
Highlights

Voronoi Tessellations based Simple Optimizer

Prathu Bajpai, Jagdish Chand Bansal

• This paper proposed a computational geometry approach for improving popu-
lation diversity in evolutionary algorithms.

• This includes a novel Voronoi Tessellations-based population generation method.

• A levy flight and Differential Evolution assisted approach for updating popu-
lation in the search space.

• In addition, a population diameter-based switch is proposed to check the stag-
nation or premature convergence.

Voronoi Tessellations based Simple Optimizer

Prathu Bajpaia, Jagdish Chand Bansala

aFaculty of Mathematics and Computer Sciences, South Asian University, Rajpur road, New
Delhi, 110068, Delhi, India

Abstract

Population diversity holds significant importance in determining the success of any
evolutionary algorithm. It helps the algorithm in efficiently exploring the search
space, and identifying the promising region(s) containing global optimal solution(s).
However, during the optimization procedure the population may lose its diversity,
causing premature convergence in the algorithm and resulting in approximations
to the sub-optimal solution(s). This paper proposes a Voronoi Tessellations-based
Simple Optimizer (VTSO) algorithm that utilizes a niche concept of Voronoi Tessel-
lations (VTs) from the field of computational geometry to ensure a well-distributed
population throughout the optimization procedure. It proposed an elite sampling
mechanism that utilizes Lévy flights to aggressively explore the search space for lo-
cating potential optimal region(s), and the Differential Evolution (DE) algorithm
to exploit these regions in order to approximate the global optimal solution(s). In
addition, a population diameter-based switch is devised which activates itself when
the algorithm detects premature convergence in the algorithm. Experiments are
conducted on CEC14 and CEC17 benchmark test suit, and the proposed algorithm
is compared with the existing state-of-the-art evolutionary algorithms. The results
are competitive to recommend the VTSO algorithm as a new efficient and accurate
optimizer for handling complex optimization problems.

Keywords: Computational Geometry, Voronoi Tessellations, Evolutionary
Computing, Differential Evolution

1. Introduction

Evolutionary algorithms (EAs) are gaining popularity in various branches of sci-
ence and engineering due to their remarkable problem-solving capabilities. These al-
gorithms have been proving their success in solving complex real-world optimization
problems ranging from machine learning applications to robotic systems [1, 2, 3].
These real-world optimization problems are defined over high-dimensional search

Preprint submitted to Information Sciences May 30, 2024

spaces and are predominantly characterized by non-linearity, non-convexity, and non-
differentiability. Due to the unavailability of gradient-specific information and high
computational cost, the traditional optimization methods are usually unable to solve
these complex optimization problems. In contrast, evolutionary algorithms offer fast,
computationally inexpensive, and gradient-free approaches for handling such com-
plex optimization problems.

Evolutionary algorithms follow a multiple solution or population-based approach
in which a population of solutions is evolved using stochastic operators such as mu-
tation, crossover, and selection [4]. Several such algorithms have been proposed in
the EAs literature, out of which, some popular algorithms are Genetic Algorithms
(GA) [5], Differential Evolution (DE) [6], Particle population Optimizer (PSO) [7],
Artificial Bee Colony (ABC) [8], Covariance Matrix Adaption Evolutionary Strat-
egy (CMA-ES) [9], and many more. The performance of evolutionary algorithms
is highly dependent on their ability to generate a well-distributed population dur-
ing the optimization process [10]. The population distribution in the evolutionary
algorithms is managed by pseudo-random number generation (PRNG) techniques.
These PRNG techniques are responsible for ensuring that solutions are diverse, and
are placed across the search space to facilitate thorough exploration. However, when
the size of the population is small or the number of dimensions is large, these PRNG
techniques fail to distribute solutions uniformly, resulting in different types of biases
(like center bias, diagonal bias, or edge bias) in the algorithm [11].

Moreover, a less diverse population in the search space is more prone to being
stuck in the local optimal regions, and it also limits the scope of the crossover op-
erator [12]. For instance, when solutions from a less diverse population are crossed,
the newly generated solutions share similarities with the original (or, parent) pop-
ulation. This might trap the population in the basin of local optimal solution(s)
causing premature convergence or stagnation in the algorithm [13]. Whereas, a well-
distributed population is beneficial for global exploration. It assists the algorithm in
escaping local optimal regions, and also benefits the crossover operator in producing
more diverse solutions [14]. In this research, one of the major focuses is to construct
a novel population distribution method using the concept of Voronoi Tessellations
(VTs), that are integral to the field of computational geometry.

VTs are known to generate more uniform samples/points in the search space by
dividing the space into smaller regions known as Voronoi regions (see section 3).
Although, VTs provide wide coverage of the underlying space, computing them be-
comes very expensive when the space is high-dimensional or the number of input
seed points is large [15]. Since the design philosophy of evolutionary algorithms pro-
motes simplicity and inexpensive computational methodologies, using VTs in their

2

original form may be computationally expensive. Motivated by this fact, a slicing-
concatenation mechanism is proposed that uses a divide and conquer approach for
utilizing 2− dimensional Voronoi Tessellations to generate D-dimensional samples.
This reduces the computational cost of calculating Voronoi Tessellations for high-
dimensional spaces and offers a novel way of increasing population diversity in EAs.
The details of the proposed Voronoi Tessellations-based population distribution tech-
nique are given in the sub-section 5.2.1.

Other than this, the proposed VTSO algorithm incorporates an elite sampling
mechanism (ESM) in which the sample population generated by VTs is perturbated
using Lévy flights. It helps in aggressively exploring the search space and locating
the locally optimal regions. To exploit the potential local regions flagged by ESM,
the canonical Differential Evolution (DE) algorithm is used. In addition, a popu-
lation diameter-based switch is proposed which activates the reinitialization of the
population when the algorithm detects premature convergence (or, stagnation). This
process is iteratively repeated till the termination criterion is not satisfied. The pro-
posed algorithm is named, Voronoi Tessellations-based Simple Optimizer (VTSO)
due to the presence of Voronoi Tessellations, and it is abbreviated as simple be-
cause of its easy design implementation. The experiments are conducted on 30D and
50D problems of CEC14 and CEC17 benchmark test suits, and experimental results
support the competitive performance of the proposed VTSO algorithm over other
compared state-of-the-art evolutionary algorithms.

The rest of the paper is organized as follows: Section 2 is the related work.
Section 3 discusses the concept of Voronoi Tessellations. Section 4 explains the
canonical Differential Evolution (DE) algorithm. Section 5 is the proposed Voronoi
Tessellations-based Simple Optimizer (VTSO). Experimental results are reported in
Section 6, and the discussion of results is given in Section 7. The conclusion and
further research directions are added in Section 8 of the paper.

2. Related Work

Voronoi Tessellations based methods have been implemented in various kinds
of optimization problems ranging from space decomposition, spatial pattern anal-
ysis, clustering, proximity resolutions, and motion planning [16, 17]. For instance,
Chi et al.[18] utilized the concept of a generalized Voronoi diagram to propose a
path-planning method for mobile robots. Wei et al.[19] proposed a bi-level Voronoi
diagram-based meta-heuristic for solving large-scale multi-depot vehicle routing prob-
lems. Shatnawi et al.[20] initialized the population of Cuckoo Search(CS) using Cen-
troid Voronoi Tessellations and reported improved performance. Zhang et al.[21]

3

proposed a Voronoi neighborhood-based evolutionary approach for solving multi-
modal optimization problems. The authors proposed an approximation algorithm
for finding Voronoi neighbors in the population. Individuals in the population were
labeled into three different niches, and their positions were updated using the tai-
lored search strategies of the Differential Evolution (DE) algorithm. Tong et al.[22]
utilized the concept of Voronoi Tessellations in solving large-scale expensive optimiza-
tion problems using a Voronoi-based local search mechanism. Okabe et al.[23] used a
Voronoi Tessellations-based approach to construct stochastic models for generating
offspring while solving multi-objective optimization problems. Similarly, Huang et al.
utilized the Voronoi neighborhood-based Differential Evolution algorithm for solv-
ing multi-modal problems [24]. Pan et al.[25] integrated the Voronoi Tessellations
based method for multi-UAV (Unmanned Ariel Vehicles) relay deployment. The
success of Voronoi Tessellations-based methods is due to their capacity to generate
well-distributed solutions in the search space. However, the applications of Voronoi
Tessellations-based methods in the area of evolutionary algorithms require further
investigation and attention. An overview of Voronoi Tessellations is presented in the
next section 3.

