational complexities of the conventional GWO and MDM-GWO
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Table 5: Comparison of results obtained by MDM-GWO with selected variants of GWO
on 23 well-known benchmark problems

Problem GWO OGWO RW-GWO MGWO GWO-XOBL WF-GWO MDM-GWO

P1 Average 3.72E-77 1.90E-91 1.27E-74 8.58E-35 0.00E+00 6.03E-76 0.00E+00
Std. 8.07E-77 8.14E-91 1.66E-74 2.01E-34 0.00E+00 1.11E-75 0.00E+00

P2 Average 6.59E-45 1.38E-54 3.78E-43 3.27E-20 1.01E-177 9.08E-44 9.77E-157
Std. 6.14E-45 1.88E-54 4.41E-43 1.32E-20 0.00E+00 1.03E-43 3.21E-156

P3 Average 8.09E-17 4.00E-15 4.31E-11 4.71E-10 5.45E-216 5.09E-18 3.21E-277
Std. 3.56E-16 2.10E-14 2.04E-10 1.13E-09 0.00E+00 9.63E-18 0.00E+00

P4 Average 1.17E-16 1.21E-29 6.69E-14 1.71E-06 4.86E-134 1.61E-16 9.63E-149
Std. 2.13E-16 1.21E-29 8.26E-14 1.37E-06 8.33E-134 3.72E-16 3.32E-148

P5 Average 2.66E+01 2.68E+01 2.57E+01 2.81E+01 2.55E+01 2.62E+01 1.24E+00
Std. 7.36E-01 6.51E-01 5.37E-01 9.22E-01 5.46E-01 6.88E-01 1.24E+00

P6 Average 3.62E-01 6.34E-01 5.31E-02 2.80E+00 1.83E-02 4.53E-01 9.34E-03
Std. 2.84E-01 3.13E-01 8.56E-02 7.04E-01 6.17E-02 3.30E-01 2.59E-03

P7 Average 7.28E-04 2.34E-04 1.28E-03 7.43E-03 1.72E-03 7.66E-04 2.34E-04
Std. 4.08E-04 1.18E-04 4.96E-04 3.20E-03 1.03E-03 2.88E-04 2.19E-04

P8 Average -6.58E+03 -3.81E+03 -8.69E+03 -5.59E+03 -9.00E+03 -6.31E+03 -7.89E+03
Std. 7.92E+02 3.46E+02 3.98E+02 1.00E+03 5.11E+02 9.69E+02 1.43E+03

P9 Average 4.05E+00 0.00E+00 1.25E+01 1.13E+02 0.00E+00 1.31E+00 0.00E+00
Std. 6.43E+00 0.00E+00 8.80E+00 3.17E+01 0.00E+00 2.89E+00 0.00E+00

P10 Average 7.88E-15 7.28E-15 7.99E-15 2.27E+00 4.44E-15 7.99E-15 1.72E-15
Std. 6.49E-16 1.45E-15 0.00E+00 1.76E+00 0.00E+00 0.00E+00 1.53E-15

P11 Average 1.49E-03 3.62E-04 1.89E-03 4.58E-03 0.00E+00 2.20E-03 0.00E+00
Std. 4.02E-03 1.98E-03 5.60E-03 6.65E-03 0.00E+00 5.30E-03 0.00E+00

P12 Average 2.39E-02 4.18E-02 4.62E-03 1.96E+01 3.91E-03 2.34E-02 1.56E-03
Std. 1.44E-02 1.93E-02 6.81E-03 1.62E+01 5.43E-03 9.50E-03 4.79E-04

P13 Average 3.18E-01 5.60E-01 5.16E-02 2.05E+00 9.74E-02 3.49E-01 3.33E-02
Std. 1.94E-01 1.93E-01 5.97E-02 7.87E-01 1.22E-01 1.88E-01 2.04E-02

P14 Average 4.32E+00 2.83E+00 9.98E-01 2.41E+00 9.98E-01 4.26E+00 9.98E-01
Std. 4.35E+00 3.47E+00 1.04E-11 2.45E+00 7.00E-11 4.23E+00 1.99E-10

P15 Average 3.74E-03 3.95E-04 4.92E-04 6.02E-04 1.14E-03 4.40E-03 8.96E-04
Std. 7.57E-03 2.84E-04 3.76E-04 2.79E-04 3.65E-03 8.10E-03 3.29E-04

P16 Average -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00
Std. 8.86E-10 4.88E-06 1.43E-09 4.28E-04 7.04E-07 1.46E-05 2.55E-08

P17 Average 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
Std. 5.75E-08 1.01E-04 7.50E-08 5.03E-07 3.27E-07 3.89E-08 3.43E-07

P18 Average 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00
Std. 2.39E-06 3.21E-06 4.95E-07 3.15E-04 7.31E-08 4.17E-06 2.54E-06

P19 Average -3.00E-01 -3.00E-01 -3.00E-01 -3.00E-01 -3.00E-01 -3.00E-01 -3.00E-01
Std. 2.26E-16 2.26E-16 2.26E-16 2.26E-16 2.26E-16 2.26E-16 2.26E-16

P20 Average -3.25E+00 -3.22E+00 -3.26E+00 -3.25E+00 -3.26E+00 -3.25E+00 -3.22E+00
Std. 6.80E-02 7.44E-02 6.12E-02 6.03E-02 6.06E-02 8.23E-02 6.10E-02

P21 Average -9.48E+00 -8.28E+00 -9.29E+00 -6.80E+00 -1.01E+01 -9.27E+00 -1.01E+01
Std. 1.75E+00 1.90E+00 1.92E+00 3.48E+00 5.00E-03 2.03E+00 3.32E-03

P22 Average -1.02E+01 -8.49E+00 -1.02E+01 -6.88E+00 -1.02E+01 -1.04E+01 -1.04E+01
Std. 9.70E-01 1.52E+00 1.34E+00 3.65E+00 9.69E-01 9.44E-05 7.15E-03

P23 Average -1.05E+01 -8.68E+00 -1.05E+01 -7.86E+00 -1.05E+01 -1.04E+01 -1.05E+01
Std. 5.84E-05 1.68E+00 4.39E-05 3.62E+00 5.42E-03 9.79E-01 6.32E-03
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algorithms are calculated in terms of a big-O notation. The algorithms’
computational complexity depends on initialization, fitness evaluation,
position update mechanism, mutation, and greedy selection approach. In
both the algorithms, the computational complexity of initialization and
fitness evaluation is O(N×D) and O(N) time. In GWO, the position update
mechanism is O(N ×D) time. Therefore, total computational complexity is
O(N × D × Maxiter), where N is the number of grey wolves, D is the
search space dimension, and Maxiter is the maximum number of iterations
allowed. In MDM-GWO, the modified search mechanism’s computational
complexity is O(N × D) time. Also, the computational complexity of the
mutation is O(N × D) time, and the greedy selection approach is O(N)
time. Therefore, the total computational complexity for MDM-GWO is
O(N×D×Maxiter). Note that the computational complexity of the MDM-
GWO and the conventional GWO is the same.