3. Voronoi Tessellations or Voronoi Diagram

Computational Geometry methods play an important role in many practical ap-
plications like robotics, artificial intelligence, machine learning, and computer graph-
ics [26]. The Voronoi Tessellations is one of the most useful data structures in com-
putational geometry [27]. It is a well-recognized concept because of its distinguished
topological and geometric properties, and known for its ability to produce more dis-
tributed sample points in the search space [15, 28]. The Voronoi Tessellations or
Voronoi diagram, is a geometric framework that partitions a euclidean space into
regions based on a set of points, known as sites or seed points. Mathematically it is
defined as follows [29]:

Suppose P = {p1, p2, . . . , pN} denotes a set of seed points or sites, and dist(pi, pj)
denotes the Euclidean distance between sites pi and pj. The line segment connecting
pi and pj is denoted by pipj. A bisector or perpendicular line segment is drawn
from the center of line segment pipj to form half-plane H(pi, pj) containing site pi,
and half-plane H(pj, pi) containing site pj. The half-plane H(pi, pj) is a collection of
points that are lying nearer to the site pi. Mathematically this can be represented
by equation (1).

H(pi, pj) = {x|dist(x, pi) < dist(x, pj)} (1)

4

Figure 1: Voronoi Diagram of 20 randomly generated points in 2-dimensional space

The intersection of the half-planes corresponding to a specific site, say pi produces
the Voronoi region (or Voronoi cell), with respect to P denoted by V R (pi, P), and
defined in equation (2).

V R (pi, P) =
⋂

pj∈P,i̸=j

H
(
pi,pj

)
(2)

Subsequently, the Voronoi diagram of the set P , denoted by V (P), is defined
using equation (3).

V (P) =
⋃

pi,pj∈P,i̸=j

V R (pi, P) ∩ V R
(
pj, P

)
(3)

Where, V R (pi, P) denotes the closure set of V R (pi, P). It can be seen from
equation (3) that, the Voronoi diagram of set P is the union of intersecting half-
planes containing points of P . The corresponding Voronoi regions V R (pi, P) (∀i =
1, 2, . . . , N) are disjoint convex polygons. The shared boundary between two Voronoi
regions is called the Voronoi edge and the endpoints of Voronoi edges are referred to
as Voronoi vertices. The Voronoi vertices are formed by shared boundaries of three
or more Voronoi regions. For given N site points, the number of Voronoi vertices and

5

Voronoi edges is at most 2N − 5 and 3N − 6, respectively [30]. A Voronoi diagram
of a set containing 20 randomly generated points is illustrated in Figure 1.

It is worth noting that the position of Voronoi vertices is different from the
seed points or sites in the search space. The population formed by combining the
seed points with their corresponding Voronoi vertices is more distributed and covers
the search space more efficiently. Now to evolve this population, an evolutionary
approach is required and for that purpose, the DE algorithm is integrated into the
optimization procedure of the proposed VTSO algorithm. For completeness, a brief
overview of the DE algorithm is presented, in the next section 4.

4. Canonical Differential Evolution (DE) Algorithm

The DE algorithm is considered one of the popular evolutionary algorithms. It
exploits the difference between the vectors in the population to guide the search
process. There are three major operators associated with the DE algorithm which
are mutation, crossover, and selection [31]. The mutation operation is performed
using a mutation scheme referred to as mutation strategy. For each vector Xi in the
current (or, parent) population, a mutant vector Vi is generated by the underlying
mutation strategy. One popular mutation strategy known as ‘DE/rand/1’ is given
in equation(4) below.

Vi,G = Xr1,G + F · (Xr2,G −Xr3,G) (4)

Where, Vi,G is a mutant vector, Xr1,G, Xr2,G, Xr3,G are randomly selected vectors
known as target vectors and G is the generation counter. F is a control parameter
known as the scaling factor or differential weight. Various mutation strategies have
been proposed in the DE literature. Some widely accepted mutation strategies are
‘DE/best/1’, ‘DE/rand-to-best/1’, ‘DE/best/2’, and ‘DE/rand-to-pbest/2’. After
generating mutant vector Vi = {vi,1, vi,2, . . . , vi,D}, it is crossed with corresponding
parent vector Xi to produce a trial vector Ui = {ui,1, ui,2, . . . , ui,D} (D represents the
dimension). One widely used crossover operator is binary crossover given in equation
(5).

ui,j =

{
vi,j if (rand(0, 1) ≤ CR)

xi,j otherwise
(5)

Where, j = 1, 2, . . . , D, and rand(0, 1) is a random number between (0, 1). CR is
a control parameter known as the crossover rate. Its value lies in the range [0, 1].
The generated trial vectors are evaluated and their objective function values are

6

compared with their corresponding parent vectors. A greedy selection mechanism
is employed in which vectors with the best objective values survive for the next
generations. More details on the DE algorithm and its variants can be found in [32].
In this study, the DE algorithm is employed to enhance the exploiting capabilities
of the VTSO algorithm. A discussion of the VTSO algorithm is presented in the
subsequent sections, offering a detailed analysis of the proposed approach.

5. Voronoi Tessellations based Simple Optimizer

The Voronoi Tessellations-based Simple Optimizer (VTSO) follows a simple de-
sign principle that emphasizes on maintaining a healthy population diversity through-
out the optimization procedure. In this section, first motivation for the proposed
approach is discussed and then a comprehensive analysis on the working procedure
of the proposed VTSO algorithm is presented.

5.1. Motivation

For successful development or implementation of the evolutionary algorithms,
solution distribution plays a crucial role in determining its success. Properly dis-
tributed solutions enhance the chances of approximating position(s) of global opti-
mal solution(s) or, locating basin(s) containing global optimal solution(s) [33]. This
motivates us to integrate Voronoi Tessellations (VTs) in the population distribution
of an evolutionary algorithm. VTs are important data structures in the field of com-
putational geometry and are known for their exceptional distributive properties [17].
However, computing VTs for high dimensional spaces or, for a larger number of input
seed points becomes very computationally expensive, contradicting the basic design
principle of evolutionary algorithms. Therefore, a novel Voronoi Tessellations-based
population distribution method that utilizes 2− dimensional Voronoi Tessellations
to produce D− dimensional solutions in the search space is proposed. This approach
reduces the computational burden of calculating higher dimensional Voronoi Tessel-
lations and placing solutions in well-distributed manner. The working procedure of
the proposed VTSO algorithm is discussed in the following subsequent subsections.

5.2. Working of VTSO Algorithm

The VTSO algorithm follows a simple design principle. First, a population of
N solutions referred to as seed population is randomly initialized in the given D-
dimensional search space. After initializing this seed population, Voronoi vertices
are calculated and combined with the seed population to form a sample population.
This sample population is perturbated using Lévy flights to locate the potential

7

local regions of the search space (see sub-section 5.2.2). Then, these local regions are
exploited using the DE algorithm till the population diameter becomes smaller than
a fixed threshold (see, sub-section 5.2.4). This implies solutions in the population
have come very close to each other and may result in premature convergence (or,
stagnation) in the algorithm. For this purpose, a population-diameter based switch is
proposed which activates itself and redistributes the seed population when it detects
the above case. This process is continued till the termination criteria are satisfied.
In the subsequent subsections, distinct phases of the proposed VTSO algorithm are
discussed.

5.2.1. Voronoi Tessellations based Population Generation

Suppose a population of N solutions is randomly initialized in a D− dimensional
search space. This creates aN×D data matrix for the population (see Figure 2). Row
vectors s1, s2, · · · , sN represent distinct solutions and column vectors c1, c2, · · · , cD
represent allele or locus sites of the solutions. The proposed Voronoi Tessellations
based population distribution method incorporates a divide and conquer approach.
First, a pairwise column selection is done to form 2− dimensional sites in a random
order, and then Voronoi Tessellations are computed for these sites to produce 2−
dimensional Voronoi vertices. The process of pairwise column selection is referred to
as the slicing process, and it is performed till all the dimensions of the population
data matrix are exhausted.

Figure 2: A representative population data matrix

It is important to note that, the process of pair-wise column selection or slicing
is dependent on the dimension D. The value of D can be even or odd. When D is
even, all the dimensions of the population data matrix can be exhausted completely
using pair-wise column selection. However, pair-wise column selection can not be
performed when D is odd. In this case, an arbitrarily selected dimension is treated

8

as a unidirectional line, and pairwise column selection is performed on the remaining
D − 1 dimensions, which is similar to the case for even dimensions.

(a) Points lying in the c1 − c2 plane (b) Corresponding Voronoi diagram

Figure 3: Voronoi vertices corresponding to the sites in c1 − c2 plane

For illustrating this process, suppose two column vectors c1 = (x1,1, x2,1, · · · , xN,1)
t

and c2 = (x2,1, x2,2, · · · , xN,2)
t are selected using the pair-wise column selection mech-

anism. The points in the c1 − c2 plane can be considered as sites for computing
2−dimensional Voronoi vertices (see Figure 3). This process is continued till all the
dimensions of the population data matrix are exhausted. The generated Voronoi
vertices are concatenated together to form a new population called the Voronoi pop-
ulation. The pair-wise concatenation mechanism is depicted in Figure 4.

9

Figure 4: Pair-wise Vector Concatenation Mechanism

This slicing and concatenation-based approach helps the VTSO algorithm in ef-
ficiently populating the search space. The initial seed population and the Voronoi
population are combined to create a sample population. It is interesting to note
that, if the size of the initial population is N , then the upper bound for the number
of Voronoi vertices is 2N − 5 (see Section 3). This implies that the upper bound for
the size of the sample population would be less than or equal to 3N − 5. However,
carrying a large population load throughout the optimization process increases the
computational burden on the algorithm. Considering this factor, an elitist sampling
mechanism (ESM) is proposed for filtering out the elite solutions from the sample
population, and it is presented in the next subsection.

5.2.2. Elitist Sampling Mechanism (ESM)

Combining the Voronoi population with the seed population increases the size
of the sample population and provides wide coverage in the search space. However,
increasing the number of solutions also means an additional computational burden on
the algorithm. Since carrying a large population load is not a recommended choice,
an elite sampling mechanism is proposed. In this approach, an elite population is
filtered out from the sample population. First, the positions of the solutions in the
sample population are perturbated using Lévy flights derived using a high-tailed
Lévy distribution. Mathematically, Lévy flights are characterized as random walks
in which step lengths are drawn from the Lévy distribution using the simple power-

10

law formula L(s) ∼ |s|−1−β, where 0 < β < 2. Lévy flights illustrate superior
efficacy than Brownian random walks when exploring unfamiliar large-scale search
spaces. This efficiency can be attributed to their higher variance. For instance,
variance σ2(t) ∼ t3−β, 1 ≤ β ≤ 2 of Lévy flights rises at an accelerated rate when
compared to the linear relationship (i.e, σ2(t) ∼ t) of Brownian random walks [34].
This ensures better coverage of unknown regions of the search space enhancing the
exploration capabilities of the algorithm. Due to this reason, Lévy flights are used
for providing an exploration boost to the sample population. The fitness values of
the sample population and the perturbated population are evaluated, and a greedy
selection mechanism is employed. Solutions with better fitness values are stored and
sorted in ascending order according to their fitness value. The corresponding top N
solutions are stored in elite samples and the rest of the 2N−5 particles are discarded
from the search space. The local regions around elite solutions can be identified as
the promising regions of the search space and can be exploited further in order to
approximate the global optimal solution(s). For this reason, the proposed VTSO
algorithm uses the DE algorithm as a local search mechanism. The details of the
proposed method are presented in the next subsection.

5.2.3. Local Search Mechanism

For exploiting regions around the elite particles, the Differential Evolution (DE)
algorithm with different mutation operators is employed, and its effect on optimiza-
tion performance of the proposed VTSO algorithm is studied. Five different mutation
operators, namely, ‘DE/current-to-pbest/ with archive (ST1)’, ‘DE/rand/1 (ST2)’,
’DE/best/1 (ST3)’, ‘DE/rand/2 (ST4)’, and ‘DE/best/2 (ST5)’ are considered for
performance evaluation. Since, the mutation operators with two vector differences
are more robust when compared to mutation operators with single vector difference
[35]. The effect of all five mutation operators with single vector difference or two
vector difference are studied. The incorporation of the DE algorithm as a local search
technique helps the VTSO algorithm to effectively exploit the region around the po-
sitions of elite particles and enhances the robustness of the algorithm. However, at
this stage, particles are prone to stuck in the local optimal regions causing premature
convergence (or, stagnation) in the algorithm. To overcome this issue, a population
diameter-based switch is proposed which gets activated when the population diame-
ter (defined in the next subsection 5.2.4) reaches below a predefined threshold value.
Implementation details of the proposed population diameter-based switch are given
in the next subsection.

11

5.2.4. Population Diameter based Switch

Population diameter is the maximum distance between any two solutions in the
population. The distance between two solutions is measured using the Euclidean
metric. The diameter of the population is calculated using the equation (6) given
below.

Pd = max
(i ̸=j)∈[1,N]


√√√√ D∑

k=1

(xi,k − xj,k)
2

 (6)

Here, Pd is the population diameter, N is the population size, and D is the
dimension. The xi,k represents locus of the ith solution at kth dimension. The larger
values of population diameter represent high particle dispersion, while smaller values
indicate convergence [36]. However, a smaller value of population diameter might also
indicate premature convergence or stagnation. That means that a diversity boost
can be supplied to the population in case of small values of population diameter.
For this purpose, a threshold value DT = 0.5 is introduced in the proposed VTSO
algorithm. After every 0.01 · MAXnfes or 1% of maximum function evaluations
(MAXnfes), population diameter Sd is calculated and compared with threshold value
DT . Suppose the value of Sd is less than DT , then the population is reinitialized and
the Voronoi population generation phase is invoked to redistribute the solutions in
the search space. If the population diameter Sd is not below the threshold value DT ,
the local search mechanism continues till the termination is satisfied. The detailed
algorithmic steps of the proposed VTSO algorithm are given in the Algorithm 1.

6. Experiment Results

The performance of the proposed VTSO algorithm is tested on CEC14 and
CEC17 benchmark test suits. These benchmark test sets contain different class
of optimization problems. The objective functions of these problems are highly non-
linear, non-differentiable, non-separable, and asymmetric [37] [38]. These problems
pose difficulties of various levels and are well-suited for testing the performance of
evolutionary algorithms. The optimization problems lying in these test beds are cat-
egorized into four types: unimodal, multi-modal, hybrid, and composite problems.
For instance, in the CEC14 benchmark test suit, problems F1 − F3 are unimodal,
F4 − F17 are multi-modal, F18 − F22 are hybrid, and F23 − F30 are composite [37].
Similarly, in the CEC17 benchmark test suit, problems F1−F3 are unimodal, F4−F11

are multi-modal, F12−F20 are hybrid, and F21−F30 are composite [38]. In this work,
experiments are conducted on 30-dimensional and 50-dimensional problems.