4.4. Experiments on large-scale problems
In order to analyze the performance of the proposed MDM-GWO on the

optimization problems with higher difficulty levels, numerical experiments
are performed on 50, 100, 500, and 1000-dimension problems of scalable
problems P1-P13. The results of the proposed MDM-GWO are compared
with conventional GWO, MGWO, OGWO, RW-GWO, GWO-XOBL, and
WF-GWO algorithms. All the algorithms were run with the same conditions.
The number of search agents and the maximum function evaluation are fixed
at 50 and 5× 104, respectively. The average of the best value (Average) and
standard deviation (Std.) obtained by the proposed MDM-GWO and other
algorithms are recorded. The specific results are reported in Tables 6 and 7,
respectively. As can be seen from Tables 6 and 7, the proposed MDM-GWO
has a better performance compared with other algorithms for 50, 100, 500,
and 1000 dimension problems. For the 50 dimension problem, MDM-GWO is
a better optimizer compared to other competitors in problems P1, P3-P7, and
P9-P13 but in P2 and P8, GWO-XOBL and RW-GWO perform better. For
the 100, 500, and 1000 dimensions, the MDM-GWO beats other competitors
in all the problems P1-P13 but in P5, MGWO is better in terms of standard
deviation. The convergence curves for some selected well-known benchmark
problems P1, P3, P5, P7, P8, P9, P10, and P13 are depicted in Figure 6. In
these Figures, GWO1 and MDM-GWO1 are for the 50 dimension problem,
GWO2 and MDM-GWO2 are for the 100 dimension problem, GWO3 and
MDM-GWO3 are for 500 dimension problem, and GWO4 and MDM-GWO4
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are for 500 dimension problem, respectively. From these Figures, it can be
concluded that the MDM-GWO has faster convergence while maintaining a
better accuracy level compared to conventional GWO for higher dimensions.
The above analysis suggests that the applied strategies are suitable for
complex problems, and the performance of MDM-GWO becomes more robust
for higher dimension problems.

4.5. Statistical analysis
To determine whether the algorithm MDM-GWO is significantly better

than the competitors, a non-parametric test, Wilcoxon rank-sum test (Derrac
et al., 2011) is used for 30, 50, 100, 500, and 1000 dimensions. The statistical
outcomes with a 5% significance level are shown in Tables 8-10. In these
tables, +/−/ ≈ represents that MDM-GWO is better/worse/uniform as the
algorithms used for comparison, respectively.

Furthermore, the Friedman test (Carrasco et al., 2020; Derrac et al., 2014)
which is a non-parametric and multiple-comparison test is used to check
whether there is a significant differences between two or more algorithms
and used to assess the significant difference in five different dimensions (Dim
=30, 50, 100, 500, and 1000). Table 11 shows the statistical results of five
different dimensions ordered in terms of average ranking produced by the
Friedman test. Note that the proposed MDM-GWO always received the
first rank under different dimensions. The calculated Friedman value is 52.9
with 6 degrees of freedom (distributed according to χ2), and the critical
value is 12.59 with a 5% level of significance. It is clear that 52.9>12.59
and the obtained p-value of Friedman test is 1.20E-09 which is less than
the 0.05. Hence, there is a significant difference between the MDM-GWO
and the other algorithms. Additionally, in order to detect the difference
between the comparison methods, we have also performed post-hoc tests, the
Holms and Hochberg statistical tests. Table 12 presents the adjusted p-value
and 0.05/rank for each comparison pair between MDM-GWO and MGWO,
OGWO, GWO, RW-GWO, GWO-XOBL, andWF-GWO, rank defined as the
lower is the better and will be ranked first. In Holms and Hochberg statistical
tests, if adjusted p-value < 0.05/rank, this means that there is a significant
difference between MDM-GWO and other algorithms. For 30 dimension
test problems, the proposed MDM-GWO is significantly better than GWO,
OGWO, WF-GWO, and MGWO, for 50 dimension test problems, MDM-
GWO is significantly better than RW-GWO, GWO, OGWO, WF-GWO, and
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Table 6: Comparison of results obtained by proposed MDM-GWO and variants of GWO
algorithm on scalable benchmark problems with 50 and 100 dimension

Problem GWO OGWO RW-GWO MGWO GWO-XOBL Weight-GWO MDMGWO
For 50 dimension

P1 Average 2.23E-56 2.88E-72 4.42E-54 1.31E-71 1.92E-297 4.94E-56 4.63E-308
Std. 3.56E-56 9.25E-72 5.51E-54 3.02E-71 0.00E+00 6.16E-56 0.00E+00

P2 Average 1.82E-33 2.85E-43 5.36E-32 1.82E-42 1.45E-160 1.23E-31 2.33E-155
Std. 1.84E-33 3.84E-43 4.50E-32 1.60E-42 2.58E-160 2.05E-31 1.18E-154

P3 Average 2.21E-06 1.65E-04 2.19E-02 2.72E-07 2.45E-186 3.99E-06 1.75E-273
Std. 4.05E-06 8.06E-04 5.37E-02 8.57E-07 0.00E+00 8.97E-06 0.00E+00

P4 Average 1.21E-09 4.71E-22 5.73E-06 1.29E-13 4.73E-119 8.71E-10 6.57E-147
Std. 2.07E-09 1.14E-21 8.72E-06 4.53E-13 1.52E-118 1.40E-09 3.49E-146

P5 Average 4.67E+01 4.70E+01 4.63E+01 4.66E+01 4.55E+01 4.66E+01 3.47E+00
Std. 1.02E+00 8.75E-01 5.99E-01 6.88E-01 8.15E-01 7.88E-01 2.2654E+00

P6 Average 1.59E+00 2.43E+00 6.22E-01 1.47E+00 4.91E-01 1.56E+00 3.60E-02
Std. 5.47E-01 5.21E-01 3.65E-01 5.20E-01 3.51E-01 6.03E-01 7.17E-03

P7 Average 1.05E-03 3.62E-04 2.21E-03 9.11E-04 2.81E-03 1.14E-03 1.86E-04
Std. 3.58E-04 2.38E-04 1.03E-03 5.02E-04 1.33E-03 3.82E-04 1.84E-04

P8 Average -8.84E+03 -4.76E+03 -1.36E+04 -8.53E+03 -1.29E+04 -9.46E+03 -1.20E+04
Std. 2.34E+03 4.10E+02 6.79E+02 2.52E+03 8.80E+02 2.14E+03 1.33E+03

P9 Average 5.70E+00 0.00E+00 1.66E+01 7.05E-01 0.00E+00 5.03E+00 0.00E+00
Std. 1.09E+01 0.00E+00 8.51E+00 2.81E+00 0.00E+00 7.06E+00 0.00E+00

P10 Average 1.34E-14 8.23E-15 1.49E-14 8.23E-15 4.44E-15 1.36E-14 1.24E-15
Std. 3.06E-15 1.30E-15 2.27E-15 1.30E-15 0.00E+00 2.90E-15 1.08E-15

P11 Average 9.85E-04 0.00E+00 1.70E-03 2.98E-04 0.00E+00 7.51E-04 0.00E+00
Std. 3.02E-03 0.00E+00 3.89E-03 1.63E-03 0.00E+00 2.86E-03 0.00E+00

P12 Average 5.85E-02 9.67E-02 1.92E-02 6.50E-02 1.23E-02 5.60E-02 1.79E-03
Std. 1.99E-02 3.38E-02 8.70E-03 6.19E-02 1.07E-02 2.02E-02 4.99E-04

P13 Average 1.33E+00 1.96E+00 5.04E-01 1.19E+00 5.42E-01 1.45E+00 6.39E-02
Std. 3.71E-01 3.44E-01 2.97E-01 2.70E-01 2.55E-01 2.88E-01 2.62E-02

For 100 dimension

P1 Average 3.66E-37 4.70E-55 1.00E-34 1.26E-46 4.29E-267 4.33E-37 1.53E-302
Std. 6.19E-37 7.99E-55 1.26E-34 1.34E-46 0.00E+00 4.07E-37 0.00E+00

P2 Average 1.01E-22 3.38E-33 1.56E-21 2.29E-28 4.95E-146 1.21E-18 1.15E-152
Std. 5.54E-23 2.85E-33 6.10E-22 1.44E-28 1.10E-145 4.48E-18 5.48E-152

P3 Average 5.57E+01 1.34E+03 1.12E+03 6.15E+01 1.35E-160 2.60E+01 1.02E-264
Std. 6.25E+01 2.32E+03 9.64E+02 9.04E+01 7.42E-160 5.83E+01 0.00E+00