12

To compare the performance of the VTSO algorithm, five standard meta-heuristic
algorithms namely GA [5], PSO [7], DE [6], ABC [8], CMA-ES [9], and three DE
variants, SaDE [39], jDE [40], and JADE [41] are considered. The setting of pa-
rameters is the same as mentioned in their original papers. The maximum function
evaluation criteria MAXnfes is set as 10

4 ×D, D is the dimension of the underlying
problems [37], [38]. Experiments are conducted on a personal computer with Intel(R)
Core(TM) i7-9750H CPU @ 2.60GHz, 16GB RAM with Windows 11 Operating Sys-
tem, and codes of the algorithms are implemented in MATLAB R2015a. For testing
the statistical reliability of the experiments, as per the criterion given for CEC prob-
lems, 51 independent runs are conducted, and the mean and standard deviation of
the errors of the underlying algorithms are reported for all the benchmark problems
of CEC14 and CEC17 (See Table 3, Table 4, Table 5, Table 6 of the supplementary
data file 8). The error is defined as the difference of |F (x∗) − F (x̂)|, where F (x∗)
is the true optimal value, F (x̂) is the approximated optimal value, x∗ is the true
optimal solution, and x̂ is the approximation of the optimal solution.

Algorithm 1 Pseudo Code for the VTSO algorithm

Input: Population sizeN , DimensionD, Search Bounds [xminj
, xmaxj

], total function
evaluations MAXnfes, Threshold DT , Objective Function f(X).
Output: Global Optimal value f(XGbest), Global Optimal Solution XGbest .

1: Initialize Seed Population randomly within the search bounds
2: while nfes < MAXnfes do // nfes is the current function evaluation counter

//
3: Apply Voronoi Population Generation
4: Merge Seed population and Voronoi population to form sample population
5: Apply Elitist Sampling Mechanism to create an elite sample population
6: Apply Local Search Mechanism on the elite sample population
7: if nfes == 1% of MAXnfes and nfes < MAXnfes then
8: Calculate population Diameter Sd

9: if Sd < DT then
10: Reinitialize seed population
11: Go to step 3
12: end if
13: Apply step 4 - step 6
14: else
15: Continue to step 6
16: end if
17: end while

13

6.1. Non-Parametric Tests

The performance of the VTSO algorithm is compared with other considered al-
gorithms using the Wilcoxon signed rank test at 5% level of significance. The null
hypothesis “H0 : There is no significant difference between the VTSO algorithm and
other underlying algorithms” is tested on the median values of the mean error of 30D
and 50D benchmark problems. The corresponding p-values at the significance level
5%, and their effect size metric Cohens-d are reported in Table 1. The effect size
metric Cohens-d estimates the magnitude of the difference between the means of two
populations [42]. This allows to compare the impact of different treatments under
study. The Cohens-d can be employed in four different situations: (a) simple group
design, (b) two-group design, (c) single group-two repeated measures, (d) designs
with baselines to compare. A detailed methodology for computing Cohen’s-d values
can be found in [42]. For our study, we have employed a two-group design for which
Cohens-d is calculated using the following equation (7).

Cohens− d =
M2−M1

Sp

(7)

Where, M1, and M2 are mean values of group 1 and group 2, respectively. And, Sp

is called pooled standard deviation and calculated using the equation (8).

Sp =

√
(n1 − 1) · S2

1 + (n2 − 1) · S2
2

(n1 + n2)− 2
(8)

Where, S1 and S2 are the standard deviation of the group 1 and group 2, respectively.
And, n1 and n2 are a sample size of group 1 and group 2, respectively. The value
of Cohens-d is subjective and depends on the experimental specifications, however,
values near 0.2 are considered as ‘merely statistical’, and values between 0.2-0.5
are considered as ‘subtle’, and values above 0.5 are considered ‘obvious’ [42]. The
proposed VTSO algorithm is considered as group 1 and other algorithms are treated
as group 2 for calculating cohens-d values. These values are reported in Table 1.
It can be observed from Table 1 that, VTSO obtained a Cohens-d value higher
than 0.2 for all other compared algorithms on 30D and 50D CEC14 benchmark
problems. Similarly, for CEC17 30D benchmark problems, the VTSO algorithm
obtained a Cohens-d value higher than 0.2 when compared with all other underlying
algorithms. For 50D CEC17 benchmark problems, the VTSO algorithm obtains a
Cohens-d value higher than 0.2 for all other compared algorithms, except, the jDE
algorithm for which the value of Cohens-d is near 0.2. Considering the corresponding
significance values and effect size metric values, the performance of the proposed

14

Table 1: p-values at significance level 0.05 and effect size metric Cohens-d

Benchmarks CEC14 CEC17
30D 50D 30D 50D

Algorithms p-values Cohens-d p-values Cohens-d p-values Cohens-d p-values Cohens-d
GA 0.00318 0.4349 0.00215 0.3805 0.00166 0.7900 0.00281 0.3336
PSO 0.00000383 0.3738 0.000132 0.3985 0.00015 0.5882 0.0261 0.2394
ABC 0.0000139 0.3453 0.000769 0.3665 0.00138 0.6278 0.00421 0.2598

CMA-ES 0.000484 0.3745 0.00436 0.2772 0.00871 0.3764 0.0103 0.5460
DE 0.000531 0.3684 0.00511 0.3367 0.00231 0.5698 0.00677 0.3083

SaDE 0.0317 0.3108 0.0713 0.3112 0.0319 0.3481 0.0661 0.0841
jDE 0.0188 0.2717 0.0599 0.3194 0.0237 0.2448 0.0689 0.1953

JADE 0.0533 0.2479 0.0611 0.2900 0.0241 0.3255 0.0459 0.2350

VTSO algorithm is superior when compared with the state-of-the-art evolutionary
algorithms and some of their recent variants.

Further, for assessing the relative performance of the compared algorithms and
determining the order of their success, the Friedman ranking test is employed to
calculate the rankings of compared algorithms. It can be observed from Table 2 that
the proposed VTSO algorithm outperforms all other underlying algorithms and se-
cures the first rank. Further, to indicate the performance of the VTSO algorithm on
individual benchmark problems, their corresponding ranks are reported in the result
tables available in the supplementary data file 8. To visualize the results on differ-
ent classes of benchmark problems, box plots for candidate unimodal, multi-modal,
hybrid, and composite functions of CEC14 and CEC17 benchmarks are depicted in
Figure 5, and the Figure 6, respectively.

15

Table 2: Average Ranks in Friedman Test

Algorithms CEC14 CEC17 Avg Final
30D 50D 30D 50D Rank Rank

GA 5.2 5.7 5.66 5.93 5.62 6
PSO 7.56 7.13 6.86 5.56 6.48 8
ABC 7.5 7.56 7.7 7.93 7.16 9

CMA-ES 5.66 4.86 6.41 5.18 5.34 5
DE 6.3 3.86 6.43 7.16 6.39 7

SaDE 3.8 4.38 3.35 4.53 4.59 4
jDE 3.1 3.51 2.60 3.46 3.93 3

JADE 3.0 3.28 2.63 3.13 3.77 2
VTSO 2.8 2.11 2.16 2.08 3.16 1

Algorithms

GA PSO ABC CMAES DE SaDE jDE JADE VTSO

E
rr

o
r

V
a

lu
e

10-2

10-1

100

101

102

103

104

105

Box Plot for Unimodal Function F3, CEC14 30D

(a) Unimodal F3

Algorithms

GA PSO ABC CMAES DE SaDE jDE JADE VTSO

E
rr

o
r

V
a

lu
e

0

0.2

0.4

0.6

0.8

1

1.2

Box Plot for Multi-Modal Function F13, CEC14 30D

(b) Multi-Modal F13

Algorithms

GA PSO ABC CMAES DE SaDE jDE JADE VTSO

E
rr

o
r

V
a

lu
e

0

10

20

30

40

50

60

70

80

Box Plot for Hybrid Function F19, CEC14 30D

(c) Hybrid F19

Algorithms

GA PSO ABC CMAES DE SaDE jDE JADE VTSO

E
rr

o
r

V
a

lu
e

102

103

Box Plot for Composite Function F27, CEC14 30D

(d) Composite F27

Figure 5: Box Plot Analysis for CEC14 Functions, 30D

6.2. Analysis of Population Diversity

Population diversity is one of the significant factors in determining the perfor-
mance of any evolutionary algorithm [43]. The fundamental strength of the proposed

16

Algorithms

GA PSO ABC CAMES DE SaDE jDE JADE VTSO

E
rr

o
r

V
a

lu
e

×105

0

1

2

3

4

5

Box Plot for Unimodal Function F3, CEC17 30D

(a) Unimodal F3

Algorithms

GA PSO ABC CMAES DE SaDE jDE JADE VTSO

E
rr

o
r

V
a

lu
e

100

101

102

103

Box Plot for Multi-Modal Function F11, CEC17 30D

(b) Multi-Modal F11

Algorithms

GA PSO ABC CMAES DE SaDE jDE JADE VTSO

E
rr

o
r

V
a

lu
e

200

250

300

350

400

450

500

550

600

650

Box Plot for Hybrid Function, F21 CEC17 30D

(c) Hybrid F19

Algorithms

GA PSO ABC CMAES DE SaDE jDE JADE VTSO

E
rr

o
r

V
a

lu
e

300

400

500

600

700

800

900

1000

1100

1200

1300

Box Plot for Composite Function F27, CEC17 30D

(d) Composite F27

Figure 6: Box Plot Analysis for CEC17 Functions, 30D

VTSO algorithm is that it offers sufficient population diversity to reduce the short-
comings of premature convergence (or, stagnation) in the local optimal regions of
the search space. The population diversity is calculated using the following equation
(9) as mentioned in [43]. Here, X̄j is the average position of the population in jth

dimension, and Distmax is the maximum distance calculated between each pair of
solutions calculated using the equation (10) given below.

Population Diversity =
1

N ×Distmax

N∑
i=1

√√√√ D∑
j=1

(
Xi,j − X̄j

)2
(9)

Distmax = max
(i ̸=k)∈[1,N]

√√√√ D∑
j=1

(xi,j − xk,j)
2

 (10)

17

To examine the diversity managing capabilities of the proposed VTSO algorithm,
population diversity is calculated for some representative functions, viz., unimodal
functions F1, multi-modal functions F13, hybrid functions F22, and composite func-
tions F29 of CEC14 30 dimensional benchmark test suit and their population diversity
plots are depicted in the Figure 7. It can be observed from Figure 7 that, the VTSO
algorithm maintains a higher population diversity compared to other algorithms
maintaining a well distributed solutions in the search space.

Function Evaluation x 103

0 10 20 30 40 50 60 70 80 90 100

P
o

p
u

la
ti

o
n

 D
iv

e
rs

it
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Population Diversity Plot for Unimodal Function F1, CEC14 30D

VTSO

DE

PSO

GA

ABC

CMAES

(a) Unimodal Functions F1

Function Evaluations x 103

0 10 20 30 40 50 60 70 80 90 100

P
o

p
u

la
ti

o
n

 D
iv

e
rs

it
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Population Diversity Plot for Multimodal Function F13, CEC14 30D

VTSO

DE

PSO

GA

ABC

CMAES

(b) Multi-modal Functions F13

Function Evaluations x 103

0 100 200 300 400 500 600 700 800 900 1000

P
o

p
u

la
ti

o
n

 D
iv

e
rs

it
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Population Diversity Plot for Hybrid Function F22, CEC14 30D

VTSO

DE

PSO

GA

ABC

CMAES

(c) Hybrid Functions F22

Function Evaluations x 103

0 10 20 30 40 50 60 70 80 90 100

P
o

p
u

la
ti

o
n

 D
iv

e
rs

it
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Population Diversity Plot for Composite Function F29, CEC14 30D

VTSO

DE

PSO

GA

ABC

CMAES

(d) Composite Function F29

Figure 7: Population Diversity Plot, CEC14 30D Unimodal, Multi-modal, Hybrid, and Composite
Functions

Further, to investigate the exploration vs exploitation trade-off of the proposed
VTSO algorithm, a dimension-wise diversity-based analysis is incorporated [43]. The
percentage of exploitation and exploration is calculated using the equation (11) given
below.

18

Exploitation% =

(
Div−Divmax |

Divmax

)
× 100

Exploration% =

(
Div

Div max

)
× 100

(11)

Where, the diversity Div is calculated using the equation (12) given below:

Div =
1

D

D∑
j=1

Divj

Divj =
1

N

N∑
i=1

|medj(X)− xi,j|

(12)

Divmax is the maximum diversity recorded during the optimization process. Here,
medj(X) denotes the median of the jth dimension in the population. Exploration-
exploitation plots for unimodal function F1, multi-modal function F9, hybrid function
F18, and composite function F25 of CEC14 30 dimensional benchmark test suits are
presented in Figure 8. It can be observed from Figure 8 that, the proposed VTSO
algorithm maintains a proper balance in the transition from the exploration phase
to the exploitation phase.

6.3. Associated Parameters

The proposed VTSO algorithm incorporates five major control parameters, which
are population size (N), scaling factor (F), crossover rate (CR), and population
diameter switch threshold (DT), and β introduced in the elite sampling mechanism
(ESM). ESM utilizes Lévy flights whose step lengths are drawn from the power law
formula L(s) ∼ |s|−1−β, where 0 < β < 2. For the underlying experiments, the values
of associated parameters are as follows, the size of the population (N) is taken to be
60, the value of the scaling factor F is taken to be 0.4, the value of CR is taken to
be 0.5, the value of population diameter switch threshold (DT) is taken to be 0.5,
and the value of β is taken to be 1.7. These parameter values are suggested based on
the empirical study following the multiple experiments on the CEC14 and CEC17
benchmark problems. In the next subsection, the computational complexity of the
proposed algorithm is discussed.

19

Function Evaluations x 10
3

0 100 200 300 400 500 600 700 800 900 1000

A
v
e

ra
g

e
 P

e
rc

e
n

ta
g

e

0

10

20

30

40

50

60

70

80

90

100
Exploration-Exploitation Plot for Unimodal Function F1, CEC14 30D

Exploitation

Exploration

(a) Unimodal F1

Function Evaluation x 10
3

0 100 200 300 400 500 600 700 800 900 1000

A
v
e

ra
g

e
 P

e
rc

e
n

ta
g

e

0

10

20

30

40

50

60

70

80

90

100
Exploration-Exploitation Plot for Multi-modal Function F9, CEC14 30D

Exploitation

Exploration

(b) Multi-Modal F9

Function Evaluations x 10
3

0 100 200 300 400 500 600 700 800 900 1000

A
v
e

ra
g

e
 P

e
rc

e
n

ta
g

e

0

10

20

30

40

50

60

70

80

90

100
Exploration-Exploitation Plot for Hybrid Function F18, CEC14 30 D

Exploitation

Exploration

(c) Hybrid F18

Function Evaluations x 10
3

0 100 200 300 400 500 600 700 800 900 1000

A
v
e

ra
g

e
 P

e
rc

e
n

ta
g

e

0

10

20

30

40

50

60

70

80

90

100
Exploration-Exploitation Plot for Composite Function F25, CEC14 30D

Exploitation

Exploration

(d) Composite F25

Figure 8: Exploration-Exploitation Plot, CEC14 30D Unimodal, Multi-modal, Hybrid, and Com-
posite Functions

6.4. Analysis of Computational Complexity

The computational complexity of all the compared algorithms is computed as per
the criteria given in the technical reports of CEC14 and CEC17 benchmark problem
[37],[38]. Table 3 reports the computational complexity of all compared algorithms on
30D and 50D CEC14 benchmark problems. T0 is the computing time for evaluating
the test problem given in [37].