P4 Average 4.93E-03 7.92E-15 2.42E+00 3.43E-03 1.58E-106 1.01E-02 4.06E-145
Std. 4.81E-03 2.56E-14 1.84E+00 1.04E-02 4.85E-106 2.68E-02 1.26E-144

P5 Average 9.72E+01 9.73E+01 9.66E+01 9.67E+01 9.63E+01 9.73E+01 7.65E+00
Std. 8.43E-01 8.19E-01 8.09E-01 7.45E-01 1.27E+00 8.68E-01 1.10E+01

P6 Average 7.01E+00 9.64E+00 4.56E+00 7.21E+00 3.51E+00 7.12E+00 1.08E-01
Std. 9.30E-01 8.81E-01 7.65E-01 9.62E-01 8.38E-01 1.13E+00 2.47E-02

P7 Average 1.96E-03 5.45E-04 4.46E-03 1.47E-03 4.74E-03 2.49E-03 2.34E-04
Std. 7.76E-04 3.90E-04 1.16E-03 4.57E-04 1.90E-03 1.08E-03 1.98E-04

P8 Average -1.63E+04 -6.52E+03 -2.36E+04 -1.59E+04 -2.09E+04 -1.70E+04 -2.45E+04
Std. 4.02E+03 6.08E+02 1.00E+03 4.46E+03 1.18E+03 4.25E+03 2.86E+03

P9 Average 5.42E+00 0.00E+00 2.88E+01 3.79E-15 0.00E+00 6.15E+00 0.00E+00
Std. 7.27E+00 0.00E+00 1.80E+01 2.08E-14 0.00E+00 1.17E+01 0.00E+00

P10 Average 3.56E-14 1.33E-14 4.26E-14 1.63E-14 4.56E-15 3.71E-14 1.95E-15
Std. 3.69E-15 3.06E-15 2.27E-15 2.69E-15 6.49E-16 4.21E-15 1.66E-15

P11 Average 1.63E-03 5.32E-04 0.00E+00 5.02E-04 0.00E+00 2.32E-03 0.00E+00
Std. 5.03E-03 2.92E-03 0.00E+00 2.75E-03 0.00E+00 5.60E-03 0.00E+00

P12 Average 1.72E-01 2.66E-01 8.66E-02 1.66E-01 7.34E-02 2.29E-01 1.88E-03
Std. 4.89E-02 4.43E-02 3.10E-02 4.16E-02 2.34E-02 8.83E-02 3.28E-04

P13 Average 5.61E+00 6.63E+00 4.49E+00 5.42E+00 3.82E+00 5.43E+00 1.39E-01
Std. 4.24E-01 2.79E-01 6.50E-01 3.67E-01 5.73E-01 3.37E-01 2.97E-02
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Table 7: Comparison of results obtained by proposed MDM-GWO and variants of GWO
algorithm on scalable benchmark problems with 500 and 1000 dimension

Problem GWO OGWO RW-GWO MGWO GWO-XOBL Weight-GWO MDM-GWO
For 500 dimension

P1 Average 2.25E-15 1.89E-35 6.07E-13 8.56E-19 8.23E-237 2.79E-15 1.19E-295
Std. 1.24E-15 1.64E-35 3.29E-13 4.24E-19 0.00E+00 1.49E-15 0.00E+00

P2 Average 1.05E-09 3.39E-21 9.14E-09 4.98E-12 4.20E-130 5.43E+02 4.20E-151
Std. 2.71E-10 1.62E-21 2.19E-09 1.53E-12 6.12E-130 6.80E+02 1.48E-150

P3 Average 2.55E+05 8.68E+05 5.40E+05 3.44E+05 1.87E-126 2.72E+05 3.98E-264
Std. 5.69E+04 1.89E+05 8.39E+04 8.50E+04 1.02E-125 7.10E+04 0.00E+00

P4 Average 5.48E+01 3.12E+01 5.77E+01 5.85E+01 1.59E-77 5.46E+01 2.06E-141
Std. 5.24E+00 3.37E+01 3.11E+00 4.21E+00 4.12E-77 5.40E+00 8.12E-141

P5 Average 4.97E+02 4.98E+02 4.97E+02 4.97E+02 4.97E+02 4.97E+02 5.00E+01
Std. 2.91E-01 1.57E-01 1.81E-01 2.76E-01 4.00E-01 2.64E-01 5.89E+01

P6 Average 8.61E+01 9.76E+01 7.97E+01 8.91E+01 7.51E+01 8.57E+01 7.18E-01
Std. 2.17E+00 1.10E+00 1.96E+00 1.73E+00 2.22E+00 1.67E+00 1.16E-01

P7 Average 1.07E-02 9.64E-04 2.26E-02 7.60E-03 8.20E-03 1.03E-02 1.97E-04
Std. 3.70E-03 3.62E-04 4.75E-03 2.08E-03 3.26E-03 3.04E-03 1.62E-04

P8 Average -6.50E+04 -1.48E+04 -6.37E+04 -4.75E+04 -6.96E+04 -6.61E+04 -1.27E+05
Std. 1.45E+04 1.24E+03 2.85E+03 2.26E+04 3.55E+03 1.46E+04 1.02E+04

P9 Average 1.59E+01 6.06E-14 7.50E+01 3.54E-01 0.00E+00 1.45E+01 0.00E+00
Std. 1.07E+01 2.31E-13 3.87E+01 1.94E+00 0.00E+00 1.32E+01 0.00E+00

P10 Average 2.29E-09 2.37E-14 3.31E-08 4.37E-11 5.03E-15 2.29E-09 1.72E-15
Std. 5.99E-10 4.73E-15 9.35E-09 2.17E-11 1.35E-15 6.20E-10 1.53E-15

P11 Average 6.14E-04 1.04E-16 3.67E-03 1.56E-03 0.00E+00 3.83E-03 0.00E+00
Std. 3.36E-03 2.82E-17 1.23E-02 5.92E-03 0.00E+00 1.23E-02 0.00E+00

P12 Average 6.64E-01 8.02E-01 6.01E-01 6.74E-01 4.99E-01 6.51E-01 1.57E-03
Std. 3.80E-02 2.28E-02 4.83E-02 3.59E-02 3.77E-02 3.21E-02 2.47E-04

P13 Average 4.51E+01 4.74E+01 4.72E+01 4.48E+01 4.21E+01 4.51E+01 5.40E-01
Std. 5.93E-01 4.17E-01 1.64E+00 5.72E-01 8.21E-01 8.50E-01 9.40E-02

For 1000 dimension

P1 Average 9.68E-11 4.40E-31 2.27E-08 2.87E-13 2.47E-230 1.25E-10 3.79E-294
Std. 3.98E-11 5.52E-31 1.06E-08 1.25E-13 0.00E+00 5.51E-11 0.00E+00

P2 Average 7.09E-07 5.98E-12 1.38E-04 1.184E-08 5.59E-155 3.75E-04 6.53E-148
Std. 1.17E-07 2.89E-10 9.48E-04 2.26E-09 2.49E-156 1.86E-04 2.25E-147

P3 Average 1.36E+06 3.65E+06 2.36E+06 1.51E+06 6.26E-122 1.35E+06 3.70E-263
Std. 1.71E+05 8.26E+05 3.06E+05 2.90E+05 3.42E-121 2.30E+05 0.00E+00

P4 Average 7.08E+01 8.88E+01 7.08E+01 7.39E+01 4.71E-65 7.12E+01 1.62E-139
Std. 3.14E+00 6.35E+00 3.65E+00 2.32E+00 2.23E-64 2.61E+00 6.77E-139

P5 Average 9.97E+02 9.98E+02 9.96E+02 9.97E+02 9.97E+02 9.97E+02 1.09E+02
Std. 2.30E-01 1.93E-01 1.50E-01 1.27E-01 1.93E-01 2.98E-01 1.53E+02