T1 represents the computing time needed for performing 200000 function eval-
uation of the problem F18. T̂2 is the average computational time observed by the
algorithm across 5 independent runs to compute F18 with 200000 function evalua-
tions as mentioned in the technical report of CEC14 benchmark problems, refer [37].
(T̂2 − T1)/T0 represents the performance of each algorithm in computing complexity
on CEC14 benchmark problems. Following Table 3, the computational complexity of

20

Table 3: Computational complexity of the underlying algorithms

CEC14 Benchmarks Problems
30D 50D

Algorithms T0 T1 T̂2 (T̂2− T1)/T0 T1 T̂2 (T̂2− T1)/T0
GA 0.09 1.05 3.79 30.44 1.34 4.17 31.44
PSO 0.09 1.05 2.59 17.11 1.34 3.90 28.44
DE 0.09 1.05 4.38 25.88 1.34 4.71 37.44
ABC 0.09 1.05 5.12 45.22 1.34 5.68 48.22

CMA-ES 0.09 1.05 9.21 90.66 1.34 14.02 140.88
SaDE 0.09 1.05 4.21 35.11 1.34 4.89 39.44
jDE 0.09 1.05 4.07 33.55 1.34 4.43 34.33

JADE 0.09 1.05 4.29 36.00 1.34 4.97 40.33
VTSO 0.09 1.05 4.72 40.77 1.34 5.07 42.55

Table 4: Computational complexity of the underlying algorithms

CEC17 Benchmarks Problems
30D 50D

Algorithms T1 T2 (T2 − T1)/T1 T1 T2 (T2 − T1)/T1

GA 0.018 0.73 39.55 0.035 0.96 26.42
PSO 0.018 0.42 22.33 0.035 0.64 17.28
DE 0.018 0.49 26.22 0.035 0.98 27.00
ABC 0.018 1.02 55.66 0.035 1.46 40.42

CMA-ES 0.018 1.74 95.66 0.035 3.13 88.85
SaDE 0.018 0.53 28.44 0.035 1.13 31.28
jDE 0.018 0.51 27.33 0.035 1.07 29.57

JADE 0.018 0.57 30.66 0.035 1.13 31.28
VTSO 0.018 0.77 41.77 0.035 1.29 35.85

the VTSO algorithm is lower than ABC and CMA-ES algorithms, while greater than
other compared algorithms. Similarly, Table 4 reports the computational complexity
of all compared algorithms on CEC17 benchmark problems. T1 is the average com-
puting time for performing 10000 function evaluations for each problem in CEC17,
and T2 is the average computing time of an algorithm in performing 10000 function
evaluations for each problem as mentioned in the technical report for CEC17 bench-
mark problems, refer [38]. (T2−T1)/T1 represents the performance of each algorithm
in computing complexity on CEC17 benchmark problems. It can be observed from
Table 4, the computational complexity of the VTSO algorithm is lower than ABC
and CMA-ES algorithms, while the complexity is greater than other compared al-
gorithms. The reason for this is due to the time associated with computing Voronoi
vertices in the optimization procedure. Further, for assessing the performance of the
proposed VTSO algorithm on real-world problems, engineering design problems are
solved and discussed in the next subsection.

21

Table 5: The performance of VTSO algorithm on constraint engineering problems

Algorithm Metric EP1 EP2 EP3 EP4
DE Mean 1.76673 0.01281 6067.7532 2996.4712

Std 0.01557 0.000085 8.9238 0.03329
SaDE Mean 1.72697 0.012688 6059.7112 2996.4011

Std 0.0000919 0.0000195 0.02664 0.017389
jDE Mean 1.73175 0.012705 6060.0235 2996.6667

Std 0.003335 0.0000309 0.2319 0.05602
JADE Mean 1.72817 0.012684 6059.9193 2996.3713

Std 0.001724 0.0000574 0.3211 0.00562
VTSO Mean 1.72518 0.012749 6059.6777 2996.4119

Std 0.0001743 0.0000691 0.00397 0.00000167

6.5. Engineering Design Problems

The performance of the proposed VTSO algorithm is also tested on the constraint
engineering design problems. The details of these problems can be found in [44]
[45]. In this work, four engineering design problems, namely, welded beam design
(EP1), tension-compression spring design (EP2), pressure vessel design (EP3), and
speed reducer design (EP4) are taken for experimentation. For each problem, 30,000
function evaluations are performed, and the mean and the standard deviation of the
errors are reported in Table 5. VTSO algorithm achieves minimum mean error on
the problems EP1 and EP3, while the performance is competitive with SaDE and
JADE on problems EP2 and EP4, respectively.

7. Discussion

The experimental findings indicate that the VTSO algorithm demonstrates com-
petitive performance compared to other state-of-the-art algorithms. The experimen-
tal results are reported in Table 3, Table 4, Table 5, and Table 6 of the supplementary
data file 8. The comparative assessment of the VTSO algorithm with other under-
lying algorithms on CEC14 and CEC17 benchmark problems is discussed in the
following subsections.

7.1. Effect of Different Mutation Strategies

In the local search mechanism of the proposed VTSO algorithm, the DE algorithm
has been utilized to change the position of the elite particles in the search space. The
performance of the DE algorithm is highly dependent on the underlying mutation
strategies. Hence, to assess the impact of the different mutation strategies on the
performance of the VTSO algorithm, five different mutation strategies are studied,
which are ‘DE/current-to-pbest/1 (ST1)’, ‘DE/rand/1 (ST2)’, ‘DE/best/1 (ST1)’,
‘DE/rand/2 (ST4)’, and ‘DE/best/2 (ST5)’. Here, ST is used as shorthand for

22

strategy. The experimental results on 30D CEC14, and CEC17 benchmark problems
are reported in Table 1, and Table 2 of the supplementary data file 8, respectively.
It is observed that strategies using ‘pbest’ and ‘best’ performed better compared
to other strategies under consideration. Further, the performance of the VTSO
algorithm with other algorithms is compared and discussed below in the following
subsections.

7.2. Comparison on CEC14 Benchmark Problems

For CEC14 benchmark problems the performance of the proposed VTSO algo-
rithm is compared with other underlying algorithms. For 30D and 50D problems,
the VTSO algorithm secures an average rank of 2.8 and 2.11, respectively, in the
Friedman test (see Table 2). For three unimodal functions F1 − F3, VTSO algo-
rithm secures the lowest rank on two functions F1 and F3, for both 30D and 50D
problems. For thirteen multi-modal functions F4 − F17, VTSO algorithm secures
the lowest rank on seven functions (F4, F5, F7, and F13 − F17) for 30D prob-
lems, and on six functions F6, F7, F13, F14, F16, F17 for 50D problems. For five
hybrid problems (F18 − F22), VTSO algorithm secures the lowest rank on three
functions (F19, F20, F22) for 30D problems, and secures the lowest rank on four
functions (F18 − F21) for 50D problems. Similarly, for the last seven composite
functions (F23− F30), VTSO algorithm secures the lowest rank on three functions
(F25, F27, F30) for 30D problems, and secures the lowest rank on five functions
(F23−F27) for 50D problems. For the rest of the functions, the performance VTSO
is similar or competitive to other algorithms (see, Table 3 and Table 4 of the sup-
plementary data file 8). Following this, the performance of the VTSO algorithm on
CEC17 benchmark problems is discussed in the next subsection.