P6 Average 1.99E+02 2.19E+02 1.92E+02 2.06E+02 1.86E+02 1.98E+02 1.42E+00
Std. 2.13E+00 1.33E+00 2.60E+00 2.12E+00 3.68E+00 1.96E+00 2.53E-01

P7 Average 2.13E-02 1.08E-03 5.87E-02 1.49E-02 1.092E-02 2.10E-02 2.47E-04
Std. 5.79E-03 4.63E-04 9.94E-03 3.84E-03 5.35E-03 5.76E-03 2.42E-04

P8 Average -1.09E+05 -2.08E+04 -9.40E+04 -8.61E+04 -1.08E+05 -1.04E+05 -2.54E+05
Std. 2.46E+04 1.55E+03 2.93E+03 3.68E+04 5.99E+03 3.39E+04 2.40E+04

P9 Average 3.80E+01 1.82E-13 9.85E+01 1.09E+00 0.00E+00 4.18E+01 0.00E+00
Std. 2.06E+01 5.55E-13 3.49E+01 3.42E+00 0.00E+00 2.25E+01 0.00E+00

P10 Average 3.59E-07 2.82E-14 4.36E-06 1.61E-08 5.39E-15 3.33E-07 1.60E-15
Std. 5.78E-08 5.29E-15 9.74E-07 4.03E-09 1.60E-15 6.61E-08 1.45E-15

P11 Average 1.45E-03 1.59E-16 9.34E-03 7.77E-04 0.00E+00 1.49E-03 0.00E+00
Std. 6.02E-03 5.60E-17 1.97E-02 4.25E-03 0.00E+00 8.17E-03 0.00E+00

P12 Average 7.76E-01 9.52E-01 1.07E+00 8.41E-01 7.13E-01 7.58E-01 1.64E-03
Std. 2.52E-02 1.52E-02 3.18E-01 1.81E-02 2.65E-02 3.47E-02 3.06E-04

P13 Average 9.69E+01 9.80E+01 1.09E+02 9.55E+01 9.29E+01 9.68E+01 1.02E+00
Std. 1.29E+00 4.52E-01 3.57E+00 7.56E-01 7.13E-01 2.14E+00 2.00E-01
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MGWO which for 100, 500, and 1000 dimensions test problems, the proposed
MDM-GWO is statistically a better performer.
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Table 8: Obtained statistical results from Wilcoxon rank-sum test on 23 well-known
benchmark problems.

Problem GWO OGWO RW-GWO MGWO GWO-XOBL WF-GWO

P1 p-value 3.01E-11 3.02E-11 3.00E-11 3.00E-11 5.20E-02 3.02E-11
outcome + + + + ≈ +

P2 p-value 3.01E-11 3.02E-11 3.00E-11 3.00E-11 3.02E-11 3.02E-11
outcome + + + + + +

P3 p-value 3.01E-11 3.02E-11 3.00E-11 3.00E-11 3.02E-11 3.02E-11
outcome + + + + + +

P4 p-value 3.01E-11 3.02E-11 3.00E-11 3.00E-11 3.02E-11 3.02E-11
outcome + + + + + +

P5 p-value 3.01E-11 1.21E-10 3.00E-11 3.00E-11 3.02E-11 3.02E-11
outcome + + + + + +

P6 p-value 3.99E-04 3.02E-11 2.71E-02 3.99E-04 9.26E-09 1.11E-06
outcome + + + + + +

P7 p-value 1.07E-07 1.71E-01 1.21E-10 7.70E-04 6.70E-11 5.57E-10
outcome + ≈ + + + +

P8 p-value 6.77E-05 3.02E-11 1.78E-04 1.25E-04 2.43E-05 1.87E-05
outcome + + - + - +

P9 p-value 2.93E-05 NA 1.66E-11 NA NA 5.58E-03
outcome + ≈ + ≈ ≈ +

P10 p-value 1.13E-13 1.72E-11 4.17E-13 6.03E-11 3.78E-10 1.55E-13
outcome + + + + + +

P11 p-value 4.19E-02 3.34E-01 4.19E-02 3.34E-01 NA 2.16E-02
outcome + ≈ + ≈ ≈ +

P12 p-value 5.57E-10 3.02E-11 NA 3.02E-11 3.79E-01 3.02E-11
outcome + + ≈ + ≈ +

P13 p-value 9.26E-09 3.02E-11 6.63E-01 5.57E-10 3.79E-01 9.76E-10
outcome + + ≈ + ≈ +

P14 p-value 4.83E-01 3.02E-11 6.72E-10 1.68E-03 9.21E-05 1.84E-02
outcome + + + + + +

P15 p-value 1.68E-04 3.52E-07 3.57E-06 4.74E-06 1.25E-05 2.84E-04
outcome + - - + + +

P16 p-value 8.10E-10 3.02E-11 4.62E-10 3.99E-04 1.64E-05 2.03E-09
outcome - + + + + +

P17 p-value 1.68E-04 8.15E-11 1.26E-01 4.12E-01 2.58E-01 2.50E-03
outcome - + ≈ ≈ ≈ -

P18 p-value 6.57E-02 8.24E-02 1.68E-04 3.11E-01 3.82E-09 3.87E-01
outcome ≈ ≈ - ≈ - ≈

P19 p-value NA NA NA NA NA NA
outcome ≈ ≈ ≈ ≈ ≈ ≈

P20 p-value 4.08E-05 1.91E-01 2.78E-07 1.34E-05 1.19E-06 3.27E-02
outcome - ≈ - + - -

P21 p-value 1.63E-02 3.02E-11 2.71E-01 1.33E-01 3.96E-08 2.92E-02
outcome + + ≈ ≈ + +

P22 p-value 1.86E-03 3.02E-11 1.04E-04 3.04E-01 1.07E-07 2.15E-06
outcome + + + ≈ + +

P23 p-value 1.04E-04 3.02E-11 2.60E-05 3.33E-01 1.89E-04 3.03E-03
outcome - + + ≈ + +31



Table 9: Obtained statistical results from Wilcoxon rank-sum test on scalable benchmark
problems with 50 and 100 dimension

Problem GWO OGWO RW-GWO MGWO GWO-XOBL Weight-GWO
For 50 dimension

P1 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P2 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.92E-02 3.02E-11
outcome + + + + + +

P3 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P4 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P5 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P6 p-value 3.02E-11 3.02E-11 5.57E-10 3.02E-11 6.77E-05 3.02E-11
outcome + + + + + +

P7 p-value 1.96E-10 1.54E-01 3.02E-11 1.20E-08 3.34E-11 4.98E-11
outcome + ≈ + + + +

P8 p-value 1.55E-09 3.02E-11 7.22E-06 4.99E-09 5.26E-04 1.07E-07
outcome + + - + + +

P9 p-value 2.21E-06 NA 1.21E-12 8.15E-02 NA 2.93E-05
outcome + ≈ + ≈ ≈ +

P10 p-value 2.51E-12 2.94E-13 9.65E-13 4.28E-13 3.94E-12 1.04E-12
outcome + + + + + +

P11 p-value 8.15E-02 NA 2.16E-02 3.34E-01 NA 1.61E-01
outcome ≈ ≈ + ≈ ≈ ≈

P12 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 8.48E-09 3.02E-11
outcome + + + + + +

P13 p-value 3.02E-11 3.02E-11 4.20E-10 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

For 100 dimension

P1 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P2 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P3 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P4 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P5 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P6 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P7 p-value 3.02E-11 1.03E-06 3.02E-11 1.46E-10 3.02E-11 3.02E-11
outcome + + + + + +

P8 p-value 4.08E-11 3.02E-11 3.92E-02 8.15E-11 1.07E-07 4.50E-11
outcome + + + + + +

P9 p-value 1.68E-08 NA 1.21E-12 3.34E-01 NA 4.76E-08
outcome + ≈ + + ≈ +

P10 p-value 3.39E-12 1.94E-12 3.99E-12 2.60E-13 1.87E-08 2.14E-12
outcome + + + + + +

P11 p-value 8.15E-02 3.34E-01 NA 3.34E-01 NA 2.16E-02
outcome ≈ ≈ ≈ ≈ ≈ +

P12 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P13 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +
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Table 10: Obtained statistical results from Wilcoxon rank-sum test on scalable benchmark
problems on 500 and 1000 dimension

Problem GWO OGWO RW-GWO MGWO GWO-XOBL Weight-GWO
For 500 dimension

P1 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P2 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P3 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P4 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P5 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P6 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P7 p-value 3.02E-11 1.07E-09 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P8 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P9 p-value 1.21E-12 1.61E-01 1.21E-12 7.44E-13 NA 1.21E-12
outcome + ≈ + + ≈ +

P10 p-value 5.14E-12 2.81E-12 3.15E-12 8.87E-12 1.80E-09 3.15E-12
outcome + + + + + +

P11 p-value 1.19E-12 7.15E-13 1.21E-12 1.60E-13 NA 1.20E-12
outcome + + + + ≈ +

P12 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P13 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

For 1000 dimension

P1 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P2 p-value 3.02E-11 3.02E-11 1.21E-12 3.02E-11 1.21E-12 1.21E-12
outcome + + + + + +

P3 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P4 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P5 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P6 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P7 p-value 3.02E-11 8.15E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P8 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P9 p-value 1.21E-12 8.14E-02 1.20E-12 1.21E-12 NA 1.21E-12
outcome + + + + ≈ +

P10 p-value 8.87E-12 5.25E-12 6.32E-12 3.15E-12 5.13E-10 5.14E-12
outcome + + + + + +

P11 p-value 1.21E-12 4.46E-13 1.21E-12 1.21E-12 NA 1.21E-12
outcome + + + + ≈ +

P12 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +

P13 p-value 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + +
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Table 11: Obtained average ranking of the algorithms by the Friedman test

30 Dimensional 50 Dimensional 100 Dimensional 500 Dimensional 1000 Dimensional
MDM-GWO 2.28E+00 MDM-GWO 1.38E+00 MDM-GWO 1.15E+00 MDM-GWO 1.08E+00 MDM-GWO 1.15E+00
GWO-XOBL 2.63E+00 GWO-XOBL 2.38E+00 GWO-XOBL 2.46E+00 GWO-XOBL 2.08E+00 GWO-XOBL 2.08E+00
RW-GWO 3.72E+00 MGWO 4.19E+00 MGWO 4.31E+00 OGWO 4.76E+00 GWO 4.54E+00

GWO 3.98E+00 OGWO 4.57E+00 OGWO 4.77E+00 MGWO 4.85E+00 MGWO 4.76E+00
OGWO 4.63E+00 RW-GWO 5.07E+00 RW-GWO 4.77E+00 GWO 4.77E+00 WF-GWO 4.77E+00

WF-GWO 4.48E+00 WF-GWO 5.15E+00 GWO 4.92E+00 WF-GWO 4.92E+00 OGWO 4.92E+00
MGWO 6.28E+00 GWO 5.23E+00 WF-GWO 5.62E+00 RW-GWO 5.54E+00 RW-GWO 5.77E+00
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Table 12: Obtained statistical results from the post-hoc test

30 Dimensional 50 Dimensional 100 Dimensional 500 Dimensional 1000 Dimensional

Algorithm Adjusted p value 0.05/rank Algorithm Adjusted p value 0.05/rank Algorithm Adjusted p value 0.05/rank Algorithm Adjusted p value 0.05/rank Algorithm Adjusted p value 0.05/rank

GWO-XOBL 2.98E-01 5.00E-02 GWO-XOBL 3.65E-01 5.00E-02 RW-GWO 4.17E-02 5.00E-02 GWO-XOBL 2.42E-02 5.00E-02 GWO-XOBL 3.00E-03 5.00E-02

RW-GWO 2.21E-01 2.50E-02 RW-GWO 1.22E-02 2.50E-02 GWO-XOBL 1.89E-02 2.50E-02 WF-GWO 4.35E-03 2.50E-02 WF-GWO 5.88E-07 2.50E-02

GWO 1.09E-02 1.67E-02 WF-GWO 1.44E-02 1.67E-02 WF-GWO 1.92E-02 1.67E-02 GWO 7.00E-03 1.67E-02 GWO 5.18E-07 1.67E-02

OGWO 6.00E-03 1.25E-02 GWO 8.96E-02 1.25E-02 GWO 3.02E-02 1.25E-02 MGWO 6.43E-04 1.25E-02 MGWO 1.72E-07 1.25E-02

WF-GWO 1.00E-04 1.00E-02 MGWO 7.06E-03 1.00E-02 MGWO 2.67E-03 1.00E-02 RW-GWO 6.20E-06 1.00E-02 RW-GWO 9.33E-10 1.00E-02

MGWO 1.08E-06 8.33E-03 OGWO 7.80E-06 8.33E-03 OGWO 1.61E-08 8.33E-03 OGWO 3.41E-08 8.33E-03 OGWO 5.77E-12 8.33E-03
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4.6. Comparison with metaheuristic algorithms
In this subsection, the proposed MDM-GWO is compared with

metaheuristic algorithms such as PSO (Kennedy and Eberhart, 1995), BBO
(Simon, 2008), SCA (Mirjalili, 2016), GSA (Rashedi et al., 2009), Salp
Swarm Algorithm (SSA) (Mirjalili et al., 2017), Cockoo search optimization
algorithm (CS), Harris hawks optimization algorithm (HHO) and Covariance
matrix adaptation evolution strategy (CMA-ES) (Hansen, 2006). The
parameters of these algorithms are set as follows: the population size of
PSO, BBO, SCA, GSA, SSA, CS, HHO, and CMA-ES is 50, the maximum
function evaluations for PSO, BBO, SCA, GSA, SSA, CS, HHO and CMA-
ES are set to 5× 104. In these experiments, each algorithm is independently
executed 30 times on each problem. The experimental results are presented
in Table 13. For the unimodal problems P1-P7, the proposed MDM-GWO
achieves the best solutions for problems P1, P2, P3, P4 compared to other
metaheuristic algorithms and P5, P7, and P8, HHO algorithm is better
than other metaheuristic algorithms. For P6, GSA achieves global optimal
solution. For the multimodal problems (P8-P13), MDM-GWO has better
performance in the case of P9, and P11. MDM-GWO achieves global optimal
solution in P9 and P11, and also HHO algorithm achieves global optimal
solution. For problem P8, BBO and HHO achieve global optimal solution
(−1.26× 104), and HHO performs significantly better in problem P10 and in
problem P12, and P13 CMA-ES performs better. For multimodal problems
with fixed dimensions (P14-P23), MDM-GWO is better than considered
metaheuristic algorithms in the case of P14, P19, P21, P22, and P23. For the
problem P20, GSA is a better optimizer, and PSO better performance in P15.
To verify statistical significance of results for MDM-GWO over considered
metaheuristic algorithms, Wilcoxon rank-sum test is performed. To verify
the performance of MDM-GWO, significance level is chosen as 5%, and the
statistical results are shown in Table 14. Moreover, Table 15 shows the
average ranking produced by the Friedman test. The obtained p-value of
the Friedman test is 3.44E-07. Furthermore, the post-hoc tests (Holms and
Hochberg) has also been applied, and the results of the Holms and Hochberg
tests are presented in Table 16. From the results, it is clear that the proposed
MDM-GWO is performing better than SCA, BBO, GSA, CS, and CMA-ES.
From experiments and overall analysis, it can be concluded that the proposed
MDM-GWO is a better optimizer.
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Table 13: Comparison of results obtained by MDM-GWO with selected metaheuristic
algorithms on 23 well-known benchmark problems