7.3. Comparison on CEC17 Benchmark Problems

The experimental findings demonstrate the superior performance of the VTSO
algorithm as it attains the lowest average friedman rank of 2.08 and 3.16 for 30D and
50D benchmark problems of the CEC17 benchmark test suit, respectively (see Table
2). For two unimodal functions F1−F3, VTSO algorithm secures the lowest rank on
the function F3 for both 30D and 50D problems. For thirteen multi-modal functions
F4 − F17, VTSO algorithm secures the lowest rank on five functions (F4, F11 −
F15) for 30D problems, and on seven functions F4, F7, F11 − F15, F17 for 50D
problems. For five hybrid problems (F18−F22), VTSO algorithm secures the lowest
rank on three functions (F18, F21, F22) for 30D problems, and secures the lowest
rank on three functions (F18, F19, F21) for 50D problems. Similarly, for the last
seven composite functions (F23 − F30), VTSO algorithm secures the lowest rank

23

on five functions (F23− F28) for 30D problems and secures the lowest rank on five
functions (F23, F25, F26, F28, F29) for 50D problems. For the rest of the functions,
the performance of VTSO is similar or competitive to other algorithms (see, Table
5 and Table 6 of the supplementary data file 8).

Experimental analysis indicates that the performance of the VTSO algorithm
is competitive when compared with other state-of-the-art evolutionary algorithms
and their variants. The VTSO algorithm secures the lowest average Friedman rank-
ing score of 3.16, hence obtaining a first rank in the overall ranking (see Table 2).
The proposed algorithm demonstrates balanced exploration-exploitation capabilities,
along with maintaining a healthy population diversity. Accounting for these factors,
the VTSO algorithm can be considered a good candidate for solving intricate opti-
mization problems. However, there are some limitations to the implementation of
the VTSO algorithm which are discussed in the next subsection.

7.4. Limitations

The inherent limitation of the VTSO algorithm lies in the calculation of the
Voronoi Tessellations (VTs) of the underlying search space. Calculating VTs for
points distributed in the search space might cause difficulties if the distributed points
are very close to each other, and in extreme cases are co-linear to each other. For in-
stance, when the points are distributed on a straight line or very close1 to each other,
computing voronoi diagram results in parallel lines, making the number of voronoi
vertices infinite and resulting a case of degeneracy, a limitation of the quickhull al-
gorithm [46]. This occurs with the working procedure of the VTSO algorithm, when
the size of the seed population is large and computing voronoi vertices in this case
may produce degeneracy and can hamper the optimization procedure. The other lim-
itations can be attributed to the involvement of the algorithmic parameters which is
a common challenge associated with all evolutionary algorithms. These parameters
need to be tuned optimally and should not cause high computational complexity to
the algorithm. However, despite having these limitations, the concept of generating
well-distributed solutions using the concept of Voronoi Tessellations offers a novel
approach to enrich the robustness of the evolutionary optimizers.

8. Conclusion and Future Research Directions

The proposed VTSO algorithm is an effective optimizer based on the principles of
Voronoi Tessellations and Differential Evolution. It uses a novel solution distribution

1Closeness here is subjective, depending on the precision of the underlying computing machine.

24

method that relies on the concept of Voronoi Tessellations. The distributive proper-
ties of Voronoi Tessellations, help the VTSO algorithm in exploring the search space
in a more efficient manner, while employing the DE algorithm as a local search mech-
anism assists the VTSO algorithm in exploiting the potential regions of the search
space. For handling the issue of premature convergence or stagnation, the population
diameter-based switch activates itself when solutions come nearer to each other, and
the population loses its diversity. Experimental findings support the reliability of the
VTSO algorithm in locating regions around the position of true optimal solution(s).

However, the inherent limitations require more attention and need to be analyzed
carefully. For instance, the deterministic methods for computing Voronoi Tessella-
tions in higher dimensions are computationally expensive, which makes these meth-
ods contradictory to the basic design principle of evolutionary algorithms. In this
work, a slicing and concatenating-based approach is proposed to utilize lower dimen-
sional Voronoi Tessellations, however slicing and concatenating of higher dimensional
spaces in an optimal manner require careful analysis. The associated parameters,
like population diameter threshold, can be tuned using adaptive techniques which
would be a matter of future research.

Supplementary Data

The performance results in terms of mean, std and best for 30D and 50D problems
of CEC14 and CEC17 benchmark sets are available in Mendeley Data Repository:
Bajpai, Prathu; Bansal , Jagdish (2024), “dataset-Voronoi Tessellations based Simple
Optimizer”, Mendeley Data, V1, doi: 10.17632/cvvyytydsj.1.

Declaration of Competing Interest

The authors declare that they have no competing financial or personal interests
that could influence the present work.

Declaration of generative AI and AI-assisted technologies in the writing
process

During the preparation of this work, the author(s) have not used any generative
AI or AI-assisted technologies.

25

https://data.mendeley.com/datasets/cvvyytydsj/1
https://data.mendeley.com/datasets/cvvyytydsj/1

Acknowledgement

The authors acknowledge the support of South Asian University in preparing
this research work. Both Authors acknowledge the support of Alvin Alexander of
Curtin University, Australia, for improving the linguistic quality of the manuscript.
In addition, author one acknowledges the financial support under the JRF/SRF
scheme of the University Grant Commission (UGC), India.

References

[1] R. Espinosa, F. Jiménez, J. Palma, Multi-surrogate assisted multi-objective evo-
lutionary algorithms for feature selection in regression and classification prob-
lems with time series data, Information Sciences 622 (2023) 1064–1091.

[2] N. Li, L. Ma, G. Yu, B. Xue, M. Zhang, Y. Jin, Survey on evolutionary deep
learning: Principles, algorithms, applications, and open issues, ACM Computing
Surveys 56 (2) (2023) 1–34.

[3] J. Huizinga, J. Clune, Evolving multimodal robot behavior via many stepping
stones with the combinatorial multiobjective evolutionary algorithm, Evolution-
ary Computation 30 (2) (2022) 131–164.

[4] Z.-H. Zhan, L. Shi, K. C. Tan, J. Zhang, A survey on evolutionary computation
for complex continuous optimization, Artificial Intelligence Review (2022) 1–52.

[5] J. H. Holland, Genetic algorithm, Scientific American 267 (1992) 66–73.

[6] R. Storn, K. Price, A simple and efficient heuristic for global optimization over
continuous spaces, Journal of Global Optimization 11 (1997) 341–359.

[7] J. Kennedy, R. Eberhart, Particle swarm optimization, Proceedings of IEEE
International Conference on Neural Networks 4 (1995) 1942–1948.

[8] D. Karaboga, B. Akay, A comparative study of artificial bee colony algorithm,
applied mathematics and computation, Applied Mathematics and Computation
214 (2009) 108–132.

[9] N. Hansen, A. Ostermeier, Adapting arbitrary normal mutation distributions
in evolution strategies: The covariance matrix adaptation, in: Proceedings of
IEEE international conference on evolutionary computation, IEEE, 1996, pp.
312–317.

26

[10] Q. Li, S.-Y. Liu, X.-S. Yang, Influence of initialization on the performance of
metaheuristic optimizers, Applied Soft Computing 91 (2020) 106193.

[11] L. Swiler, R. Slepoy, A. Giunta, Evaluation of sampling methods in construct-
ing response surface approximations, in: 47th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference 14th AIAA/AS-
ME/AHS Adaptive Structures Conference 7th, 2006, p. 1827.

[12] O. M. Shir, T. Bäck, Niching in evolution strategies, in: Proceedings of the 7th
annual conference on Genetic and evolutionary computation, 2005, pp. 915–916.

[13] D.-C. Dang, T. Friedrich, T. Kötzing, M. S. Krejca, P. K. Lehre, P. S. Oliveto,
D. Sudholt, A. M. Sutton, Escaping local optima with diversity mechanisms
and crossover, in: Proceedings of the Genetic and Evolutionary Computation
Conference 2016, 2016, pp. 645–652.

[14] D. Sudholt, The benefits of population diversity in evolutionary algorithms:
a survey of rigorous runtime analyses, Theory of evolutionary computation:
Recent developments in discrete optimization (2020) 359–404.

[15] d. B. Mark, C. Otfried, v. K. Marc, O. Mark, Computational geometry algo-
rithms and applications, Springer (2008).

[16] R. A. Apu, M. L. Gavrilova, Efficient swarm neighborhood management using
the layered delaunay triangulation, Generalized Voronoi Diagram: A Geometry-
Based Approach to Computational Intelligence (2008) 109–129.

[17] M. Pedergnana, S. G. Garćıa, et al., Smart sampling and incremental function
learning for very large high dimensional data, Neural Networks 78 (2016) 75–87.

[18] W. Chi, Z. Ding, J. Wang, G. Chen, L. Sun, A generalized voronoi diagram-
based efficient heuristic path planning method for rrts in mobile robots, IEEE
Transactions on Industrial Electronics 69 (5) (2021) 4926–4937.

[19] W. Tu, Z. Fang, Q. Li, S.-L. Shaw, B. Chen, A bi-level voronoi diagram-based
metaheuristic for a large-scale multi-depot vehicle routing problem, Transporta-
tion Research Part E: Logistics and Transportation Review 61 (2014) 84–97.

[20] M. Shatnawi, M. F. Nasrudin, Starting configuration of cuckoo search algorithm
using centroidal voronoi tessellations, in: 2011 11th International Conference on
Hybrid Intelligent Systems (HIS), IEEE, 2011, pp. 40–45.

27

[21] Y.-H. Zhang, Y.-J. Gong, Y. Gao, H. Wang, J. Zhang, Parameter-free voronoi
neighborhood for evolutionary multimodal optimization, IEEE Transactions on
Evolutionary Computation 24 (2) (2019) 335–349.

[22] H. Tong, C. Huang, J. Liu, X. Yao, Voronoi-based efficient surrogate-assisted
evolutionary algorithm for very expensive problems, in: 2019 IEEE Congress on
Evolutionary Computation (CEC), IEEE, 2019, pp. 1996–2003.

[23] T. Okabe, Y. Jin, B. Sendoff, M. Olhofer, Voronoi-based estimation of distri-
bution algorithm for multi-objective optimization, in: Proceedings of the 2004
Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), Vol. 2,
IEEE, 2004, pp. 1594–1601.

[24] T. Huang, W. Gao, H. Li, J. Xie, A voronoi neighborhood based differential evo-
lution algorithm for multimodal multi-objective optimization, in: 2021 IEEE 7th
International Conference on Cloud Computing and Intelligent Systems (CCIS),
IEEE, 2021, pp. 128–133.

[25] W. Pan, N. Lv, K. Chen, Y. Pan, X. Hong, X. Zhang, Multi-uav relay deploy-
ment algorithm based on voronoi diagram division, in: 2023 6th International
Conference on Electronics Technology (ICET), IEEE, 2023, pp. 624–628.

[26] Q. Du, V. Faber, M. Gunzburger, Centroidal voronoi tessellations: Applications
and algorithms, SIAM review 41 (4) (1999) 637–676.

[27] R. Klein, Concrete and abstract voronoi diagrams, Springer Science and Busi-
ness Media 400 (1989).

[28] H. Hiyoshi, Intelligent solutions for curve reconstruction problem, Generalized
Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence
(2008) 131–158.

[29] K. Mulmuley, Computational geometry. an introduction through randomized
algorithms, Prentice Hall Inc. (1994).

[30] M. De Berg, O. Cheong, M. Van Kreveld, M. Overmars, Computational geom-
etry: Algorithms and applications. springer-verlag berlin heidelberg (2008).

[31] K. Price, R. M. Storn, J. A. Lampinen, Differential evolution: a practical ap-
proach to global optimization, Springer Science and Business Media (2006).

28

[32] M. Pant, H. Zaheer, L. Garcia-Hernandez, A. Abraham, et al., Differential evo-
lution: A review of more than two decades of research, Engineering Applications
of Artificial Intelligence 90 (2020) 103479.

[33] B. Kazimipour, X. Li, A. K. Qin, A review of population initialization tech-
niques for evolutionary algorithms, in: 2014 IEEE congress on evolutionary
computation (CEC), IEEE, 2014, pp. 2585–2592.

[34] X.-S. Yang, Nature-inspired optimization algorithms, Academic Press (2020).

[35] R. Gämperle, S. D. Müller, P. Koumoutsakos, A parameter study for differ-
ential evolution, Advances in intelligent systems, fuzzy systems, evolutionary
computation 10 (10) (2002) 293–298.

[36] O. Olorunda, A. P. Engelbrecht, Measuring exploration/exploitation in particle
swarms using swarm diversity, in: 2008 IEEE congress on evolutionary compu-
tation (IEEE world congress on computational intelligence), IEEE, 2008, pp.
1128–1134.

[37] J. J. Liang, B. Y. Qu, P. N. Suganthan, Problem definitions and evaluation
criteria for the cec 2014 special session and competition on single objective
real-parameter numerical optimization, Computational Intelligence Laboratory,
Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Tech-
nological University, Singapore 635 (2) (2013).

[38] G. Wu, R. Mallipeddi, P. N. Suganthan, Problem definitions and evaluation cri-
teria for the cec 2017 competition on constrained real-parameter optimization,
National University of Defense Technology, Changsha, Hunan, PR China and
Kyungpook National University, Daegu, South Korea and Nanyang Technolog-
ical University, Singapore, Technical Report (2017).

[39] A. K. Qin, P. N. Suganthan, Self-adaptive differential evolution algorithm for
numerical optimization, in: 2005 IEEE congress on evolutionary computation,
Vol. 2, IEEE, 2005, pp. 1785–1791.

[40] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control
parameters in differential evolution: A comparative study on numerical bench-
mark problems, IEEE transactions on evolutionary computation 10 (6) (2006)
646–657.

29

[41] J. Zhang, A. C. Sanderson, Jade: adaptive differential evolution with optional
external archive, IEEE Transactions on evolutionary computation 13 (5) (2009)
945–958.

[42] J.-C. Goulet-Pelletier, D. Cousineau, A review of effect sizes and their confidence
intervals, part i: The cohen’sd family, The Quantitative Methods for Psychology
14 (4) (2018) 242–265.

[43] B. Morales-Castañeda, D. Zaldivar, E. Cuevas, F. Fausto, A. Rodŕıguez, A bet-
ter balance in metaheuristic algorithms: Does it exist?, Swarm and Evolutionary
Computation 54 (2020) 100671.

[44] A. H. Gandomi, X.-S. Yang, A. H. Alavi, Cuckoo search algorithm: a meta-
heuristic approach to solve structural optimization problems, Engineering with
computers 29 (2013) 17–35.

[45] L. C. Cagnina, S. C. Esquivel, C. A. C. Coello, Solving engineering optimization
problems with the simple constrained particle swarm optimizer, Informatica
32 (3) (2008).

[46] C. B. Barber, D. P. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex
hulls, ACM Transactions on Mathematical Software (TOMS) 22 (4) (1996) 469–
483.

30

	Introduction
	Related Work
	Voronoi Tessellations or Voronoi Diagram
	Canonical Differential Evolution (DE) Algorithm
	Voronoi Tessellations based Simple Optimizer
	Motivation
	Working of VTSO Algorithm
	Voronoi Tessellations based Population Generation
	Elitist Sampling Mechanism (ESM)
	Local Search Mechanism
	Population Diameter based Switch

	Experiment Results
	Non-Parametric Tests
	Analysis of Population Diversity
	Associated Parameters
	Analysis of Computational Complexity
	Engineering Design Problems

	Discussion
	Effect of Different Mutation Strategies
	Comparison on CEC14 Benchmark Problems
	Comparison on CEC17 Benchmark Problems
	Limitations

	Conclusion and Future Research Directions