Problem PSO BBO SCA GSA SSA CS HHO CMA-ES MDMGWO

P1 Average 2.86E-04 5.75E+00 2.52E-02 1.99E-17 8.33E-09 2.26E-05 2.52E-193 1.63E-54 0.00E+00
Std. 3.68E-04 2.24E+00 1.32E-01 4.54E-18 1.60E-09 1.13E-05 0.00E+00 2.41E-54 0.00E+00

P2 Average 7.10E-04 8.44E-01 1.03E-05 2.42E-08 4.83E-01 5.72E-02 5.56E-100 1.91E-25 9.77E-157
Std. 5.38E-04 1.50E-01 1.94E-05 3.69E-09 5.98E-01 9.52E-03 4.56E-14 1.76E-25 3.21E-156

P3 Average 1.67E+03 9.27E+03 2.72E+03 2.67E+02 3.74E+01 1.22E+00 2.78E-163 3.63E-44 3.21E-277
Std. 9.68E+02 2.69E+03 2.65E+03 1.02E+02 2.14E+01 2.62E-01 0.00E+00 7.13E-44 0.00E+00

P4 Average 1.04E+01 6.34E+00 1.23E+01 1.93E-02 3.94E+00 1.74E-01 7.51E-96 1.83E-20 9.63E-149
Std. 2.37E+00 1.17E+00 8.95E+00 1.06E-01 1.87E+00 3.60E-02 4.11E-95 1.95E-20 3.32E-148

P5 Average 1.20E+02 3.39E+02 1.48E+02 2.61E+01 1.03E+02 2.62E+01 1.45E-03 5.03E+00 1.24E+00
Std. 1.30E+02 1.66E+02 5.54E+02 2.47E-01 1.27E+02 6.44E-01 2.15E-03 8.97E-01 1.24E+00

P6 Average 3.79E-04 5.61E+00 4.26E+00 0.00E+00 8.91E-09 3.09E-05 1.07E-05 2.75E-30 9.34E-03
Std. 4.67E-04 1.89E+00 3.83E-01 0.00E+00 1.87E-09 1.34E-05 1.72E-05 7.65E-31 2.59E-03

P7 Average 5.62E-02 2.63E-02 1.86E-02 2.12E-02 5.60E-02 5.61E-02 5.23E-05 5.19E-01 2.34E-04
Std. 2.10E-02 1.06E-02 1.35E-02 1.01E-02 1.97E-02 2.03E-02 6.54E-05 2.90E-01 2.19E-04

P8 Average -9.34E+03 -1.26E+04 -4.06E+03 -2.73E+03 -7.73E+03 -1.18E+02 -1.26E+04 -1.18E+02 -7.89E+03
Std. 4.72E+02 5.44E+00 2.48E+02 4.26E+02 6.93E+02 1.06E-04 4.00E+01 4.57E-14 1.43E+03

P9 Average 2.63E+01 2.70E+00 1.06E+01 1.56E+01 5.58E+01 8.90E+01 0.00E+00 1.41E+01 0.00E+00
Std. 7.17E+00 1.00E+00 1.81E+01 3.23E+00 1.81E+01 1.09E+01 0.00E+00 3.05E+00 0.00E+00

P10 Average 7.24E-03 1.17E+00 1.25E+01 3.47E-09 1.70E+00 7.70E-02 8.88E-16 5.27E-15 1.72E-15
Std. 5.76E-03 2.50E-01 9.78E+00 5.00E-10 8.11E-01 5.81E-02 0.00E+00 1.53E-15 1.53E-15

P11 Average 1.40E-02 1.05E+00 1.73E-01 4.17E+00 9.30E-03 9.02E-05 0.00E+00 0.00E+00 0.00E+00
Std. 1.09E-02 1.80E-02 2.24E-01 1.95E+00 1.05E-02 1.02E-04 0.00E+00 0.00E+00 0.00E+00

P12 Average 1.39E-01 4.62E-02 1.06E+00 3.46E-02 3.81E+00 1.03E-03 7.54E-07 1.07E-31 1.56E-03
Std. 2.02E-01 4.72E-02 1.75E+00 4.97E-02 2.44E+00 1.06E-03 1.17E-06 2.91E-32 4.79E-04

P13 Average 3.02E-02 2.69E-01 2.43E+02 3.66E-04 8.70E-03 7.46E-04 8.42E-06 1.55E-30 3.33E-02
Std. 6.46E-02 8.45E-02 1.25E+03 2.00E-03 1.96E-02 4.52E-04 1.34E-05 4.25E-31 2.04E-02

P14 Average 9.98E-01 1.00E+00 1.26E+00 3.48E+00 9.98E-01 1.27E+01 9.98E-01 1.27E+01 9.98E-01
Std. 0.00E+00 9.92E-03 6.84E-01 2.05E+00 1.92E-16 2.47E-15 9.28E-11 1.58E-13 1.99E-10

P15 Average 4.61E-04 7.23E-03 8.25E-04 2.20E-03 1.50E-03 3.07E-04 3.55E-04 3.07E-04 8.96E-04
Std. 2.33E-04 8.35E-03 3.38E-04 1.10E-03 3.60E-03 2.11E-08 1.84E-04 1.97E-19 3.29E-04

P16 Average -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00
Std. 6.71E-16 1.34E-03 1.66E-05 5.53E-16 9.25E-15 6.78E-16 4.69E-13 4.88E-16 2.55E-08

P17 Average 3.98E-01 3.99E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
Std. 0.00E+00 2.06E-03 3.67E-04 0.00E+00 3.48E-15 0.00E+00 1.29E-07 0.00E+00 3.43E-07

P18 Average 3.00E+00 4.84E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00
Std. 6.70E-16 6.87E+00 1.99E-05 2.84E-15 5.51E-14 1.01E-15 1.37E-10 8.47E-15 2.54E-06

P19 Average -1.19E-02 -2.81E-01 -3.00E-01 -3.86E+00 -3.01E-01 -3.86E+00 -3.86E+00 -3.77E+00 -3.00E-01
Std. 2.10E-02 1.23E-02 2.26E-16 2.49E-15 2.26E-16 2.71E-15 5.01E-04 1.35E-15 2.26E-16

P20 Average -2.11E+00 -3.26E+00 -3.02E+00 -3.32E+00 -3.22E+00 -3.32E+00 -3.17E+00 -3.31E+00 -3.22E+00
Std. 3.96E-01 6.05E-02 1.42E-01 1.36E-15 4.55E-02 1.59E-09 8.13E-02 3.76E-02 6.10E-02

P21 Average -1.32E+00 -5.69E+00 -3.33E+00 -6.22E+00 -9.40E+00 -1.02E+01 -5.22E+00 -5.06E+00 -1.02E+01
Std. 8.94E-01 3.49E+00 2.03E+00 3.54E+00 1.99E+00 5.71E-15 9.28E-01 5.13E-16 3.32E-03

P22 Average -1.43E+00 -5.69E+00 -4.68E+00 -1.04E+01 -9.97E+00 -1.04E+01 -5.44E+00 -5.09E+00 -1.04E+01
Std. 8.23E-01 3.38E+00 1.63E+00 5.71E-16 1.67E+00 6.46E-15 1.34E+00 7.25E-16 7.15E-03

P23 Average -1.39E+00 -6.39E+00 -5.47E+00 -1.05E+01 -1.02E+01 -1.05E+01 -5.31E+00 -5.13E+00 -1.05E+01
Std. 5.20E-01 3.64E+00 1.72E+00 1.71E-15 1.37E+00 1.62E-15 9.80E-01 5.13E-16 6.32E-03
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Table 14: Obtained statistical results from Wilcoxon rank-sum test on 23 well-known
benchmark problems

Problem PSO BBO SCA GSA SSA CS HHO CMA-ES

P1 p-value 3.01E-11 3.01E-11 3.01E-11 3.01E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + + + +

P2 p-value 3.01E-11 3.01E-11 3.01E-11 3.01E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + + + +

P3 p-value 3.01E-11 3.01E-11 3.01E-11 3.01E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + + + +

P4 p-value 3.01E-11 3.01E-11 3.01E-11 3.01E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
outcome + + + + + + + +

P5 p-value 3.01E-11 3.01E-11 3.01E-11 3.01E-11 4.08E-11 NA 3.02E-11 3.69E-11
outcome + + + + + NA - +

P6 p-value 3.01E-11 3.01E-11 3.01E-11 1.21E-12 3.02E-11 9.51E-06 1.70E-08 3.02E-11
outcome + + + - + + - -

P7 p-value 3.01E-11 3.01E-11 3.01E-11 3.02E-11 3.02E-11 3.02E-11 1.61E-10 3.02E-11
outcome + + + + + + - +

P8 p-value 1.60E-07 3.02E-11 3.02E-11 3.02E-11 5.79E-01 3.02E-11 3.02E-11 4.08E-12
outcome + - + + ≈ - - +

P9 p-value 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.44E-11 3.13E-04 1.17E-12
outcome + + + + + + + +

P10 p-value 3.15E-12 5.14E-12 4.08E-12 1.60E-07 8.87E-12 1.21E-12 1.69E-14 4.51E-11
outcome + + + + + + - +

P11 p-value 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 4.28E-06 2.16E-02 NA
outcome + + + + + + + ≈

P12 p-value 1.07E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 5.57E-10 9.92E-11 3.02E-11
outcome + + + + + + - -

P13 p-value 2.38E-03 3.02E-11 3.02E-11 3.02E-11 5.53E-08 5.57E-10 3.34E-11 3.02E-11
outcome + + + - + + - -

P14 p-value 1.21E-12 4.50E-11 3.02E-11 3.02E-11 7.57E-12 2.37E-10 1.78E-04 2.72E-11
outcome + + + + + + + +

P15 p-value 1.73E-06 1.11E-06 8.07E-01 8.88E-01 8.88E-01 2.00E-06 7.96E-03 8.39E-09
outcome - + ≈ ≈ ≈ - - -

P16 p-value 1.72E-12 3.02E-11 3.02E-11 2.98E-11 2.98E-11 1.21E-12 2.91E-11 3.15E-12
outcome - + + - - - - -

P17 p-value 1.21E-12 4.08E-11 3.02E-11 1.21E-12 2.37E-11 1.21E-12 6.01E-08 1.21E-12
outcome - + + - - - + -

P18 p-value 6.47E-12 3.02E-11 7.70E-04 6.47E-12 3.02E-11 2.46E-11 4.50E-11 2.59E-11
outcome - + + - - - - -

P19 p-value 1.21E-12 1.21E-12 NA 1.21E-12 NA 1.69E-14 NA NA
outcome + + ≈ - ≈ + ≈ ≈

P20 p-value 3.02E-11 6.28E-06 3.20E-09 1.10E-12 4.98E-04 3.02E-11 6.77E-05 5.29E-07
outcome + - + - + - + -

P21 p-value 3.02E-11 8.99E-11 3.02E-11 8.99E-11 1.11E-06 1.48E-11 3.02E-11 6.43E-12
outcome + + + + + - + +

P22 p-value 3.02E-11 4.98E-11 3.02E-11 3.02E-11 8.48E-09 3.16E-12 3.02E-11 1.48E-11
outcome + + + - + - + +

P23 p-value 3.02E-11 3.47E-10 3.02E-11 3.02E-11 8.48E-09 1.34E-11 3.02E-11 1.48E-11
outcome + + + - + - + +
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Table 15: Obtained average ranking of the algorithms by the Friedman test

Algorithm Ranking

MDM-GWO 3.28E+00
HHO 3.30E+00

CMA-ES 3.91E+00
GSA 4.28E+00
CS 4.96E+00
SSA 5.35E+00
PSO 6.04E+00
BBO 6.83E+00
SCA 6.93E+00

Table 16: Obtained statistical results from the post-hoc test

Algorithm Adjusted p-value 0.05/rank

SSA 4.13E-01 5.00E-02
PSO 1.17E-01 2.50E-02
SCA 1.40E-02 1.67E-02
BBO 4.72E-06 1.25E-02
GSA 3.26E-11 1.00E-02
CS 0.00E+00 8.33E-03

CMA-ES 0.00E+00 7.14E-03

4.7. MDM-GWO for engineering design problems
In this section, MDM-GWO is applied to solve engineering design

problems. These are unconstrained and constrained-type problems in
nature. To deal with the constraints of optimization problems, we used the
adaptive penalty function approach of constraint handling (Deb, 2000) for
all experiments. The objective function ζ(x) in the constrained optimization
problem corresponding to the solution x obtained by the proposed MDM-
GWO is written in the following way:

ζ(x) =


f(x) if x ∈ X

f(x) +
m∑
i=1

λi × Ui(x)α1 +

p∑
j=m+1

ηj × Vj(x)α1

︸ ︷︷ ︸
constraint violation

if x /∈ X (20)

where, x = (x1, x2, · · · , xn) ∈ X ⊂ Rn. λi and ηj are two non-negative
penalty coefficients. m and p are the numbers of inequality constraints and
equality constraints and Ui(x) and Vj(x) are represent inequality constraints
and equality constraints for the problem. Parameter α1 and α2 take value 2.
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4.7.1. Gear train design
This problem is an unconstrained type, and it was proposed by Sandgren

(Sandgren, 1990). The goal of this problem is to minimize the cost of gear
ratio. Figure 7 shows the gear design problem. This problem has four positive
integer variables, namely x1, x2, x3, and x4 which lie in the boundary [12, 60].
These variables indicate the number of teeth.

Mathematically, the Gear train design problem can be formulated as
follows:

min f1(X) =

(
1

6.931
− x2x3

x1x4

)2

(21)

where, X = (x1, x2, x3, x4)
s.t. 12 ≤ x1, x2, x3, x4 ≤ 60.

Table 17 shows the comparison of the results obtained using MDM-
GWO, conventional GWO and other variants of GWO MGWO, OGWO,
RW-GWO, GWO-XOBL, WF-GWO algorithms. To determine the solution
of this problem, the population size and function evaluations are fixed to
be 30 and 15000. The results in Table 17 show that MDM-GWO is not
worse than any other algorithm for solving the Gear train design problem
and the optimal solution is corresponding to the optimal cost 2.7009E − 12
[49 , 16 , 19 , 43].

Table 17: Optimization results on gear train design problem

Algorithm Decision variable Optimal cost
x1 x2 x3 x4

MGWO 49 19 16 43 2.70E-12
OBGWO 34 13 20 53 2.31E-11
RW-GWO 51 15 26 53 2.31E-11
GWO 43 16 19 49 2.70E-12
GWO-XOBL 37 16 16 48 1.83E-08
WF-GWO 43 19 16 49 2.70E-12
MDM-GWO 49 16 19 43 2.70E-12

4.7.2. Speed reducer design
The speed reducer design problem has been used as a benchmark

structural design problem. The goal of this problem is to minimize the
total weight subject to some constraints (Mezura-Montes and Coello, 2005).
Figure 8 illustrates the speed reducer design problem. It consists of seven
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Figure 7: Gear train design problem

decision variables: b, m, z, l1, l2, d1 and d2. These variables defined as
face width, the module of teeth, number of teeth on pinion, length of shaft
1 between bearings, length of shaft 2 between bearings, diameter of shaft,
and diameter of shaft and are denoted by x1, x2, x3, x4, x5, x6 and x7,
respectively.

Mathematically, this problem can be formulated as follows:

min f2(X) = 0.7854x1x
2
2(3.3333x2

3 + 14.9334x3 − 43.0934)− 1.508x1(x2
6 + x2

7)
+7.4770(x3

6 + x3
7) + 0.7854(x4x

2
6 + x5x

2
7)

(22)
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s.t.
27

x1x2
2x3

− 1 ≤ 0 (23)

397.5

x1x2
2x

2
3

− 1 ≤ 0 (24)

1.93x3
4

x2x3x4
6

− 1 ≤ 0 (25)

1.93x3
5

x2x3x4
7

− 1 ≤ 0 (26)√
1.69× 106 + (745x4

x2x3
)2

110x3
6

− 1 ≤ 0 (27)√
157.5× 106 + (745x4

x2x3
)2

85x3
7

− 1 ≤ 0 (28)

x2x3

40
− 1 ≤ 0 (29)

x1

12x2

− 1 ≤ 0 (30)

5x2

x1

− 1 ≤ 0 (31)

where X = (x1, x2, x3, x4, x5, x6, x7) ∈ R7

The optimal results obtained by the proposed MDM-GWO, the
conventional GWO, and other algorithms MGWO, OGWO, RW-GWO,
GWO-XOBL, WF-GWO are shown in Table 18. In this table, optimal value
is 2997.0683 corresponding to optimal weight [3.500645, 0.700000, 17.000000,
7.309897, 7.808962, 3.350328, 5.286125]. It can be seen that MDM-GWO has
a lower cost than that of RW-GWO.
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Figure 8: Speed reducer design problem

Table 18: Optimization results on Speed reducer design problem

Algorithm Decision variable Optimal cost
x1 x2 x3 x4 x5 x6 x7

MGWO 3.499820 0.700000 17.013068E 7.4166313 7.838926E 3.3584894 5.2873136 3002.9519
OBGWO 3.600000 0.700000 17.000000 7.300000 7.800000 3.364043 5.289516 3040.9482
RW-GWO 3.500645 0.700000 17.000000 7.309897 7.808962 3.350328 5.286125 2997.0683
GWO 3.600000 0.800000 28.000000 8.153447 7.800000 2.900000 5.000000 3038.0094
GWO-XOBL 3.502246 0.700000 17.000000 7.300000 7.800000 3.353244 5.288644 2999.2508
WF-GWO 3.502501 0.700000 17.000000 7.437258 7.806525 3.350118 5.286136 2999.3043
MDM-GWO 3.501335 0.7000000 17.000000 7.300000 7.800000 3.357801 5.285996 2999.1348

4.7.3. Three-bar truss design
A three-bar truss design problem was introduced by (Yang, 2013), where

the volume of a bar truss is minimized subject to stress constraints on each
of the truss members. The details of the three-bar truss design problem are
shown in Figure 9. This problem contains two parameters, three constraints,
and one objective.

Mathematically, the Three-bar truss design problem can be formulated
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as follows:

min f2(x1, x2) = L× (2
√

2x1 + x2) (32)

s.t.

√
2x1 + x2√

2x2
1 + 2x1y2

P − σ ≤ 0 (33)

x2√
2x2

1 + xy1x2

P − σ ≤ 0 (34)

1

x1 +
√

2x2

P − σ ≤ 0 (35)

(36)

where 0 ≤ x1, x2 ≤ 1
L = 100cm, σ, P = 2KN/cm2

Some researchers (Ray and Saini, 2001; Gupta et al., 2020; Fan et al.,
2021b) have solved this problem using various methods. In this paper,
the MDM-GWO is run 30 times independently and the number of function
evaluations are fixed (same as (Gandomi et al., 2013)). The obtained results
are shown in Table 19 and are compared with MGWO, OGWO, RW-GWO,
GWO-XOBL, WF-GWO. As can be seen from Table 19, MDM-GWO is
superior to all the other algorithms and obtains the best solution [0.788788,
0.407928 ] corresponding to the optimal cost 263.895812.

Table 19: Optimization results on three-bar truss design problem

Algorithm Decision variable Optimal cost
x1 x2

MGWO 0.789208 0.406743 263.896160
OBGWO 0.788254 0.409462 263.898253
RW-GWO 0.788383 0.409071 263.895871
GWO 0.925638 0.162327 263.905187
GWO-XOBL 0.788841 0.407781 263.896203
WF-GWO 0.788460 0.408852 263.895962
MDM-GWO 0.788788 0.407928 263.895812

4.7.4. Pressure vessel design
This problem has four decision variables namely the thickness of the shell

(Ts), head (Th), inner radius (R) and range of cross-section minus head (L)
(Gandomi et al., 2013). Th and Ts are integer multiples of 0.0625. The goal

44



Figure 9: Three-bar truss design problem

of this problem is to find the least fabrication cost to obtain a design for
pressure vessel. Th, Ts, R and L are defined by x1, x2, x3 and x4. This
problem is illustrated in Figure 10.

The mathematical formation for this problem is expressed as follows:

Min f4(X) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3 (37)

where, X = (x1, x2, x3, x4) ∈ R4

s.t. − x1 + 0.0193x3 ≤ 0 (38)
− x2 + 0.00954y3 ≤ 0 (39)

− πx2
3x4 −

4

3
πx3

3 + 1296000 ≤ 0 (40)

x4 − 240 ≤ 0 (41)

0 ≤ x1, x2 ≤ 99
10 ≤ x3, x4 ≤ 200
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Figure 10: Pressure vessel design problem

Table 20 shows the list of the optimal solutions to this problem obtained
by MDM-GWO, conventional GWO, MGWO, OGWO, RW-GWO, GWO-
XOBL, and WF-GWO. For a fair comparison, the results are obtained
using 2 × 104 number of function evaluations. From the Table 20, MDM-
GWO obtains a optimal value 5909.3999 corresponding to optimal solution
[0.782604, 0.385883, 40.466110, 198.2206206]. As can be seen from the results
that MDM-GWO is outperformed all other metaheuristic algorithms to solve
the pressure design problem.

Table 20: Optimization results on Pressure vessel design problem

Algorithm Decision variable Optimal cost
x1 x2 x3 x4

MGWO 0.783073 0.400581 40.465902 198.707525 5963.4353
OBGWO 0.785255 0.389159 40.661777 195.847138 5915.9859
RW-GWO 0.800709 0.401092 41.496345 184.348687 5945.3566
GWO 0.381467 1.421170 10.000000 181.733831 8872.24681
GWO-XOBL 0.786464 0.390236 40.71381 194.753886 5912.4872
WF-GWO 0.798453 0.394658 41.308956 186.678317 5929.0637
MDM-GWO 0.782604 0.385883 40.466110 198.220620 5909.3999

In overall summary, the results on the engineering design problems
show that the proposed MDM-GWO is performed better than that of the
conventional GWO and other variants of GWO namely MGWO, OGWO,
RW-GWO, GWO-XOBL, and WF-GWO. Hence, it can be concluded that
MDM-GWO not only has increased global search ability but also helps in
preventing the search stuck to local optima to effectively solve engineering
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design problems.

5. Conclusions

In this paper, a new variant of conventional GWO called MDM-GWO
is proposed by combining the four different strategies, namely a new update
search mechanism, modified control parameter, mutation-driven scheme, and
greedy approach for better balance between exploration and exploitation
while maintaining the higher convergence speed. The performance of the
proposed MDM-GWO is measured on 23 benchmark test problems with 5
different complexity levels. The obtained experimental results are compared
with other variants of GWO and other popular meta-heuristics. Statistical
analysis and diversity analysis have been carried out and showed that
the employed strategies are successful to upgrade the performance of the
GWO. Moreover, to visualize the performance of the MDM-GWO on real-
life optimization problems, four engineering design problems are considered
to solve. The results obtained by the proposed MDM-GWO for the
engineering optimization problems are superior to the conventional GWO
and other optimization methods. Overall, it can be concluded that the
proposed MDM-GWO has the potential to be used for solving real-world
optimization problems. MDM-GWO can also be solved multi-objective,
discrete optimization problems and various application.
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